第五章 图论简介(运筹学,中央财经大学)

合集下载

运筹学-图论

运筹学-图论
以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;

运筹学理论:图论

运筹学理论:图论

5②
5
⑥4
3
③8
1 2
2 4
1 2
⑥4
0①
3
4
0①
3
7
4
6
⑤10
7
7
4
6
⑤10
3④ 7
3④

5②
5 2 3
题 :
③6
5②
5 2
⑥4
3
③6
1 2
1 2
⑥4
0①
3
4
0①
3
4
7
4
7
6
⑤10
7
7
4
⑤9
6
3④
3④

5②
5 2 4 3
题 :
③6
5②
5 2
⑥4
3
③6
1 2
1 2
⑥4
0①
3
0①
3
4
7
7
4
6
⑤7
7


题:

1

11
2 7 5

③ ② ④ ③ ⑤
3
6 9 ④ 10 4

8

破 圈 法(山东师院管梅谷75 Nhomakorabea)首先,把有权图的边按权的递减顺 序排列:a1, a2, …… , an。 再检查a1, 如果去掉a1, 图仍是连通 图, 则去掉a1, 否则令a1= e1,再用 同样方法检查a2 … 如此继续下去, 直到找出有n-1条边的连通图为止
A
D
例如:哥尼斯堡七桥图: d(A)=3 d(B)=3 C d(C)=5 d(D)=3
B
(四) 特殊点:

图论简介

图论简介
充分条件:图G中任意两点的度数之 和大于等于顶点数
注意:目前没有充分必要要条件来判断任 意一图是否为Hamilton图
2013.4.15
4.哈密顿图
图论简介
举行一个国际会议,有A、B、C、D、E、F、G 7个人。已知下列事实:
A 会讲英语;
B 会讲英语和汉语;
试问这7个人应如
C
会讲英语、意大利语和俄语;
(A)
2013.4.15
(B)
(C)
5.树
图论简介
最小生成树:
在一个赋权图中权值之和最小的生 成树就是最小生成树。
2013.4.15
5.树
图论经典例题之五:
管道问题:
▪ 选择怎么样的 路线可以使管 道可以通过所 有的点,且管 道总长度最短。
2013.4.15
图论简介
5.树
图论简介
Kruskal算法(避圈法):
2013.4.15
3.欧拉图
哥尼斯堡七桥问题
图论简介
2013.4.15
图论模型
3.欧拉图
各个点都与奇 数条边相连所
以不能实现
图论简介
2013.4.15
3.欧拉图 一笔写字问题
口日目
2013.4.15
哪个能一笔画 写完?
图论简介

4.哈密顿图
图论简介
通过每个顶点一次且仅一次最后再回 到原点的回路叫做Hamilton 回路。含有 哈密顿回路的图叫做哈密顿图。
最短路问题 指派问题 最小费用
选址问题
2013.4.15
2013.4.15
图论简介
2013.4.15
3.欧拉图
图论简介
欧拉通路 走遍图G每一条边一次仅且一次 的通路(到达另外一点)。

