最新2018-2019学年四川省成都市八年级上学期期末数学模拟试卷及答案解析-精编试题

合集下载

四川省成都市金牛区八年级上学期末数学试卷解析版

四川省成都市金牛区八年级上学期末数学试卷解析版

四川省成都市金牛区八年级(上)期末数学试卷、选择题(每小题3分,共30 分)1. (3分)9的算术平方根是()2. (3分)在平面直角坐标系中,点P(2, - 3)在()A .第一象限B .第二象限C.第三象限 D .第四象限3. (3分)以下列三个数据为三角形的三边,其中能构成直角三角形的是()A. 2, 3, 4B. 4, 5, 6 C .5, 12, 13 D . 5, 6, 74. (3分)已知a, b, c均为实数,若a> b, c丰 0.下列结论不定正确的是()A . a+c> b+c 2 . B. a >ab C .2才2 c cD . c- a v c- b5. (3分)对于函数y=- 2x+1,下列结论正确的是()A .土3 C. 3 D. ± 81A . 它的图象必经过点(-1, 3)B . 它的图象经过第一、二、三象限C . 当时,y>0D . y值随x值的增大而增大ax+y=-l6. (3分)已\ 「是万程组宀的则a+b =( )ly=2i2x-by^0A . 2B .- 2C . 47. (3分)若x=V 37 - 4,则x的取值范围是()A . 2v x v 3B . 3v x v 4C . 4 v x v 5D. 5 v x v 69. (3分)下列命题是真命题的是()A •中位数就是一组数据中最中间的一个数2 2B .计算两组数的方差,所 S 甲=0.39, S 乙=0.25,则甲组数据比乙组数据波动小C •一组数据的众数可以不唯一D •一组数据的标准差就是这组数据的方差的平方根10. (3 分)在 Rt △ ABC 中,/ ACB = 90°, AB = 10cm , AB 边上的高为 4cm ,贝U Rt △ ABCB . G ;.丘若点P (- 1, a )、Q (2, b )在一次函数 y =- 3x+4图象上,则a 与b 的大小关系是13. (4分)如图所示的圆柱体中底面圆的半径是「高为3若一只小虫从A 点出发沿着14. (4分)如图,已知函数y = ax+b 和y = cx+d 的图象交于点 M ,则根据图象可知,关于x ,15. (10分)计算下列各题(1) - ■— (2)'_ 1 .;' I :.:的周长为()cm .A . 24二、填空题 11. (4 分) (每小题 4分,共16 分)丄1的相反数是 ________ ,8的立方根是12. (4 分)圆柱体的侧面爬行到 C 点,则小虫爬行的最短路程是.(结果保留根号)D的解为18. ( 8分)某中学10月份召了校运动会,需要购买奖品进行表彰,学校工作人员到某商场 标价购买了甲种商品 25件,乙种商品26件,共花费了 2800元;回学校后发现少买了 2 件甲商品和1件乙种商品,于是马上到该商场花了 170兀把少买的商品买回.(1)分别求出甲、乙两种商品的标价.(2 )若元旦前,学校准备为全校教职工购买甲、乙两种商品作为慰问品,需要购买甲、 乙两种商品共200件,请求出总费用 w (元)与甲种商品a (件)之间的函数关系式(不 需要求出自变量取值范围)19. (9分)为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读, 为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制 了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查 的学生周末阅读时间众数是 ________ 小时,中位数是 _______ 小时; (2 )计算被调查学生阅读时间的平均数;(3)该校八年级共有 500人,试估计周末阅读时间不低于1.5小时的人数.16. (10分)计算题(1)解方程组: (2)解不等式组3x-2y=13L 4x+y=104M -12>5K -10(并把解集在数轴上表示出来)t 2C2x-3)-3(rfl )>-1217. ( 7分)已知;如图,在四边形 ABCD 中,AB // CD ,/ BAD ,/ ADC 的平分线 AE 、DF 分别与线段BC 相交于点E 、F , AE 与DF 相交于点G ,求证:AE丄DF .20. (10分)如图,已知直线AB: y=- x+4与直线AC交于点A,与x轴交于点B,且直线AC 过点C (- 2, 0)和点D (0, 1),连接BD.