矢量相加法则

合集下载

《大学物理》矢量运算

《大学物理》矢量运算

一、矢量和标量的定义及表示
1.标量:只有大小和正负而无方向的量,如质量、时间、 温度、功、能量。 表示:一般字母:m、t、T, 运算法则:代数法则
2.矢量:既有大小又有方向的量,如位移、加速度、电场强度
表示:粗体字母A 或 A ,其大小用 A 或 A 表示 。
A A A0
(3) A B Ax B x A y B y Az Bz
(4)引入矢量标积后,功就可以表示为 W F s Fcos s
3.矢量的叉乘
矢积
两矢量相乘得到矢量的乘法叫叉乘,其乘积称为矢积(叉积)
大小: C ABsin
C A B
垂直于A 、 B 组成的平面, 方向: 指向用右手螺旋法则确定。
位移、速度等 的合成
矢量作业
1. 矢量应如何正确表示? 2. 矢量减法满足什么规律(请附图说明)?
3. 写出矢量点乘的解析表达式。
4. 矢量叉乘的右手螺旋法则如何操作?
5. 已知: a与b 夹角为45 , a 6, b 2 2 , 求 a 2b a 3b
2 2 Ax Ay Az2




Az
z
k
Ax x
cos 2 cos 2 cos 2 1
4.矢量合成的解析法
A B ( Ax Bx ) i ( Ay By ) j
y 已知 A、B,(如图)求 A B 、B 用平行四边形法则合成 C 解:先将 A A C A B 然后将 A、B 正交分解,其解析式为 O A Ax i Ay j B Bx i B y j

学习大学物理必备数学知识

学习大学物理必备数学知识

r
r
r
自矢矢 量量的BAr 的 末端末画端出画矢出量矢量 ,CBr,则再从就Cr矢是量 和A的Ar 始端的Br到合
矢量。
4
利用矢量平移不变性: r
d
A r
c
r
C
r
B a

r
B b
A
图4 两矢量相加的平行四边形法则
2、利用计算方法计算合矢量的大小和方向:
r
C A2 B2 2AB cos arctan B sin
r B

r dA
dt
dt
dt
(4)
d
rr A B

r A
r dB

r dA

r B
dt
dt dt
26
2、矢量的积分:

r A

r B
均在同一平面直角坐标系内,且
r dB

Ar,
则有:dBr

r Adt
dt
r B


r Adt



r Axi

Ay
r j
dt
r
r
Axdt i Aydt j
r
的模,用符号 A 表示。
A
图1 矢量的图像表示
2
2、矢量平移的不变性:
r
r
把矢量 A在空间平移,则矢量 A的大小和方向都不
会因平移而改变。
r
r
A
A
r A
图2 矢量平移
3
二 矢量合成的几何方法
1、利用质点在平面上的位移说明矢量相加法则:
r
c