图论在运筹学中的名词解释

图论在运筹学中的名词解释

图论在运筹学中的名词解释一、引言运筹学是一门研究复杂问题的学科,它借助各种数学方法和技术,帮助我们做出最佳的决策。

图论作为运筹学的重要工具之一,被广泛应用于解决各类实际问题。

本文将就图论在运筹学中的几个重要名词进行解释和探讨。

二、图图是图论的核心概念之一。

它由一组顶点和连接这些顶点的边组成。

在运筹学中,图可以用来描述和分析各种现实场景。

比如,交通网络可以用图来表示,道路是边,路口是顶点;社交网络可以用图来表示,用户是顶点,社交关系是边。

通过构建和分析图,我们可以揭示事物之间的关联性和特征,并利用这些信息进行决策。

三、路径路径是图论中一个重要概念。

它指的是在图中顶点之间连接的一系列边的序列。

在运筹学中,路径常常被用来表示两个顶点之间的最佳路线或最优解。

比如,在物流配送中,我们需要找到从仓库到目的地的最短路径,以最大程度地降低运输成本和时间。

通过图论的路径算法,我们可以高效地找到这样的最短路径,为物流管理提供有效支持。

四、最小生成树最小生成树是一种特殊的图结构,它是原图的一个子图,包含了所有顶点,但只有足够的边连接这些顶点,并使得整个图的总权重最小。

在运筹学中,最小生成树常常被用于解决资源分配和网络设计等问题。

比如,在电力输送系统中,我们需要将发电站和各个消费点以最短的电网连接起来,以确保电能的高效分配和传输。

通过构建最小生成树,我们可以优化电网的布局,降低能源损耗,提高供电可靠性。

五、网络流网络流是图论中的一个重要概念,它用来描述在一个有向图中通过各个边所能承载的最大流量。

在运筹学中,网络流被广泛应用于流程设计和资源调度问题。

比如,在工厂生产调度中,我们需要在供应链上对原材料、组件和成品进行优化配送,以实现最佳生产效率和降低成本。

通过分析网络流,我们可以确定各个节点的产能和需求,从而优化生产计划和物流调度。

六、最短路径最短路径是图论中的一个重要问题,即在图中找到连接两个顶点的最短路径。

在运筹学中,最短路径经常被用于解决物流和通信等问题。

图论的基本概念和应用

图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个重要分支,研究的是图的性质和图之间的关系。

图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。

本文将介绍图论的基本概念和一些常见的应用。

图的定义图是由节点(顶点)和边组成的一种数据结构。

节点表示对象,边表示对象之间的关系。

图可以分为有向图和无向图两种类型。

有向图有向图中,边是有方向的,表示从一个节点到另一个节点的关系。

如果从节点A到节点B存在一条边,那么我们称节点A指向节点B。

无向图无向图中,边是没有方向的,表示两个节点之间的关系。

如果两个节点之间存在一条边,那么我们称这两个节点是相邻的。

图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。

邻接矩阵邻接矩阵是一个二维数组,其中行和列分别表示图中的节点,数组元素表示节点之间是否存在边。

如果节点i和节点j之间存在边,则邻接矩阵中第i行第j列的元素为1,否则为0。

邻接表邻接表是一种链表的形式,其中每个节点都有一个链表,链表中存储了与该节点相邻的节点。

邻接表更加节省空间,适用于稀疏图。

图的遍历图的遍历是指从图中的某个节点出发,按照一定规则依次访问图中的所有节点。

常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

深度优先搜索(DFS)深度优先搜索是一种递归的遍历算法,从起始节点开始,沿着一条路径尽可能深入地访问图中的节点,直到无法继续深入为止,然后回溯到上一个节点,继续访问其他未被访问过的节点。

