运筹学图论

合集下载

运筹学课件:第7章 图论与网络分析-第1,2节

运筹学课件:第7章 图论与网络分析-第1,2节

v1
v2 a
v3
v4 c
b v1
a
v2
b
v3
d
d
v4
c
第2节 最小树问题
一、树及其性质 定义1: 无圈的连通图称为树。树一般用T表示。
定理1: 任给树T=(V,E),若P(T)≥2,则 T中至少有两个悬挂点。
证明:设µ=(v1,v2,…,vk)是G中含边数最多的 一条初等链,因P(T)≥2,并且T是连通的, 故链µ中至少有一条边,从而v1与vk是不同的 。
不少数学家都尝试去解析这个事例。而这些解析,最 后发展成为了数学中的图论。
例:中国邮路问题 一个邮递员送信,要走完他所负责的全部街道分送
信件,最后返回邮局。邮递员都会本能地以尽可能少的 行程完成送信任务。
问题:他如何走?
点:路口; 边:两路口之间道路,第i条道路长ei。
问题:求一个圈,过每边至少一次,并使圈长度最短。
由于T是树,由定义知T连通且无圈。只须证明m=n-1。
归纳法: 当n=2时,由于T是树,所以两点间显然有且 仅有一条边,满足m=n-1。
假设 n=k-1时命题成立,即有k-1个顶点时,T有k-2条边。
当n=k时,因为T连通无圈,k个顶点中至少有一个点次 为1。设此点为u,即u为悬挂点,设连接点u的悬挂边 为[v,u],从T中去掉[v,u]边及点u ,不会影响T的连 通性,得图T’,T’为有k-1个顶点的树,所以T’有k-2条 边,再把( v,u)、点u加上去,可知当T有k个顶点 时有k-1条边。
4
2
v4
94
v2
3
v3 8
0 9 2 4 7 9 0 3 4 0 其权矩阵为: A 2 3 0 8 5 4 4 8 0 6 7 0 5 6 0

运筹学-图论

运筹学-图论
以可允许的10个状态向量作为顶点,将可能互相转移的状态用线段连接起 来构成一个图。
根据此图便可找到渡河方法。
(1,1,1,1) (1,1,1,0) (1,1,0,1) (1,0,1,1) (1,0,1,0) (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,0,1)
简单链:(v1 , v2 , v3 , v4 ,v5 , v3 )
v2
简单圈: (v4 , v1 , v2 , v3 , v5 , v7 , v6 ,v3 , v4 )
v6
v4
v5
v3
v7
连通图:图中任意两点之间均至少有一条通路,否则称为不连通 图。
v1 v5
v1
v6
v2
v2
v4
v3
v5
v4
v3
连通图
以后除特别声明,均指初等链和初等圈。
不连通图
有向图:关联边有方向 弧:有向图的边 a=(u ,v),起点u ,终点v; 路:若有从 u 到 v 不考虑方向的链,且 各方向一致,则称之为从u到v 的 路; 初等路: 各顶点都不相同的路; 初等回路:u = v 的初等路; 连通图: 若不考虑方向是
无向连通图; 强连通图:任两点有路;
端点的度 d(v):点 v 作为端点的边的个数 奇点:d(v)=奇数;
偶点:d(v) = 偶数; 悬挂点:d(v)=1; 悬挂边:与悬挂点连接的边; 孤立点:d(v)=0; 空图:E = ,无边图
v1
v3
v5 v6
v2
v4
图 5.7
v5
v4
V={v1 , v2 , v3 , v4 , v5 ,v6 , v7 }
圈:若 v0 ≠ vn 则称该链为开链,否则称为闭链或 回路或圈;

