数字图像处理(开卷)整理后

合集下载

(完整版)数字图像处理题库

(完整版)数字图像处理题库

[题目]数字图像[参考答案]为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔地划分成多个等级(层次),也即均匀量化,以此来用二维数字阵列表示其中各个像素的空间位置和每个像素的灰度级数(灰度值)的图像形式称为数字图像。

图像处理[参考答案]是指对图像信息进行加工以满足人的视觉或应用需求的行为。

题目]数字图像处理[参考答案]是指利用计算机技术或其他数字技术,对一图像信息进行某此数学运算及各种加工处理,以改善图像的视觉效果和提高图像实用性的技术。

一、绪论(名词解释,易,3分)[题目]图像[参考答案]是指用各种观测系统以不同形式和手段观测客观世界而获得的、可以直接或间接作用于人的视觉系统而产生的视知觉的实体。

一、绪论(简答题,难,6分)[题目]什么是图像?如何区分数字图像和模拟图像?[参考答案]“图”是物体透射或反射光的分布,是客观存在的。

“像”是人的视觉系统对图在大脑中形成的印象或认识,是人的感觉。

图像是图和像的有机结合,既反映物体的客观存在,又体现人的心理因素;图像是对客观存在的物体的一种相似性的生动模仿或描述,或者说图像是客观对象的一种可视表示,它包含了被描述对象的有关信息。

模拟图像是空间坐标和亮度(或色彩)都连续变化的图像;数字图像是空间坐标和亮度(或色彩)均不连续的、用离散数字(一般是整数)表示的图像。

[题目]简述研究图像恢复的基本思路。

[参考答案]基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面日,从而获得与景物真实面貌相像的图像。

一、绪论(简答题,易,5分)[题目]简述研究图像变换的基本思路。

[参考答案]基本思路是通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理的过程,或在进一步的图像处理中获得更好的处理效果。

一、绪论(简答题,易,5分)[题目]简述一个你所熟悉的图像处理的应用实例。

(完整版)数字图像处理:部分课后习题参考答案

(完整版)数字图像处理:部分课后习题参考答案

第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。

连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。

联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。

其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。

图像处理的重点是图像之间进行的变换。

尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。

如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。

这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。

图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。

联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。

图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。

图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。

(完整版)数字图像处理每章课后题参考答案

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。

1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

数字图像处理课后答案 (3)

数字图像处理课后答案 (3)

数字图像处理课后答案1. 什么是数字图像处理?数字图像处理是指利用计算机对图像进行处理的一门学科。

它是图像处理领域的一个重要分支,主要目标是通过一系列数学算法和统计方法,对数字图像进行分析和处理,从而达到改善图像质量、提取图像特征、实现图像识别等目的。

2. 数字图像处理的主要内容数字图像处理包含了很多内容,主要可以分为以下几个方面:2.1 图像增强图像增强是指通过一系列的算法和处理技术,改善图像的质量,使得图像更加清晰、明亮、对比度更强、噪声更少等。