广度优先搜索(BFS)广度优先搜索是一种非递归的遍历算法,从起始节点开始,按照距离起始节点的距离逐层访问图中的节点。

首先访问起始节点,然后访问与起始节点相邻的所有节点,再访问与这些相邻节点相邻的所有未被访问过的节点,以此类推。

图的应用图论在许多领域都有着广泛的应用,下面介绍几个常见的应用场景。

社交网络分析社交网络是一个典型的图结构,其中节点表示用户,边表示用户之间的关系。

通过对社交网络进行图论分析,可以研究用户之间的关系、社区发现、信息传播等问题。

《图论的介绍》课件

《图论的介绍》课件
添加副标题
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深

技术发展:图 论与机器学习、 深度学习等技 术的结合越来

图论介绍

图论介绍
21
Theorem Let G be a nontrivial connected graph. Then
G contains an open eulerian trail if and only if G has exactly two odd vertices.(连通图是
欧拉迹的充要条件是图中奇次顶点个数是0个 或2个)
任意非空子集,则:w(G-V1)|V1|。 其中:w(G-V1)是从G中删除V1(删除V1中各结点及其关联的边) 后所得到的图的连通分支数。
定理 (充分条件) 设G=<V,E>是简单无向图。
如果对任意两个不相邻的结点u,vV,均有:
deg(u)+deg(v)|V|-1,
则G中存在哈密尔顿通路;
该边为无向边, 否则, 称为有向边.
如果V = {v1, v2, … , vn}是有限非空点集, 则称G为有限图或n阶图.
2
如果E的每一条边都是无向边, 则称G为无向 图(如图1); 如果E的每一条边都是有向边, 则称 G为有向图(如图2); 否则, 称G为混合图.


1
2
并且常记
V = {v1, v2, … , vn}, |V | = n ;
Peter
Ralph
Sarah
平均只需6步,就可以通过亲友找亲友的
方法把地球上任意两个陌生人联系起来。
12
图论重要性在理论上还体现在:
图论是组合数学的一个分支,与其它数学分支如群 论、矩阵论、集合论、概率论、拓扑学、数值分析
等有着密切的联系 。
拓扑图论
图论
代数图论
化学图论
随机图论
图论算法 离散数学
Furthermore: the trail begins at one of the odd vertices and terminates at the other.

图论知识点总结

图论知识点总结

图论知识点总结•对应简单图的度序列,在同构意义下可能不止一个•简单图的度序列最大度一定要小于等于n-1•只要和为偶数就是图的度序列•若图中两点u与v间存在途径,则u与v间存在路•若过点u存在闭迹,则过点u存在圈•一个图是偶图当且仅当它不包含奇圈•无向图的顶点之间的连通关系一定是等价关系•有向图的顶点之间的单向连通关系不是等价关系•一个简单图G的n个点的度不能互不相同•无向图的邻接矩阵的行和对应顶点的度数•无向图的邻接矩阵的所有元素之和等于边数的2倍•无向图的邻接矩阵的平方的对角线元素等于对应顶点的度数•无向图的邻接矩阵的平方的对角线元素之和等于边数的2倍•无向图的邻接矩阵的特征值的平方和等于边数的2倍•若G是非连通的,则邻接矩阵相似于某个对角矩阵•树一定是连通无圈图•树G无环且任意两点之间存在唯一的路•树无回路但任意添加一条边后有回路•回路是边不重的圈的并•如果一个闭迹不是一个圈,那么它一定是没有重边的圈的并集。

•n阶树T的形心由一个点或两个相邻点组成。

•若T只有一个形心,则形心的权小于n/2•若T有两个形心,则形心的权等于n/2•树T的对偶图全是环•G是极大平面图的充要条件各面的次数均为3且为连通图每个n方体都有完美匹配由n方体的构造知:n方体有2n个顶点,每个顶点可以用长度为n的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。

划分顶点,把坐标之和为偶数的顶点归入X,否则归入Y。

X中顶点互不邻接,Y中顶点也如此。

所以n方体是偶图。

很容易验证n方体的每个顶点度数为n,所以n方体是n正则偶图。

因此,n方体存在完美匹配。

树T有完美匹配当且仅当对所有顶点v∈T,o(T-v)=1必要性:树T有完美匹配,由Tutte定理知o(T-v)≤|{v}|=1显然T是偶数阶的图,o(T-v)≥1.因此o(T‒v)=1。

充分性:对于T的任意顶点v,假设Tv是T-v仅有的奇分支,且Tv与v之间的边为uv。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