(1)求直线AC的解析式;(2)求交点A的坐标,并求出厶ABD的面积;将一张长方形纸片按图中方式折叠,若/ 2 = 65°,则/ 1的度数为3 2-1,则x +x - 3x+2019 的值为 .24. (4分)如图,在平面直角坐标系中,直线y=-盲x+6分别与x轴,y轴交于点B, C且与直线y= 1 x交于点A,点D是直线OA上的点,当△ ACD为直角三角形时,则点D 225. (4分)把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0, 0)对应的自然数是1,点(1 , 2)对应的自然数是14,那么点(1 , 4)对应的自然数是_______ ;点(n, n)对应的自然数是__________P,使得AP+PD的值最小?若存在,求出点P;若不存在,、填空题20分)21. (4 分)函数「「中, 自变量x的取值范围是(3 )在x轴上是否存在一点(每小题4分,共22. (4分)20 9了0 怦214 o d Q口◎22 231 2 斗25 兀、解答题(共30 分)26. (8分)已知A, B两地相距120km,甲,乙两人分别从两地出发相向而行,甲先出发,中途加油休息一段时间,然后以原来的速度继续前进,两人离A地的距离y (km)与甲出发时间x(h)的关系式如图所示,请结合图象解答下列问题:(1 )甲行驶过程中的速度是______ km/h,途中休息的时间为_________ h.(2)求甲加油后y与x的函数关系式,并写出自变量x的取值范围;27. (10分)已知△ ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE=AD,连接DE , DC ,(1)若点D在线段AB上,且AB = 6, AD = 2 (如图①),求证:DE = DC ;并求出此时CD的长;(2)若点D在线段AB的延长线上,(如图②),此时是否仍有DE = DC ?请证明你的结论;(3)在(2)的条件下,连接AE,若二-丄,求CD : AE的值.AD 3(3 )甲出发多少小时两人恰好相距10km?中点,直线OP 交AB 于点E(1)求点D 的坐标及直线 OP 的解析式;(2)求厶ODP 的面积,并在直线 AD 上找一点”,使厶AEN 的面积等于△ ODP 的面积, 请求出点N 的坐标(3) 在x 轴上有一点T (t , 0) (5v t v 8),过点T 作x 轴的垂线,分别交直线于点F 、G ,在线段AE 上是否存在一点 Q ,使得△ FGQ 为等腰直角三角形,若存在,请28. (12分)如图,已知长方形 OABC 的顶点 O 在坐标原点,A 、C 分别在x 、y 轴的正半轴 上,顶点B (8, 6),直线y =- x+b 经过点A 交BC 于D 、交y 轴于点M ,点P 是AD 的OE 、ADB DCC圏②图①四川省成都市金牛区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)21.【解答】解:I 3 = 9,••• 9算术平方根为3.故选:C.2•【解答】解:点P (2,- 3)在第四象限.故选:D.3. 【解答】解:A、22+32工42,故不能构成直角三角形;B、42+52工62,故不能构成直角三角形;2 2 2C、5 +12 = 13,故能构成直角三角形;D、52+62工72,故不能构成直角三角形.故选:C.4. 【解答】解:T a> b, C M 0,••- a v- b,•a+c>b+c,故A选项正确;丄「•丄,故C选项正确;C CC- a v C - b,故D选项正确;又••• a的符号不确定,•a2> ab不一定成立,故选:B.5. 【解答】解:当x=- 1时,y= 3,故A选项正确,•••函数y= 2x+1图象经过第一、二、四象限,y随x的增大而减小,•B、D选项错误,••• y> 0,•- 2x+1 > 0•- xv —2• C选项错误,6•【解答】解:T卩刃是方程组[aX+y=_12的解I 尸2 Ux-by=O ②•••将「「代入①,得1尸2a+2 =- 1,•- a =- 3.把(沪1代入②,得g2- 2b= 0,• b = 1.•- a+b =- 3+1 = - 2.故选:B.7.【解答】解:T 36V 37V 49,• 6 V 亍V 7,• 2 V =-4 V 3,故x的取值范围是2 V X V 3.故选:A.&【解答】解:•一次函数y= kx- k (心0),•••当k>0时,函数图象在第一、三、四象限,故选项A错误,选项D正确,当k V 0时,函数图象在第一、二、四象限,故选项C、D错误,故选:D.9. 