在力学中巧用矢量三角形法则

在力学中巧用矢量三角形法则

在力学中巧用矢量三角形法则作者:刘卫东来源:《中学生数理化·教与学》2011年第03期一、矢量加、减运算的图示矢量的加、减运算,即矢量的合成与分解是处理物理问题必备的数学方法.矢量加减依据平行四边形法则,也可简化为三角形(或多边形)法则.其图解方法如图1.若已知矢量A、B,如图1(a),当求C=A+B,即作矢量的加法时,可将A、B两矢量依次首(有向线段箭头)尾(有向线段末端)相接后,由A的尾画到B的首的有向线段即为C,如图1(b);当求C=A-B,即作矢量的减法时,通常将表示A、B两矢量的有向线段末端重合,即从同一点出发分别画出两相减矢量,由B的有向线段箭头画到A矢量箭头的有向线段即为C,如图1(c).运用这种方法也可以进行多个矢量连续相加或相减.我们可以归纳如下.图解方法求矢量和:相加各矢量依次首尾相接后,连接第一个“加数”尾与最后一个“加数”头的有向线段即为各矢量之和.图解方法求矢量差:末端共点分别作相减矢量,连接两箭头,方向指向“被减数”的有向线段即为该二矢量之差.二、运动的合成与分解当物体实际发生的运动较为复杂时,我们可将其等效为同时参与几个简单的运动,前者称作合运动,后者则称作物体实际的分运动.这种双向的等效操作过程叫运动的合成与分解,是研究复杂运动的重要方法.运动的合成与分解遵循如下原理:1.独立性原理构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律运动进行,不会因有其他运动的存在而发生变化.2.等时性原理合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.3.矢量性原理描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量运算.三、矢量三角形在共点力平衡中的运用物体在三个不彼此平行的力的作用下处于平衡状态,这三个力必在同一平面内共点,其合力为零.这三个力组成一个封闭的三角形,解答此类题目时用矢量三角形法则,分析一些动态变化时定性处理问题简捷、直观、明了.有时定量计算时也简捷、方便,避免大量用三角函数求极值的烦琐过程,能收到事半功倍的效果.1.共点力平衡时力变化的定性讨论例1如图2(a),DAB为半圆支架,两细绳OA、OB接于圆心O,其下悬重力为G的物体.若OA细绳固定不动,将细绳OB的B端沿半圆支架从水平位置逐渐缓慢移至竖直位置C 的过程中,细绳OA和细绳OB对节点O的拉力大小如何变化?解析:选节点O为研究对象,节点在拉力G、TA、TB三个力的作用下始终处于共点力的平衡状态,G的大小和方向都确定;TA的方向确定但大小不定;TB的大小和方向都不定,根据图2(b)中力的封闭矢量三角形可以看出,在OB向上靠近OC的过程中,TA一直减小,TB先减小后增大.2.共点力平衡时力变化的定量计算例2如图3,质量为m的物体放在水平地面上,用水平向右的拉力F拉物体,使物体沿水平向右匀速运动,已知物体和水平面间的动摩擦因数为,μ在保持拉力F大小不变的情况下改变其方向,但仍使物体沿原方向匀速运动,则拉力F′与原拉力F间的夹角θ为多大?解析:略.总之,凡遇到物体受三个共点力作用,处于平衡问题时,若一个力的大小与方向都确定,另一个力的方向也确定,求这个力的大小及第三个力的大小如何变化时,利用矢量三角形定性讨论比较方便.。

矢量相加法则

矢量相加法则

矢量相加法则
矢量相加法则描述了如何将两个或多个矢量相加以获得其总和或结果矢量。

在物理学和工程学中,矢量相加法则是一个重要的概念,用于描述力、速度、位移等矢量量的组合。

常见的矢量相加法则包括以下几种:
1.平行四边形法则:对于两个矢量,可以将它们的起点放在同一点,然后从第一个矢量的终点开始,画出第二个矢量的方向和长度,从而形成一个平行四边形。