常见的图像增强技术包括直方图均衡化、滤波、锐化等。

2.2 图像压缩图像压缩是指通过一定的算法和技术,对图像进行编码和解码,从而减少图像的存储空间和传输带宽。

常见的图像压缩算法包括JPEG、PNG、GIF等。

2.3 图像分割图像分割是指将一张图像分成若干个区域,每个区域具有一定的相似性和一致性。

通过图像分割可以提取出图像中的物体或者感兴趣的区域,为图像分析和识别提供基础。

常见的图像分割方法有阈值分割、区域生长法等。

2.4 特征提取特征提取是指从图像中提取出有代表性的特征,用于图像分类、目标识别等应用。

常见的特征提取方法包括边缘检测、纹理特征提取、形状描述等。

2.5 图像恢复图像恢复是指通过一系列的算法和技术,对受损或者退化的图像进行修复,使得图像更加清晰、完整。

常见的图像恢复方法包括去噪、去模糊、去抖动等。

3. 数字图像处理的应用领域数字图像处理在很多领域中都有广泛的应用,以下是一些典型的应用领域:3.1 医学影像处理在医学领域,数字图像处理应用非常广泛。

它可以用于CT 扫描、MRI、X光片等医学图像的分析、特征提取和诊断。

3.2 无人驾驶数字图像处理在无人驾驶领域也有重要的应用。

通过摄像头采集到的图像,利用图像处理算法和技术,可以实现车辆的感知、障碍物检测、车道识别等功能。

3.3 图像识别图像识别是数字图像处理的一个重要应用领域。

通过图像处理和模式识别的技术,可以实现人脸识别、字符识别、目标识别等功能。

数字图像处理期末总结

数字图像处理期末总结

数字图像处理期末总结引言数字图像处理是一门研究利用计算机对图像进行处理和分析的学科,依靠数字图像技术可以对图像进行多种处理和改进,如增强图像质量、去除噪声、进行模式识别等。

本学期我们学习了数字图像处理的基本理论知识和常用算法,并实践了相关实验,以下是我对本学期数字图像处理课程的总结。

一、课程概述数字图像处理课程的目标是让学生了解数字图像的基本概念和处理技术,掌握数字图像处理的常用算法和工具,培养学生分析和解决实际图像处理问题的能力。

本课程分为理论学习和实验实践两部分,理论学习主要包括数字图像的表示和处理原理,常用图像处理方法的原理和算法,实验实践则通过使用Python和相关图像处理库进行实际图像处理。

二、理论学习在理论学习部分,我们首先学习了数字图像的表示方法,了解了数字图像的像素结构和灰度级等基本概念。

接着学习了图像的增强和恢复,常用的图像增强技术包括直方图均衡化、对比度拉伸和空域滤波等。

我们通过实验学习了这些方法的原理和实现,同时也学习了如何评价图像增强的效果。

在图像恢复方面,我们学习了图像去噪和图像复原的方法。

图像去噪包括空域滤波和频域滤波两种方法,我们学习了均值滤波、中值滤波和高斯滤波等常用的滤波器,并实践了相关实验。

图像复原主要涉及退化模型和修复方法的学习,我们学习了线性和非线性滤波方法、逆滤波和最小二乘滤波等图像复原算法。

接着我们学习了图像压缩和编码的原理和方法,了解了JPEG和JPEG2000等常用的图像压缩标准。

我们学习了离散余弦变换(DCT)和小波变换等常用的压缩方法,同时也学习了如何评价图像压缩的质量和效果,例如信噪比和均方差等指标。

最后,我们还学习了图像分割和图像识别的基本理论和方法。

图像分割是将图像分割成若干块区域的过程,常用的分割方法包括阈值分割、区域生长和边缘检测等。

图像识别则是将分割后的图像中的特定对象或模式与预定义的模型进行匹配和识别,我们学习了基于模板匹配和特征提取的图像识别方法,并实践了相关实验。

(选修)数字图像处理(开卷)整理后

(选修)数字图像处理(开卷)整理后

数字图像处理习题集1.图像的概念及分类学科定义:给定条件下被摄目标电磁波性质(反射、辐射、透射)的一种表现形式广义上:图像是对所表示物体的信息描述分类:1)、二值图像:图像中只能取值为0或1。

2)、灰度图像: 单色图像,只包含亮度信息。

3)、彩色图像:3波段单色图像,每波段代表不同颜色,通常为红色、绿色、蓝色。

2.决定图像质量的主要因素有哪些?被摄目标性质,成像的条件,干扰条件3.图像可用数学函数I= f (x, y, z, λ, t)表示,请解释函数中各参量的含义。

(x,y,z)为空间坐标,λ为波长,t为时间,I为光点的强度。

4.说明图像技术的层次,并叙述各层次的主要研究内容;图像技术包含三个层次:图像处理-从图像到图像的过程;利用计算机把原始图像(或图像信息)处理成期望图像(或图像信息)的过程。