数学建模-图论

数学建模-图论

如例2中球队胜了,可从v1引一条带箭头的连线到v2,每 场比赛的胜负都用带箭头的连线标出,即可反映五个球队比 赛的胜负情况。如下图
v5
v1
v2 v3
v4
Байду номын сангаас
由图可知, v1三胜一 负, v4打了三场球, 全负等等
类似胜负这种非对称性的关系,在生产和生活中也是常见 的,如交通运输中的“单行线”,部门之间的领导和被领导关 系,一项工程中各工序之间的先后关系等等。
B
哥尼斯堡七桥问题
从某点出发通过每座桥且每桥只通过一次回到起点 A B D
建模:
C
A B D C
点——陆地 岛屿 边——桥
后来,英国数学家哈密尔顿在1856年提出“周游世界”的 问题:一个正十二面体,20个顶点分别表示世界上20个大城市, 要求从某个城市出发,经过所有城市一次而不重复,最后回到出 发地.这也是图论中一个著名的问题. “四色问题”也是图论中的著名问题:地图着色时,国境 线相邻的国家需要着上不同的颜色,最少需要几种颜色?1976 年,美国人阿佩尔和哈肯用计算机运行1200个小时,证明4种颜 色就够了.但至今尚有争议.
图论起源
图论最早处理的问题是哥尼 斯堡城的七桥问题:18世纪在哥 尼斯堡城(今俄罗斯加里宁格勒) 有一条名叫普莱格尔(Pregel) 的河流横经其中,河上有7座桥, 将河中的两个岛和河岸连结。
C A D
城中的居民经常沿河过桥 散步,于是提出了一个问 题:能否一次走遍7座桥, 后来有人请教当时的大数学家 而每座桥只许通过一次, 欧拉,欧拉用图论的方法证明这个问 最后仍回到起始地点? 题无解,同时他提出并解决了更为一 般的问题,从而奠定了图论的基础, 欧拉也被誉为“图论之父”.

图论详细讲解

图论详细讲解
如果一个图是由点和弧所构成的,那么
称为它为有向图,记作D =(V,A),其中V 表 示有向图D的点集合,A表示有向图D的弧集
• 1.图的基本概念与基本定理
例如.图8.4是一个无向图G=(V,E)
其中V={v1,v2,v3,v4}
E={[v1,v2],[v2,v1],[v2,v3],
[v3,v4],[v1,v4],[v2,v4],
图论详细讲解

引言
图论是应用非常广泛的运筹学分支,它
已经广泛地应用于物理学控制论,信息论, 工程技术,交通运输,经济管理,电子计算 机等各项领域。对于科学研究,市场和社会 生活中的许多问题,可以同图论的理论和方 法来加以解决。例如,各种通信线路的架设 ,输油管道的铺设,铁路或者公路交通网络 的合理布局等问题,都可以应用图论的方法 ,简便、快捷地加以解决。
边的两个端点是相同的,那么称为这条边是环,
如图8.4中的边[v,v3]是环。如果两个端点之间
有两个端点之间有两条以上的边,那么称为它
们为多重边,如图8.4中的边[v1,v2] ,[v2,v1]
。一个无环,无多重边的图标为简单图,一个 无环,有多重边的图标图称为多重图。
• 1.图的基本概念与基本定理
• 1.图的基本概念与基本定理
综上所述,图论中的图是由点和点与点 之间的线所组成的。通常,我们把点与点之 间不带箭头的线叫做边,带箭头的线叫做弧 。
如果一个图是由点和边所构成的,那么
,称为为无向图,记作G =(V,E),其中V表 示图G的点集合,E表示图G的边集合。连接 点vi,vj V的边记作[vi,vj],或者[vj,vi]。

引言
•C
•A
•B
•D
•图8.1 b

运筹学理论:图论

运筹学理论:图论

5②
5
⑥4
3
③8
1 2
2 4
1 2
⑥4
0①
3
4
0①
3
7
4
6
⑤10
7
7
4
6
⑤10
3④ 7
3④

5②
5 2 3
题 :
③6
5②
5 2
⑥4
3
③6
1 2
1 2
⑥4
0①
3
4
0①
3
4
7
4
7
6
⑤10
7
7
4
⑤9
6
3④
3④

5②
5 2 4 3
题 :
③6
5②
5 2
⑥4
3
③6
1 2
1 2
⑥4
0①
3
0①
3
4
7
7
4
6
⑤7
7


题:

1

11
2 7 5

③ ② ④ ③ ⑤
3
6 9 ④ 10 4

8

破 圈 法(山东师院管梅谷75 Nhomakorabea)首先,把有权图的边按权的递减顺 序排列:a1, a2, …… , an。 再检查a1, 如果去掉a1, 图仍是连通 图, 则去掉a1, 否则令a1= e1,再用 同样方法检查a2 … 如此继续下去, 直到找出有n-1条边的连通图为止
A
D
例如:哥尼斯堡七桥图: d(A)=3 d(B)=3 C d(C)=5 d(D)=3
B
(四) 特殊点:

图论在运筹学中的名词解释

图论在运筹学中的名词解释

图论在运筹学中的名词解释一、引言运筹学是一门研究复杂问题的学科,它借助各种数学方法和技术,帮助我们做出最佳的决策。

图论作为运筹学的重要工具之一,被广泛应用于解决各类实际问题。

本文将就图论在运筹学中的几个重要名词进行解释和探讨。

二、图图是图论的核心概念之一。

它由一组顶点和连接这些顶点的边组成。

在运筹学中,图可以用来描述和分析各种现实场景。

比如,交通网络可以用图来表示,道路是边,路口是顶点;社交网络可以用图来表示,用户是顶点,社交关系是边。

通过构建和分析图,我们可以揭示事物之间的关联性和特征,并利用这些信息进行决策。

三、路径路径是图论中一个重要概念。

它指的是在图中顶点之间连接的一系列边的序列。

在运筹学中,路径常常被用来表示两个顶点之间的最佳路线或最优解。

比如,在物流配送中,我们需要找到从仓库到目的地的最短路径,以最大程度地降低运输成本和时间。

通过图论的路径算法,我们可以高效地找到这样的最短路径,为物流管理提供有效支持。

四、最小生成树最小生成树是一种特殊的图结构,它是原图的一个子图,包含了所有顶点,但只有足够的边连接这些顶点,并使得整个图的总权重最小。

在运筹学中,最小生成树常常被用于解决资源分配和网络设计等问题。

比如,在电力输送系统中,我们需要将发电站和各个消费点以最短的电网连接起来,以确保电能的高效分配和传输。

通过构建最小生成树,我们可以优化电网的布局,降低能源损耗,提高供电可靠性。

五、网络流网络流是图论中的一个重要概念,它用来描述在一个有向图中通过各个边所能承载的最大流量。

在运筹学中,网络流被广泛应用于流程设计和资源调度问题。

比如,在工厂生产调度中,我们需要在供应链上对原材料、组件和成品进行优化配送,以实现最佳生产效率和降低成本。

通过分析网络流,我们可以确定各个节点的产能和需求,从而优化生产计划和物流调度。

六、最短路径最短路径是图论中的一个重要问题,即在图中找到连接两个顶点的最短路径。

在运筹学中,最短路径经常被用于解决物流和通信等问题。

华南理工大学 运筹学 第7章 图论-2(简) 工商管理学院

华南理工大学 运筹学 第7章 图论-2(简) 工商管理学院

节点标号—对已标号未检查的节点v1,对与其相邻 、未标号的节点v4(前向非饱和弧)进行标号。
[+vs,4]
(7,3) v1 (7,2)
[+v1,4]
v4 (9,6)
(5,1) v2
[-, ∞]
vs
(8,4)
(4,0) (7,1) (16,5) (6,4) v5
18
(10,4)
vt
(4,0)
(10,4)
[-, ∞]
vs
(10,4)
(4,0) (10,4) v3
(16,5)
(6,4) v5
22
Ford-Fulkerson标号算法示例1

(第2轮迭代) 1-搜索过程:

节点标号—对节点v4(前向非饱和弧)进行标号。
[+vs,1]
(7,6) v1 (7,5)
[+v1,1]
v4 (9,9)
(5,1) v2



图G为流量网络。
2
最大流问题示例1

Petro公司的天然气管道输送网络:vs为Petro公 司的制气厂,vt为输送目的地的储气库,其它 中间节点为流量检测和控制站。各点间的弧代 表输送管道,其权值的两个数字分别表示容量 和当前的流量。问:如何利用输送管道,可以 使从制气厂运输到目的地的天然气最多?