连接起点和终点,新的矢量就是这两个矢量的矢量和。

2.三角法则:对于两个矢量,将它们的起点放在同一点,然后从第一个矢量的终点开始,画出第二个矢量的方向和长度,形成一个三角形。

连接起点和终点,新的矢量就是这两个矢量的矢量和。

3.分量法则:将矢量分解为其在坐标轴上的分量,然后将相应坐标轴上的分量相加,得到结果矢量的各个分量。

4.几何法则:对于多个矢量相加,可以使用几何法则,将每个矢量的起点和终点依次连接起来,结果矢量是连接起点和最后一个矢量终点的线段。

需要注意的是,不同矢量的相加法则可能在几何上有所不同,具体情况取决于矢量的性质和应用背景。

矢量相加法则在计算和分析物理现象中具有重要作用,帮助理解和描述多个矢量的组合效果。

1/ 1。

高一物理矢量和标量归纳知识点

高一物理矢量和标量归纳知识点

高一物理矢量和标量归纳知识点在高一物理学习中,矢量和标量是重要的概念。

矢量是具有大小和方向的物理量,而标量只有大小没有方向。

深入理解和掌握这些概念对于学习物理非常关键。

下面将对高一物理矢量和标量的相关知识点进行归纳。

1. 矢量和标量的定义矢量是具有大小和方向的物理量,常用箭头表示,如力、速度、位移等。

它们在运算中需考虑方向和大小的综合作用。

而标量只有大小,没有方向,常用数字表示,如时间、温度、质量等。

标量在运算中只需考虑大小的计算。

2. 矢量的表示方法矢量可以使用多种表示方法,包括数值法、文字法和图示法。

数值法是指使用数值和单位来表示矢量,如10 m/s的速度矢量。

文字法是使用字母符号和单位来表示矢量,如V表示速度矢量。

图示法是通过箭头图示来表示矢量的大小和方向,箭头长度表示大小,箭头方向表示方向。

3. 矢量的运算矢量的运算包括矢量相加和矢量相减。

矢量相加时,可以使用平行四边形法则或三角形法则。

平行四边形法则是将矢量按照顺序排列,然后把它们的起点连起来构成平行四边形,连接对角线得到结果矢量。

三角形法则是将矢量按照顺序排列,然后从第一个矢量的尾部画一条线到第二个矢量的尾部,再从第二个矢量的尾部画一条线到第三个矢量的尾部,连接第一个矢量的起点和第三个矢量的终点得到结果矢量。

矢量相减可以通过将被减矢量取反后再进行矢量相加来实现。

4. 矢量的分解矢量的分解是将一个矢量分解为数个分量,常用直角坐标系进行分解。

例如,将一个力矢量分解为水平和垂直方向上的分量。

分解后的矢量之和等于原矢量。

分解矢量使计算和分析更方便和准确。

5. 标量的运算标量的运算较为简单,只需考虑标量的大小即可。

标量相加时,只需将各个标量相加即可;标量相减时,只需用被减数减去减数即可。

标量的乘除法也是类似的,只需进行相应的数值计算即可。

6. 矢量和标量的关系矢量和标量之间有一种特殊的关系,即矢量可以表示为标量与方向的乘积。

例如,力可以表示为施力大小乘以施力方向的矢量。

矢量运算法则

矢量运算法则

03
矢量减法
矢量减法的几何意义
• 矢量减法的几何意义 • 矢量减法表示两个矢量的头和尾相连,然后去掉第一个矢量的 尾巴 • 矢量减法的模等于两个矢量模的差 • 矢量减法的方向等于两个矢量方向的差
矢量减法的计算方法与性质
矢量减法的计算方法
• 矢量减法可以通过对应分量的相减得到 • 矢量减法的计算公式为:A - B = (A1 - B1, A2 - B2, ..., An - Bn)
矢量的方向
• 矢量的方向可以用矢量的单位向量表示 • 矢量的单位向量是矢量除以其模的结果
02
矢量加法
矢量加法的几何意义
• 矢量加法的几何意义 • 矢量加法表示两个矢量的头和尾相连 • 矢量加法的模等于两个矢量模的和 • 矢量加法的方向等于两个矢量方向的合成
矢量加法的计算方法与性质
矢量加法的计算方法
矢量减法的性质
• 矢量减法满足交换律:A - B = B - A • 矢量减法满足结合律:(A - B) - C = A - (B + C)
矢量减法的应用实例 • 矢 量 减 法 的 应 用 实 例 • 计算两个力的差力:F = F1 - F2 • 计算两个速度的差速度:v = v1 - v2
04
矢量运算在计算机图形学中的 应用
• 矢量运算在计算机图形学中的应用 • 计算物体的运动轨迹:s = v0t + 0.5at^2 • 计算光照和阴影:L = I * (N · L) / (N · V) • 计算物体的表面法向量:N = (A × B) / |A × B|
CREATE TOGETHER
矢量叉积的几何意义
• 矢量叉积表示两个矢量的模和角度的乘积 • 矢量叉积的结果等于两个矢量模的乘积乘以它们夹角的 余弦