【解答】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、计算两组数的方差,所S甲2= 0.39, S乙2= 0.25,则甲组数据比乙组数据波动大;故错误;C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误;故选:C.2 2 210. 【解答】解:由勾股定理得,AC +BC = AB = 100,由三角形的面积公式可知,丄?AC?BC = ?AB?CD = 20,2 214.【解答】解:由图可知:直线因此方程组<y=ax+by=cx+d 的解为:y= ax+b和直线y= cx+d的交点坐标为(-Jx=-2(尸32, 3);••• 2?AC?BC = 802 2 2贝卩(AC+BC)= AC +BC +2?AC?BC= 180,解得,AC +BC = 6、广,• Rt△ ABC 的周长=AC+BC+AB = 6 二+10,11. 【解答】解:-工上的相反数是:匸;3 38的立方根是:2.故答案为:二;2.312. 【解答】解:•••点P (- 1, a)、Q (2, b)在一次函数y=- 3x+4图象上,• - a = 3+4= 7, b=- 6+4 =- 2,故答案为:a> b.13. 【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 中点,矩形的宽即高等于圆柱的母线长.2•/ AB= n?——=2, CB = 3.TT• AC=卩一十_门:故答案为:二是边的4分,共16分)② X 2 得:8x+2y = 20 ③, ① + ③,得:11x = 33, 解得x = 3,将x = 3代入②,得:12+y = 10,解得y =- 2, 所以方程组的解为P =3 ;(2)解不等式 4x - 12> 5x - 10,得:x W- 2, 解不等式 2 (2x - 3)- 3 (x+1 )>- 12,得:x >- 3, 则不等式组的解集为-3<x <- 2, 将不等式组的解集表示在数轴上如下:------------ 占I --------- 1 ---------- >-4 -3 -2-1 0 117.【解答】证明:T AB // DC , •••/ BAD+ / ADC = 180°.•/ AE , DF 分别是/ BAD ,/ ADC 的平分线,•••/ DAE = / BAE =「/ BAD ,/ ADF = / CDF = / / ADC . •••/ DAE+ / ADF = - / BAD+ 丨 / ADC = 90°.三、解答题(共54分) 15•【解答】解: ( 1)=2 --3+(2) (2)- 'I - ;■ ■ I --=二-(3 二-=)+ 7+ 二-二 =';-3+ 一* !■. - ■:=-3+2 二.16•【解答】解: ( 1) “'3旷2尸13①t 4x+y=10 ②2 2•••/ AGD = 90°.• AE 丄DF .18•【解答】解:(1)设甲种商品的标价为每件x元,则乙种商品的标价为每件(170 - 2x) 元,根据题意得,25X+26 (170 - 2x)= 2800,解得x= 60,贝U 170 - 2 X 60= 50.答:甲种商品的标价为每件60元,乙种商品的标价为每件50元;(2)由题意,可得w = 60a+50 (200 - a),化简得,w = 10a+10000 .19. 【解答】解:(1)由题意可得,本次调查的学生数为:30- 30% = 100, 阅读时间1.5小时的学生数为:100- 12 - 30- 18= 40,补全的条形统计图如图所示,由补全的条形统计图可知,抽查的学生劳动时间的众数是 1.5小时,中位数是1.5小时,故答案为:1.5, 1.5 ;(2)所有被调查同学的平均劳动时间为:'X( 12X 0.5+30 X 1+40 X 1.5+18 X 2)=1001.32小时,即所有被调查同学的平均劳动时间为 1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500X "+】;•; = 290 (人).10020. 