(1) 已标号已检查;(2)已标号未检查;(3)未标号。

检查是指从一个已取得标号、未检查的节点vi 出发,搜寻与之邻接的其它未取得标号的节点 vj ,并根据vi的标号计算得到vj的标号。
7
Ford-Fulkerson标号算法

节点vj的标号为[+vi,θj]或[−vi,θj]:

运筹学-第六章 图论1

运筹学-第六章 图论1
6、图论1
哥尼斯堡七桥问题 哥尼斯堡( 现名加里宁格勒) 哥尼斯堡 ( 现名加里宁格勒 ) 是 欧洲一个城市, Pregei河把该城分 欧洲一个城市 , Pregei 河把该城分 成两部分, 河中有两个小岛, 成两部分 , 河中有两个小岛 , 十八 世纪时, 世纪时 , 河两边及小岛之间共有七 座桥, 当时人们提出这样的问题: 座桥 , 当时人们提出这样的问题 : 有没有办法从某处( 出发, 有没有办法从某处 ( 如 A ) 出发 , 经过各桥一次且仅一次最后回到原 地呢? 地呢?
v2 5 0 v1
2 7 5
7 2
v5 v4
6 1 2 4
7
3
7 v3
v7
6
v6 6 2 与v1、V2、v3、v6、 v4 、v5相邻的点有v7 L17=min{L15+d57,L16+d67} =min{7+3,6+6}=10
v2 5 0 v1
2 7 5
7 2
v5 v4
6 1 2 4
7
3
7 v3
④重复上述步骤,直至全部的点 重复上述步骤,
都标完。 都标完。
例:如下图中从v1到v7的最短路。 v2
5 7 2
v5 v4
6 1 2 4 6 3
v1
2 7
v7 v6
v3
v2 0 v1
2 7 5
7 2
v5 v4
6 1 2 4 6 3
v3
v7
2
v6
与v1、v3相邻的点有v2、v4、v6 L1p=min{L11+d12,L13+d34,L13+d36} =min{0+5,2+7,2+4}=5=L12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/1/8 14
图与网络的基本知识
子图,生成子图(支撑子图) 图G1={V1、E1}和图G2={V2,E2}如果有
V1 V2 和E1 E 2 称G1是G2的一个子图。 若有 V1=V2,E1 E 2 ,则称G1是G2的一
v2 e5 e6 e3 v3 e6 e8 e7 e8 e2 e1 v1 e4 e3 v3
e6
e5
e7 e8
v4
v5
联,称点vi和vj相邻;若边ei和ej具
有公共的端点,称边ei和ej相邻。
2019/1/8
边数:m(G)=|E|=m 顶点数:n(G)=|V|=n
7
图与网络的基本知识
无向图,有向图 无向边与无向图:若图中任一条边的端点无序,即(vi, vj) 与(vj, vi)是同一条边,则称它为无向边,此时图称为无向 图。 有向图:若图中边(vi, vj)的端点是有序的,则称它是有向 边(或弧),vi与vj分别称为这条有向边的始点和终点,相 应的图称为有向图。
(v1) 赵 e1
(v2)钱 e2
(v3)孙
e4 (v4) 李
e3
(v5) 周 e5
(v7)陈
Hale Waihona Puke (v6)吴e2(v1) e1 e4 e3 赵 (v2)钱 孙(v3) 李(v4) 周(v5) e5 吴(v6) 陈(v7)
可见图论中的图与几何图、工程图是不一样的。
2019/1/8 6
图与网络的基本知识
定义: 图中的点用v表示,边用e表示。对每条边可用它所连
v2 e5 e6 e1
e2
v1
e4
e3
v3
e8
e7
点称作偶点,次为1的点称为悬挂点,
次为0的点称作孤立点。
v4 v5
图的次: 一个图的次等于各点的次之和。
2019/1/8
12
图与网络的基本知识
d(v1)=4
e1 偶点 悬挂点
d(v2)=3
e2
v2 e5 奇点
v1 e3 e4 e6 v3
v4
悬挂边
v5
e7
e8
v4
v5
简单图
2019/1/8
多重图
9
图与网络的基本知识
完全图
每一对顶点间都有边相连的无向简单图称为无向完全图; 有向完全图是指每一对顶点间有且仅有一条有向边的简单 图。
完全图顶点数n与边数m间成立如下关系:
m=n(n-1)/2
2019/1/8
10
图与网络的基本知识
二部图(偶图) 图G=(V,E)的点集V可以分为两各非空子集X,Y,集 X∪Y=V,X∩Y=Ø,使得同一集合中任意两个顶点均不 相邻,称这样的图为二部图(偶图)。 v1 v3 v5 (a) v2 v4 v6 v2 (b) v4 v4 (c) v3 v1 v3 v1 v2
图与网络分析
本章主要内容: 图与网络的基本知识
最短路问题
最大流问题
2019/1/8
1
图与网络的基本知识
图论起源——哥尼斯堡七桥问题
A
C
A
D
C
B
问题:一个散步者能否从任一 块陆地出发,走过七座桥,且 每座桥只走过一次,最后回到 出发点? 结论:不能。每个结点关联的 边数要均为偶数。 2019/1/8
孤立点
2019/1/8
13
图与网络的基本知识
图中顶点次的性质 定理1 任何图中顶点次数的总和等于边数的2倍。 定理2 任何图中次为奇数的顶点必有偶数个。 定义6 在有向图中,以顶点v为始点的边数称为顶点v的 出次,记为d+(v);以v为终点的边数称为v的入次,记为 d-(v)。顶点v的出次与入次的和称为点v的次。 定义7 图G=(V, E), 若E'是E的子集,若V'是V的子集,且 E'中的边仅与V'中的顶点相关联,则称G' = (V', E')为图 G的一个子图,特别地,若V' =V, 则称G'为G的一个生 成子图(支撑子图)。
若用点表示研究的对象,用边表示这些对象之间的联系, 则图G可以定义为点(顶点)和边的集合,记作:
G {V , E }
其中: V——点集 E——边集
※ 图G区别于几何学中的图。这里只关心图中有多少个点以 及哪些点之间有连线。
2019/1/8 5
图与网络的基本知识
例如:在一个人群中,对相互认识这个关系我们可以用图来 表示。
无向图
2019/1/8
有向图
8
图与网络的基本知识
环, 多重边, 简单图 如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 之间多于一条,称为多重边,如右图
v2 e5
多重边
e2
e1 v1