空间矢量的原理与应用

空间矢量的原理与应用

空间矢量的原理与应用1. 什么是空间矢量空间矢量是矢量分析中的一个重要概念,它描述了在三维空间中具有大小和方向的物理量。

空间矢量可以表示为有序元组形式,例如(a,b,c),其中a、b、c分别表示矢量在x、y、z轴上的分量。

空间矢量具有以下特点:•大小:空间矢量的大小由其长度决定,可以通过勾股定理求得。

•方向:空间矢量有固定的方向,可以用箭头表示。

2. 空间矢量的表示方法在矢量分析中,常用的空间矢量表示方法有两种:2.1. 笛卡尔坐标系表示在笛卡尔坐标系中,空间矢量可以表示为一个有序元组,元组的每个分量表示矢量在对应坐标轴上的分量。

例如,空间矢量A可以表示为A = (a,b,c),其中a、b、c分别表示A矢量在x、y、z轴上的分量。

2.2. 球坐标系表示在球坐标系中,空间矢量可以用球坐标表示,包括长度、极角和方位角。

例如,空间矢量A可以表示为A = (r,θ,φ),其中r表示长度,θ表示极角,φ表示方位角。

3. 空间矢量的运算法则空间矢量的运算法则包括向量加法、向量减法、数量乘法和数量除法。

以下是空间矢量运算法则的详细说明:3.1. 向量加法向量加法是指两个空间矢量相加,得到一个新的矢量。

向量加法满足交换律和结合律,即对于任意两个矢量A和B,有A + B = B + A和(A + B) + C = A + (B + C)。

3.2. 向量减法向量减法是指两个空间矢量相减,得到一个新的矢量。

向量减法可以通过向量加法和数量乘法来表示,即A - B = A + (-B)。

3.3. 数量乘法数量乘法是指将空间矢量的每个分量与一个标量相乘,得到一个新的矢量。

数量乘法满足分配律,即对于任意矢量A和标量k,有k(A + B) = kA + kB。

3.4. 数量除法数量除法是指将空间矢量的每个分量除以一个标量,得到一个新的矢量。

数量除法满足分配律,即对于任意矢量A和标量k,有(kA) / k = A。

4. 空间矢量的应用空间矢量在物理学、工程学和计算机图形学等领域有着广泛的应用。

矢量和张量

矢量和张量

称它为拉普拉斯算符(有些作者以符号△表示,特 别在早期德国文献中)。与梯度、散度和旋度一样, 拉普拉斯算符只具有分配律性质。
矢量场的拉普拉斯算符
虽然上式在直角座标系下成立,但不能应用于曲线 座标系,所以把矢量场的拉普拉斯算符定义为:
就可用于曲线座标系。
二阶张量
本节将给出一些与张量和并矢量相关的一些 运算方法。这些运算在传递现象的理论中 会遇到,特别是动量传递中。
• 矢量及其大小的定义: 矢量v定义为一个具有一定大小和方向的量。 矢量的大小记作| v | 。或以非黑体的斜体字 v来标记。二个矢量v和w如果大小相同,方 向亦相同,则此二矢量相等;它们不一定 是同线的,亦不一定具有同一原点。如果v 和w的大小相同,但方向相反,则v =-w。
矢量的加法和减法
两个矢量的加法可以用熟知的平行四边形 法则进行运算;矢量减法运算如下:改变 一个矢量的符号,然后与另一失量相加。
定义和符号 矢量v可以用一组分量v1,v2和v3来确定。相似地, 一个二阶张量τ可以用九个分量η11, η12 ,η13 ,η21 等等来确定。为简便起见,这些分量可以写成
不要把这一排列的数组与行列式相混淆;后者 亦可作这种排列,但在此只是一组有序的数, 而行列式是这些数的某一种确定的乘积的和。 两个下标相同的元素称为对角元素,而二下标 不同的元素为非对角元素。如果η12=η21 ,η13 =η31 , η23=η32那么η称为对称张量。张量η的 转置是对每个元素的二个下标变换后所得的一 个张量记作η T:
式中nvw是单位长度的矢量(“单位矢量”),它与v和 w组成的平面垂直,其方向是右螺旋的前进方向(矢 量v按最短路径旋转到w)。矢量积的几何表示如图 A.1—4所示。矢量积的大小正好等于矢量v和w组 成的平行四边形面积。按矢量积定义,我们有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档