【解答】解:(1)设直线AC 解析式为:y = kx+b ,根据题意得:0=-2k+b4=b• k =—, b = 12•••直线AC 解析式为:(2)根据题意得:y = _ x+12(1尸尹1L y=-x+4x=2 1尸2•••点A 坐标为(2, 解得:2)E ,•••直线AB 与x 轴交于点B ,与y 轴交于点E , •••点 B (4,0),点 E ( 0,4) • OB = 4, OE = 4,•••DO = 1,• DE = 3,• S A ADB = S ^BEO - S A ADE - S ^BDO , •- S MDB = 1 1「- ■■ 1 ■■ ■ =3,WUM(3)如图,作点D (0, 1)关于x 轴的对称点D' (0,- 1), •/ AP+DP = AP+PD',•当点P 在AD 上时,AP+DP 的值最小, 连接AD'交x 轴于点P ,根据题意得:[2-12=2ro-FnL「3解得:,Fn=-lt•••直线AD'的解析式为:y= :;x- 12当y = 0 时,x='3•••点P坐标为( 03一、填空题(每小题4分,共20分)21. 【解答】解:根据题意得:x+3 > 0且x- 1工0,解得:x>- 3且x工1 .22. 【解答】解:如图,延长CD至G,T AB// CD ,•••/ 2=Z BDG = 65° ,由折叠可得,/ BDE = Z BDG = 65°,• △ BDE 中,/ BED = 180°- 65° X 2= 50°,•••/ 1 = Z BED = 50°,故答案为:50°.23. 【解答】解:T x= ■:- 1,• x2=(¥:「—1)2= 2 —2 _:+1 = 3- 2 ':,2 2则原式=x?x2+x2-3X+2019=(匚—1)X( 3 - 2 二)+3 - 2 匚—3 (匚—1) +2019=3 匚-4 - 3+2 匚+3 - 2 匚-3 匚+3+2019 =2018,故答案为:2018.24. 【解答】解:(1)直线y =--,]x+6,当 x = 0 时,y = 6, 当 y = 0 时,x = 12, 则 B (12, 0), C ( 0, 6),则 A (6, 3),故 A (6, 3), B (12, 0), C (0, 6), •••△ ACD 为直角三角形, •••①当/ ADC = 90° , ••• CD 丄 OA ,•设直线CD 的解析式为:y =- 2x+b , 把C (0 , 6)代入得,b = 6 , •直线CD 的解析式为:y =- 2x+6 ,• D (,''),55②当/ ACD = 90° , • DC 丄BC ,•设直线CD 的解析式为:y = 2x+a , 把C (0 , 6)代入得,a = 6 , •直线CD 的解析式为:y = 2x+6 ,解丿y=-2x+6 1 得*126 ,解方程组:二 D (- 4, - 2),综上所述: D (…,「)或(-4,- 2).5 5 故答案为: D (「,鱼)或(-4,- 2).5525.【解答】解:观察图的结构,发现这些数是围成多层正方形,从内到外每条边数依次 +2 ,(每边自然数个数的平方数)都在第四象限的角平分线上(正2方形右下角).其规律为(n ,- n )表示的数为(2n+1),而且每条边上有2n+1个数,37 36 3513 0301S ((2) 设甲加油后y = kx+b ,将(1.5, 60)和(2.5, 0)代入解析式, 1. 5ik+b=60 解得 fk=-60'L 2. 5k+b=0 ' lb=150 故 y =- 60X+150 (1.5< x < 2.5).(3) 设乙路程yi = kix+b ,将(1, 0)和(4, 120)代入 严二0 ,解得卜皿. 4k+b=120 [b]二-40 故 y 1 = 40x - 40.当 x = 1.5 时,y1 = 40X 1.5 - 40= 20,此时两车相距 60 - 20= 40 千米. 故相距10km 时间段为1.5h 〜2.5小时之间. 依题意得,| (- 60x+150)-( 40x - 40) |= 10 解得,x = 1.8或2f y=2x+6解、得,x=-4 y=-219■cl11— 2S22 23Q 7 24 252所有正方形内自然数个数即12•••/ABC =/ ACB = Z A = 60°, AB = AC = BC = 6, •••/ DBE = 120°•/ DF // BC•••/ADF = Z ABC = 60°,/ AFD =Z ACB = 60°• △ ADF 是等边三角形,/ DFC = 120° AD = AF = DF = 2,• BD = AB - AD = 4= AC - AF = CFBE = AD = DF = 2,/ DBE =/ DFC = 120°, CF = DB•••△ DBE 也厶 CFD ( SAS )• DE = DC 又••• DM 丄 BCCM = EM =丄EC =— ( BE+BC )= 42 2•••在 RtA DBM 中,BD = 4,/ DBM = 60° .BM = 2, DM = 二BM = 2 二 .CD =.5:'= 2 -(2) DE = DC理由如下:过点 D 作DF // BC 交AC 的延长线于点 F ,故甲出发1.8小时或2小时两车相距10km . F ,作DM 丄BC 于点M ,27.