类似的问题:一笔画问题
图的一笔画: 可一笔画 不可一笔画
字的一笔画:如“中、日、口、串”等可一笔画 而:“田、目”等不能一笔画
图论的应用范围:
1、中国邮路问题: 邮递员如何选择适当的投递路线,使每条街道至 少走过一次且所走的总路程最短?
2、最短路问题:
一个乡有9个自然村,其间道路如下图所示, 要以村为中心v 0建有线广播网,如要求沿道路 架设广播线,应如何架设使所用电线最短
简单回路 C3: {v1 , e7 , v5 , e4 , v 4 , e8 , v1 }
v6
e6 e5
v1 e1
e8 e10

v2
e2

e7
e9
v5
e4
G
4 v
v3 e
3
e6
v1 e1
e8 e10

v2

e7
v1
e8
v 6
e7 e5
v5
e4
把C3从C 2的v1点处插入 C 2,得一简单回路 C,
创始人
创立时间 问题的提 出
E.Euler(瑞士数学家) 18世纪
歌尼斯堡七桥难题
※歌尼斯堡七桥难题
普莱格尔河
七桥问题的数学模型:
用A、B表示两座小岛,C、D表示两岸, 连线AB表示A、B之间有一座桥。 C

A
B D
问题简化为: 在该图中,从任一点出发,能否通过每条线段 一次且仅仅一次后又回到原来的出发点 结论:不存在这样一种走法。
1

4 5
4 2
1

v0
1 3

4 4
5
2
3


5
1
1

2
1 2

v0
1



2
1
2
3

3、选址问题 已知一个地区的交通网络如下图所示,其中点代表 居民小区,边表示公路,问区中心医院应建在哪个 小区,可使离医院最远的小区居民就诊时所走的路 程最近? v5 即求图的中心
v3
有向图 ——边e=(vi, vj)有方向 vi为始点,vj为终点 图 此时(vi, vj)≠ (vj,vi) 无向图 ——边e=(vi, vj)无方向
此时(vi, vj)= (vj, vi)
e1
e2
有 向 图
e1
e2
v1
e3
e6
v1
e3
无 向 图
e6
v2

e4
e5
v 4
对vi V
vi 每出现一次,必关联两 条边 若vi 是C的中间点, 如C: {v1 , e1 , v2 , e2 , v3 , vi 1 , ei 1 , vi , ei , vi 1 ,, v1 } ,即 vi 为偶点 d (vi )为偶数
vi必关联两条边 若vi 是C的起点, vi 也是 C的终点,
{v5 , e4 , v4 , e9 , v2 , e2 , v3 , e3 , v4 , e8 , v1},
链 开链 : 链中的起点与终点不同
闭链 : 链中的起点与终点重合
圈或回路 道路
简单圈 在圈中,所含的边均不相同 初等圈 在圈 中,除起点和终点重合 外,
没有相同的顶点和相同 的边
e4
4 v
v 3
如w(e2)=50: 城市v2 到城市v3 的距离是50公里
5.2 欧拉图与中国回路问题
欧拉道路: 一笔画问题 设G是一个无向连通图,若 存在一条道路,经过 G中的 每一条边一次且仅一次 ,则称这条道路为欧拉 道路
开 链
v1 e1
v5
e6
e5
4 v
v2
e2
v1
记G G C2 (V ,E ),E E E1,V 是E 中边的端点
在G 中,以 G 与C 2的公共顶点 v1为起点取一个简单回路 C3
简单回路 C3: {v1 , e7 , v5 , e4 , v 4 , e8 , v1 }
v6
e6 e5
v1 e1
v 3
d (v ) 12 ,G的边数m=6 即 d (v ) 2m
i
i
三、次的性质
定理1 在图G=(V,E)中,所有点的次之和是边数m 的两倍。
证明: 由于每条边均与两个顶点关联, 因此在计算顶点的次时每条边都计算了两遍 所以顶点次数的总和等于边 数的二倍。
定理5.2 在任何图G=(V,E)中,奇点的个数为偶数
d (vi )为偶数 ,即 vi 为偶点
充分性: 若无向连通图G=(V,E)中无奇点,则G为欧拉图
d (vi )为偶数 例: G连通,
v1 e1
e7 e5 e8
v6
e6