图像处理是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。

图像处理是信号处理在图像域上的一个应用。

图像分析-从图像到数据的过程;图像分析要求对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而帮助我们建立对图像的描述。

图像理解-图像解释与知识推理;以图像为对象,知识为核心,研究图像中有什么目标、目标之间的相互关系、图像是什么场景以及如何应用场景的一门技术。

5.简述图像处理的主要目的及主要处理技术;数字图像处理目的;改善图像质量;增强图像定位精度;提高信息传输效率;减少图像信息存贮容量;建立图像信息库1. 图像增强:2、图像复原3、几何处理:4、图像压缩与编码:5、图像重建:6、图像分割7、图像描述8、图像匹配6.什么是彩色三要素,解释各要素的含义;彩色三要素:亮度,色调和饱和度。

亮度,指彩色光作用于人眼时引起人眼视觉的明暗程度;色调,是一种颜色区别于另外一种颜色的特征。

饱和度,指色调的纯洁程度。

7.简述三基色原理;1) 自然界里的大多数彩色光可以分解为三种基色成份,而这三种基色也可以按一定比例混合得到不同的彩色光。

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理

(完整版)数字图像处理复习整理《数字图像处理》复习第⼀章绪论数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表⽰与描述)、彩⾊图像处理和多光谱及⾼光谱图像处理、形态学图像处理第⼆章数字图像处理基础2-1 电磁波谱与可见光1.电磁波射波的成像⽅法及其应⽤领域:⽆线电波(1m-10km)可以产⽣磁共振成像,在医学诊断中可以产⽣病⼈⾝体的横截⾯图像☆微波(1mm-1m)⽤于雷达成像,在军事和电⼦侦察领域⼗分重要红外线(700nm-1mm)具有全天候的特点,不受天⽓和⽩天晚上的影响,在遥感、军事情报侦察和精确制导中⼴泛应⽤可见光(400nm-700nm)最便于⼈理解和应⽤最⼴泛的成像⽅式,卫星遥感、航空摄影、天⽓观测和预报等国民经济领域☆紫外线(10nm-400nm)具有显微镜⽅法成像等多种成像⽅式,在印刷技术、⼯业检测、激光、⽣物学图像及天⽂观测X射线(1nm-10nm)应⽤于获取病⼈胸部图像和⾎管造影照⽚等医学诊断、电路板缺陷检测等⼯业应⽤和天⽂学星系成像等伽马射线(0.001nm-1nm)主要应⽤于天⽂观测2-2 ⼈眼的亮度视觉特征2.亮度分辨⼒——韦伯⽐△I/I(I—光强△I—光照增量),韦伯⽐⼩意味着亮度值发⽣较⼩变化就能被⼈眼分辨出来,也就是说较⼩的韦伯⽐代表了较好的亮度分辨⼒2-3 图像的表⽰3.⿊⽩图像:是指图像的每个像素只能是⿊或⽩,没有中间的过渡,⼀般⼜称为⼆值图像(⿊⽩图像⼀定是⼆值图像,⼆值图像不⼀定是⿊⽩图像)灰度图像:是指图像中每个像素的信息是⼀个量化了的灰度级的值,没有彩⾊信息。

彩⾊图像:彩⾊图像⼀般是指每个像素的信息由R、G、B三原⾊构成的图像,其中的R、B、G是由不同的灰度级来描述的。

4.灰度级L、位深度k L=2^k5.储存⼀幅M×N的数字图像所需的⽐特 b=M×N×k例如,对于⼀幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit)2-4 空间分辨率和灰度级分辨率6.空间分辨率是图像中可分辨的最⼩细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。