•••/ABC=/ ADF = 60°,/ ACB = / AFD = 60° ,•••△ ADF是等边三角形,AD = DF = AC,• AD - AB= AF - AC•BD = CF,且BE= AD = DF , / EBD = / ABC= 60°=/ AFD•△ EBD◎△ DFC ( SAS)•DE = CD(3)如图,过点C作CH丄AB于点H,过点A作AN丄BC于点N,AD_3•••设AB = 2x, AD = 3x,BC= AC= 2x, DF = BE= 3x, BD = AD - AB = x,•/△ ABC是等边三角形,AN丄BC, CH丄ABBN= BH = x, AN= 7x= CH在Rt△ DHC 中,DC 卜-卜R亠二x.在Rt△ AEN 中,AE= 一 __::「= .:ix••• CD : AE==丁「■V19 1928.【解答】解:(1)v四边形OABC为长方形,点B的坐标为(8, 6),•••点A 的坐标为(8,0),BC // x 轴.T 直线y =- x+b 经过点A ,•• 0 =- 8+b , •• b = 8,•直线AD 的解析式为y =- x+8. 当 y = 6 时,有-x+8 = 6, 解得:x = 2,••点 D 的坐标为(2, 6). •••点P 是AD 的中点,•••点P 的坐标为(2±E , 空L ),即(5, 3),2 2•直线OP 的解析式为y = x .5(2) ODP = ODA - S^OFA ,='x 8X 6- —x 8X 3,2 2=12.出 a 时 324 当 x = 8 时,y = —x =,55•••点E 的坐标为(8,—二).5设点N 的坐标为(m ,- m+8).TS ^AE N = SgDP ,1 24 • x —x |8- m|= 12,2511解得:m = 3或m = 13,•••点N 的坐标为(3, 5)或(13,- 5). (3)•••点 T 的坐标为(t , 0) ( 5v t v 8), •••点F 的坐标为(t ,丄t ),点G 的坐标为(t , - t+8).5分三种情况考虑:① 当/ FGQ = 90°时,如图1所示. • △ FGQ 为等腰直角三角形,•- FG = GQ,即卩一t -( - t+8)= 8 - t,5解得:t=——,13此时点Q的坐标为(8,;);13②当/GFQ = 90°时,如图2所示.•△ FGQ为等腰直角三角形,•- FG = FQ,即—t -( - t+8) = 8 - t,5解得:t=113此时点Q的坐标为(8,…);13③当/ FQG = 90°时,过点Q作QS丄FG于点S,如图3所示.•△ FGQ为等腰直角三角形,•FG = 2QS,即厶t- (- t+8)= 2 (8 - t),n解得:t =,3此时点F的坐标为(竺,4),点G的坐标为(竺,2)3 3 3此时点Q的坐标为(8, 一),即(8,色).23综上所述:在线段AE上存在一点Q,使得△ FGQ为等腰直角三角形,当t='时点Q13的坐标为(8^ —)或(8,—),当t=20时点Q的坐标为(8, §■).13 13 3 3点(1, 4)在第四层正方形边上,该层每边有 2 X 4+1 = 9个数,右下角(4,- 4)表示的数是81 ,所以点(1, 4)表示的是第四层从左下角开始顺时针(从81倒数)第21个数,即为81 -8 - 8- 5= 60,点(n,- n)在第n层正方形边上,该层每边有2n+1个数,右下角(n,- n)表示的数是(2n+1)* 2,点(n, n)是正方形右上角的数,是从左下角开始顺时针(从(2n+1)2倒数)第6n 个2 2数,即为(2n+1)- 6n = 4n - 2n+1.故答案为:60, 4n2- 2n+1.二、解答题(共30分)26. [解答】解:(1)根据甲的图象可知前1小时走了120- 60千米,故甲的速度为60 km/h;甲走120千米需要2小时,而他到达终点的时间是 2.5小时,故休息了0.5h.故答案为:60; 0.5.。