v2
e2

v5
e10
e9
e4
4 v
v3 e
3
G
任取一点,如 v3, 找一个以 v3为起点的一个简单回路 C1
e7 e8

v2
e2
e6 e5
v1 e1
e8 e10

v2

e7
v1
e8

v5
e10
e9
G
e4
4 v
e3
v 3 v 6
e7
v5
e4
G
4 v
v5
G
e4
4 v
简单回路 C1: {v3 , e3 , v4 , e9 , v 2 , e2 , v3 } 简单回路 C 2: {v2 , e10 , v5 , e5 , v6 , e6 , v1 , e1 , v2 }
{v3 , e3 , v4 , e2 , v2 , e1 , v1 , e4 , v4 }
欧拉回路:
v1
欧拉图

设G是一个无向连通图,若 存在一个回路,经过 G中的 每一条边一次且仅一次 ,则称这个回路为欧拉 回路

e6 e5
e1

v2
e2
存在欧拉回路:
{v1 , e1 , v2 , e2 , v3 , e3 , v4 , e7 , v2 , e5 , v5 , e4 , v4 , e6 , v1}
e7
v5
e4
4 v
v2
e3
v 3
该图特点:d (vi )均为偶数
v1

e1
e5

e2
e4
该图不存在欧拉回路
存在奇点
v 3
e3
4 v
定理5.3 无向连通图G为欧拉图的 充要条件是G中无奇点
证明:必要性 已知G=(V,E)为欧拉图,即存在一条欧拉回路C, C经过G的每一条边, 由于G为连通图, 所以G中的每个点至少在C中出现一次
2、相邻点和相邻边:
一条边的两个端点称为 相邻点,简称邻点, 端点落在同一个顶点的 边称为相邻边,简称邻 边 e1 1 3、多重边与环: 具有相同端点的边称为 多重边或平行边; e2 两个端点落在同一个顶 点的边称为环。
v 1
e3
e6
4、多重图和简单图:
v2

含有多重边的图称为多 重图; 无环也无多重边的图称 为简单图。
证明: 设V1和V2 分别是图 G中奇点和偶点的集合
则V1 V2 V且V1 V2
d (v ) d (v ) d (v ) 2m (定理5.1)
iV i iV1 i iV2 i
V2 是偶点的集合 , d (vi )(i V2 )均为偶数
所以 d (vi )为偶数
G
4 v
v5
G
e4
4 v
C: {v 2 , e10 , v5 , e5 , v6 , e6 , v1, e7 , v5 , e4 , v4 , e8 , v1 , e1 , v 2 }
六、赋权图(网络)
对图G=(V,E),
e的权
若对每一条边e,都有一个实数w(e)与之对应, 则称图G=(V,E)为赋权图 ,或网络 权w(e)通常表示距离、费用、容量等 如公路交通图:
e6 e5
v1

e1
e8
v6

v2
e2
Vi表示 城市, ei表示公路 w(ei)表示公路ei的长度
e3

e7
e9
v5
iV2
d (v )为偶数
i V1 i
而V1是奇点的集合, d (vi )(i V1 )均为奇数
只有偶数个奇数相加才能得到偶数
所以 V1中的点,即奇点的个数 为偶数
四、链: 对无向图 G (V,E)
(V,E)中,一个点与边的交 错序列 1、链的定义: 在图 G {vi 0 , ei1 , vi1 , ei 2 , vik 2 , eik 1 , vik 1 , eik , vik }, 且eit (vit 1 , vit )(t 1,2, k ), 则称这个点边序列为 连接 vi 0与vik的一条链 , 简记为 {vi 0 , vi1 ,,vik 2 , vik 1 , vik }
简单链:在链中,所含的边均不相同 初等链:在链 中,所含的顶点、边均 不相同
v6
e6 e5
v1

e1
e8

v2
e2

e7
e9
v5
e4
4 v
e3
v 3
{v6 , e5 , v5 , e7 , v1 }
初等 链
不是链
{v6 , e7 , v1 , e8 , v4 }
简单链
相关文档
最新文档