e3 v3
e4
中的e4和e5,对无环、无多重边的图
称作简单图。含多重边的图称为多重 图。
e6
接的点表示,记作:e1=[v1,v1]; e2=[v1,v2];
V = {v1 , v2 , v3 , v4 , v5}, E = {e1 , e2 , e3 , e4 , e5 , e6 , e7, e8}, v2 e2
e1 v1 e4 e3 v3
端点,关联边,相邻 若有边e可表示为e=[vi,vj],称vi和vj 是边e的端点,反之称边e为点vi或vj 的关联边。若点vi、vj与同一条边关
个生成子图(支撑子图)。
e4 v2 e5 e6 e8 v3 v2
v1 e2 e4
v4
(G图)
v5
e7
v4
2019/1/8
(a)
v5
v4
(b)
v5
15
图与网络的基本知识
网络(赋权图)
设图G=(V,E),对G的每一条边(vi,vj)相应赋予数量指标 wij,wij称为边(vi,vj)的权,赋予权的图G称为网络(或赋权图)。 权可以代表距离、费用、通过能力(容量)等等。 端点无序的赋权图称为无向网络,端点有序的赋权图称为有 向网络。 ② 15 ⑤ 7 14 9 ④ 10 ① 6 19 ⑥ 20 25 ③ 2019/1/8
B
一 笔 D 画 问 题
2
图与网络的基本知识
环球旅行问题:
2019/1/8
3
图与网络的基本知识
环球旅行问题的解
另一个著名的问题: 中国邮路问题
4
2019/1/8
图与网络的基本知识
图论中图是由点和边构成,可以反映一些对象之间的关系。 一般情况下图中点的相对位置如何、点与点之间联线的长短 曲直,对于反映对象之间的关系并不是重要的。 图的定义:
(a)明显为二部图,(b)也是二部图,但不明显,改画为(c) 时可以清楚看出。
2019/1/8 11
图与网络的基本知识
次,奇点,偶点,孤立点 与某一个点vi相关联的边的数目称为 点vi的次(也叫做度),记作d(vi)。 右图中d(v1)=4,d(v3)=5,d(v5)=1。次 为奇数的点称作奇点,次为偶数的
相关文档
最新文档