2023-2024学年四川省成都市金牛区八年级上册期末数学模拟试题(有答案)

2023-2024学年四川省成都市金牛区八年级上册期末数学模拟试题(有答案)

四川省成都市金牛区2023-2024学年八年级上册期末数学模拟试题注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名,准考证号涂写在答题卡规定的地方.考试结束,监考人员只将答题卡收回.3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等。

A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列四个数中,最大的数是( )3,3,2,10-A .3B .2C .D .3-102.下列计算正确的是( )A .B .C .D .93=±8210+=()255-=623÷=3.点关于轴的对称点的坐标为( )()2,5-y A .B .C .D .()2,5--()5,2--()2,5()2,5-4.下列函数中,的值随的值增大而减小的是( )y x A .B .C .D .31y x =+23y x =-21y x =--112y x =+(第6题)(第13题)参加测试的学生成绩条形统计图参加测试的学生成绩扇形统计图16题)(第17题)(第18题)(第23题)备用图八年级数学答案A 卷(100分)一、选择题题号12345678答案DCACBADC二、填空题9.510.111.12.34-46︒13.12x y =⎧⎨=⎩三、解答题14.(1)3;(2)44x y =⎧⎨=⎩15.(1)略;(2).96︒16.(1)人数是50,中位数是8,众数是8.(2)八年级350名学生中,估计测试成绩有70人能达到10分.17.(1)略;(2);(3).()1,5-7218.(1)6;(2);(3)或1322y x =+52,2⎛⎫⎪⎝⎭()1,2B 卷(50分)一、填空题19.20.321..10-5222.,23..13,22⎛⎫ ⎪ ⎪⎝⎭13331,22n n +⎛⎫- ⎪ ⎪⎝⎭342+二、解答题24.(1);()()20041614449x x y x x ⎧<≤⎪=⎨-+<≤⎪⎩(2)两船相遇时间为2小时或5小时.25.(1);(2)或;(3).()1,2-()3,1()3,7-7,03⎛⎫⎪⎝⎭26.(1)5;(2)或;(3).833648395-58。

2023-2024学年四川省成都市成华区八年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都市成华区八年级(上)期末数学试卷+答案解析

2023-2024学年四川省成都市成华区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在实数,,,中,无理数是( )A. B. C. D.2.估计的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间3.下列运算中,正确的是( )A. B. C. D.4.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市2023年12月某五天的空气质量指数:34,28,35,61,27,则这组数据的中位数是( )A. 34B. 28C. 35D. 275.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了4棵桂花树.分别以两条小路为x,y轴建立如图所示的平面直角坐标系,若A,B两处桂花树的位置关于x轴对称,点A的坐标为,则点B的坐标为( )A.B.C.D.6.如图,直线,,,则的度数为( )A.B.C.D.7.中国象棋文化历史悠久.如图是某次对弈的残图,如果在图中建立平面直角坐标系,使棋子“帅”位于点的位置,则经过棋子“帅”和“马”所在的点的一次函数解析式为( )A.B.C.D.8.的三边长a,b,c满足,则是( )A. 等腰直角三角形B. 等腰三角形C. 直角三角形D. 等边三角形二、填空题:本题共10小题,每小题4分,共40分。