(完整版)数字图像处理课后题答案

(完整版)数字图像处理课后题答案

(完整版)数字图像处理课后题答案1. 图像处理的主要⽅法分⼏⼤类?答:图字图像处理⽅法分为⼤两类:空间域处理(空域法)和变换域处理(频域法)。

空域法:直接对获取的数字图像进⾏处理。

频域法:对先对获取的数字图像进⾏正交变换,得到变换系数阵列,然后再进⾏处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像⽤⼀组数字表⽰,便于⽤计算机分析处理。

图像变换:对图像进⾏正交变换,以便进⾏处理。

图像增强:对图像的某些特征进⾏强调或锐化⽽不增加图像的相关数据。

图像复原:去除图像中的噪声⼲扰和模糊,恢复图像的客观⾯⽬。

图像编码:在满⾜⼀定的图形质量要求下对图像进⾏编码,可以压缩表⽰图像的数据。

图像分析:对图像中感兴趣的⽬标进⾏检测和测量,从⽽获得所需的客观信息。

图像识别:找到图像的特征,以便进⼀步处理。

图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从⽽指导和规划⾏为。

3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。

答:像素:在卫星图像上,由卫星传感器记录下的最⼩的分⽴要素(有空间分量和谱分量两种)。

通常,表⽰图像的⼆维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多⼩的⽹格,每个⽹格即为像素图像分辨率:指对原始图像的采样分辨率,即图像⽔平或垂直⽅向单位长度上所包含的采样点数。

单位是“像素点/单位长度”图像深度是指存储每个像素所⽤的位数,也⽤于量度图像的⾊彩分辨率.图像深度确定彩⾊图像的每个像素可能有的颜⾊数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩⾊图像中可出现的最多颜⾊数,或灰度图像中的最⼤灰度等级(图像深度:位图图像中,各像素点的亮度或⾊彩信息⽤⼆进制数位来表⽰,这⼀数据位的位数即为像素深度,也叫图像深度。

图像深度越深,能够表现的颜⾊数量越多,图像的⾊彩也越丰富。

)图像数据量:图像数据量是⼀幅图像的总像素点数⽬与每个像素点所需字节数的乘积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.半调输出技术可以:(B)A、改善图像的空间分辨率;B、改善图像的幅度分辨率;C、利用抖动技术实现;D、消除虚假轮廓现象。

2.数字图像木刻画效果的出现是由于下列原因所产生的:(A)A、图像的幅度分辨率过小;B、图像的幅度分辨率过大;C、图像的空间分辨率过小;D、图像的空间分辨率过大;1.对应于不同的场景内容,一般数字图像可以分_二值图像__、灰度图像和彩色图像三类。

4. 下列算法中属于局部处理的是:(D )A、灰度线性变换B、二值化C、傅立叶变换D、中值滤波1. 图像的数字化包含哪些步骤?简述这些步骤。

1. 图像的数字化主要包含采样、量化两个过程。

采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。

经过采样之后得到的二维离散信号的最小单位是像素。

量化就是把采样点上表示亮暗信息的连续量离散化后,用数值表示出来,是对亮度大小的离散化。

经过采样和量化后,数字图像可以用整数阵列的形式来描述。

2. 图像量化时,如果量化级比较小会出现什么现象?为什么?2. 如果量化级数过小,会出现伪轮廓现象。

量化过程是将连续变化的颜色划分到有限个级别中,必然会导致颜色信息损失。

当量化级别达到一定数量时,人眼感觉不到颜色信息的丢失。

当量化级数过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过度就会变得突然,可能会导致伪轮廓现象。

3. 简述二值图像、彩色图像、灰度图像的区别。

3. 二值图像是指每个像素不是黑,就是白,其灰度值没有中间过渡的图像。

这种图像又称为黑白图像。

二值图像的矩阵取值非常简单,每个像素的值要么是1,要么是0,具有数据量小的特点。

彩色图像是根据三原色成像原理来实现对自然界中的色彩描述的。

红、绿、蓝这三种基色的的灰度分别用256级表示,三基色之间不同的灰度组合可以形成不同的颜色。

灰度图像是指每个像素的信息由一个量化后的灰度级来描述的数字图像,灰度图像中不包含彩色信息。

标准灰度图像中每个像素的灰度值是0-255之间的一个值,灰度级数为256级。

我们将平面景物在投影平面上的非垂直投影称为图像的________________,该处理会是的图像中的图形产生扭变。

1. 简述直角坐标系中图像旋转的过程。

1. (1)计算旋转后行、列坐标的最大值和最小值。

(2)根据最大值和最小值,进行画布扩大,原则是以最小的面积承载全部的图像信息。

(3)计算行、列坐标的平移量。

(4)利用图像旋转公式计算每个像素点旋转后的位置。

(5)对于空穴问题,进行填充。

2. 如何解决直角坐标系中图像旋转过程中产生的图像空穴问题?2. (1)对于空穴问题,需要进行填充。

可以采用插值的方法来解决填充问题。

(2)阐述一下邻近行插值或者均值插值法进行空穴填充的过程。

(该点参见简答题3和3. 举例说明使用邻近行插值法进行空穴填充的过程。

3. 邻近插值法就是将判断为空穴位置上的像素值用其相邻行(或列)的像素值来填充。

例如对于下图中的空穴点f23进行填充时,使用相邻行的像素值来填充。

即:f23=f22.4. 举例说明使用均值插值法进行空穴填充的过程。

4. 均值插值法就是将判断为空穴位置上的像素值用其上、下、左、右像素值的均值来填充。

例如对于下图中的空穴点f23进行填充时,使用相邻行的像素值来填充。

即:f23=(f22+f24+f13+f33)/4.1. 所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行____ 压缩,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。

9. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为_____动态范围___________。

10. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。

8. 使用同态滤波方法进行图像增强时,以下处理顺序正确的是( A )①通过对图像取对数,将图像模型中的入射分量与反射分量的乘积项分开。

②将对数图像通过傅里叶变换变到频域,在频域选择合适的滤波函数,进行减弱低频和加强高频的滤波。

③计算图像中各个灰度值的累计分布概率。

④对滤波结果进行傅里叶逆变换和对数逆运算。

A①②④B①④②C①②③D①③②1. 均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。

1. 均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

将模板中的全体像素的均值来替代原来的像素值的方法。

均值滤波器对高斯噪声的滤波结果较好。

原因:高斯噪声是幅值近似正态分布,但分布在每点像素上。

因为正态分布的均值为0,所以均值滤波可以消除噪声。

2. 简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。

2. 均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

将模板中的全体像素的均值来替代原来的像素值的方法。

均值滤波器对椒盐噪声的滤波结果不好。

原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。

因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。

3. 中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。

3. 中值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达到滤除噪声的目的。

中值滤波器对椒盐噪声的滤波效果较好。

原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。

使用中值滤波时,被污染的点一般不处于中值的位置,即选择适当的点来替代污染点的值,所以处理效果好4. 使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?4. 中值滤波器对椒盐噪声的滤波效果较好,对高斯噪声的处理效果不好。

中值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达到滤除噪声的目的。

原因:椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。

使用中值滤波时,被污染的点一般不处于中值的位置,即选择适当的点来替代污染点的值,所以处理效果好。

高斯噪声是幅值近似正态分布,但分布在每点像素上。

找不到干净的点来替代被污染的点,故处理效果不好。

5. 使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?5. 均值滤波器对高斯噪声的滤波结果较好,对椒盐噪声的滤波结果不好。

均值滤波器的滤波原理是:在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。

将模板中的全体像素的均值来替代原来的像素值的方法。

原因: 高斯噪声是幅值近似正态分布,但分布在每点像素上。

因为正态分布的均值为0,所以均值滤波可以消除噪声。

椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。

因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。

2. 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同?2. 一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界比较清晰;二阶微分算子获得的边界是比较细致的边界。

反映的边界信息包括了许多的细节信息,但是所反映的边界不是太清晰。

依照分割时所依据的图像特性不同,图像分割方法大致可以分为___________阈值方法___、边界分割方法和区域提取方法三大类。

4.熵是信息论中对不确定性的度量,是对数据中所包含__信息量______大小的度量。

1.6.3、在BMP格式、GIF格式、TIFF格式和JPEG格式中:(A)(没有压缩)A、表示同一副图像,BMP格式使用的数据量最多;B、GIF格式独立于操作系统;C、每种格式都有文件头,其中TIFF格式的最复杂;D、一个JPEG格式的数据文件中可存放多幅图像。

2.1.1、福利叶变换有下列哪些特点?(ACD)A、有频域的概念;B、均方意义下最优;C、有关于复数的运算;D、从变换结果可完全恢复原始数据。

2.1.2、一幅二值图像的福利叶变换频谱是:(B)A、一幅二值图像;B、一幅灰度图像;C、一幅复数图像;D、一幅彩色图像。

2.4.1、盖伯变换有下列哪些特点?(C)A、只需对福利叶变换加个窗就可得到;B、窗尺寸随频率中心变化而变化;C、从变换结果可完全恢复原始函数;D、计算盖伯变换要求知道在整个时间轴上的f(t)。

2.6.1、离散小波变换有下列哪些特点?(CD)A、是福利叶变换的一种特例;B、是盖伯变换的一种特例;C、有快速算法;C、其局部化网格尺寸随时间变化。

2.6.2、小波变换所具有的时间-频率都局部化的特点:(B)A、表面时间窗函数的宽度与频率窗函数的宽度都很小;B、表面时间窗函数的宽度与频率窗函数的宽度成反比;C、表面时间窗函数宽度与频率窗函数宽度的乘积很小;D、表面时间窗函数的宽度等于频率窗函数的宽度。

3.5.1、利用平滑滤波器可对图像进行低通滤波,消除噪声,但同时模糊了细节。

一下哪项措施不能减小图像的模糊程度:(C)A、增加对平滑滤波器输出的或值处理(即仅保留大于或值的输出):B、采用中值滤波的方法;C、采用领域平均处理;D、适当减小平滑滤波器的领域操作模板。

7.1.2 以下分割方法中属于区域算法的是:(AD)A 、分裂合并B 、哈夫变换C 、边缘检测D 、阈值分割7.2.1 梯度算子:(AD )A 、可以检测阶梯状边缘B 、可以消除随机噪声C 、总产生双像素宽边缘D 、总需要两个模板7.5.1利用直方图取单阈值方法进行图像分割时:(B )A 、图像中应仅有一个目标B 、图像直方图应有两个峰C 、图像中目标和背景应一样大D 、图像中目标灰度应比背景大3、简述梯度法与Laplacian 算子检测边缘的异同点?答:梯度算子和Laplacian 检测边缘对应的模板分别为-1 -1 1 11 1 -4 11(梯度算子) (Laplacian 算子) (2分)梯度算子是利用阶跃边缘灰度变化的一阶导数特性,认为极大值点对应于边缘点;而Laplacian 算子检测边缘是利用阶跃边缘灰度变化的二阶导数特性,认为边缘点是零交叉点。

(2分)相同点都能用于检测边缘,且都对噪声敏感。

(1分)1、设一幅图像有如图所示直方图,对该图像进行直方图均衡化,写出均衡化过程,并画出均衡化后的直方图。

若在原图像一行上连续8个像素的灰度值分别为:0、1、2、3、4、5、6、7,则均衡后,他们的灰度值为多少?(15分)答:①0()kk ii s p r ==∑,k=0,1,…7,用累积分布函数(CDF )作为变换函数T[r]处理时,均衡化的结果使动态范围增大。

相关文档
最新文档