9.已知是方程的一个解,则m的值是______.10.一次函数的图象一定不经过第______象限.11.某校在12月9日举办了以“不忘国耻振兴中华”为主题的合唱比赛,每支参赛队的最终成绩按歌曲内容占,演唱技巧占,精神面貌占进行考评.八一班参赛歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分,则八一班的最终成绩是______分.12.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛斛:古代容量单位;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x斛,小容器的容量为y斛,则可列二元一次方程组为______.13.如图,我国汉代数学家赵爽证明勾股定理时创制了一幅由4个全等的直角三角形和一个小正方形组成的“勾股圆方图”,后人称之为“赵爽弦图”.设直角三角形的直角边长为a,b,斜边长为c,若,,则每个直角三角形面积为______.14.计算:______.15.关于x,y的方程组的解满足,则m的值是______.16.如图,在中,,,点D为外一点,满足,,则的面积是______.17.如图,直线:与x轴交于点,与直线:交于点,过点作的垂线交x轴于点,过点作的平行线交于点,过点作的垂线交x轴于点,过点作的平行线交于点,…按此方法作下去,则点的坐标是______.18.如图,BD是边长为6的等边的高,E为BD上的动点,以CE为边长在CE的右上方作等边,连接DF,则的周长的最小值是______.三、解答题:本题共8小题,共78分。

四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题

四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题

四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题一、单选题1.下列说法正确的是( ) A2 B .3-是27负的立方根 C .125216的立方根是56± D .()21-的立方根是1-2.下列函数中是正比例函数的是( ) A .7y x =-B . 7y x-=C .221y x =+D .0.65y x =-3.已知点(,3)P a b +、(2,)Q b -关于y 轴对称,则ab 的值是( ) A .-1B .2C .-3D .34x 的取值范围是( ) A .3x ≤B .3x <C .3x >D .3x ≥5.下列命题为真命题的是( ). A .若a 2=b 2,则a =b B .直角三角形的两锐角互余C .同位角相等D .若⎺x 甲=⎺x 乙,22S s >甲乙,则甲组数据更稳定6.在同一平面内,不重合的三条直线a 、b 、c 中,如果a b ⊥,b c ⊥,那么a 与c 的位置关系是( ) A .垂直 B .平行 C .相交D .不能确定7.在平面直角坐标系中,点()34A ,绕原点O 逆时针旋转90︒得到点B ,点B 关于x 轴对称的点为C ,则点C 的坐标是( ). A .()43--,B .()43,C .()43-,D .()34--,8.一次函数y =﹣2x ﹣3的图象和性质.叙述正确的是( ) A .y 随x 的增大而增大 B .与y 轴交于点(0,﹣2)C .函数图象不经过第一象限D .与x 轴交于点(﹣3,0)二、填空题9.已知数据1x ,2x ,…,n x 的方差是3,则数据125x -+,225x -+,……,25n x -+的方差为.10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是.11.如图,在△ABC 中,AD 是BC 边上的高线,AE 是∠BAC 的平分线,且∠B=40º,∠C=60º,则∠EAD 的度数是.12.下面的图(2)是图(1)的侧面展开图一只小昆虫沿着圆柱的侧面,从A 点沿最短的距离爬到B 点,则B 点在图(2)中的位置是.(请填序号)13.如图,将ABC V 绕点A 逆时针旋转一定角度,得到ADE V .若63CAE ∠=︒,71E ∠=︒,且AD BC ⊥,则BAC ∠的度数为.三、解答题14.计算,解方程组: (1)()()()22012131π32-⎛⎫-+-⨯- ⎪⎝⎭;(2)25123150.20.3x yx y --⎧-=⎪⎪⎨+⎪-=⎪⎩.15.某校为了解学生每周参加家务劳动的情况,随机调查了该校部分学生每周参加家务劳动的时间.根据调查结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为______,图①中m 的值为______. (2)求统计的这组每周参加家务劳动时间数据的众数、中位数和平均数.(3)根据统计的这组每周参加家务劳动时间的样本数据,若该校共有800名学生,估计该校每周参加家务劳动的时间大于1h 的学生人数. 16.如图,已知直线AB 经过点(1,5)和(4,2).(1)求直线AB的解析式;(2)若把横、纵坐标均为整数的点称为格点,则图中阴影部分(不包括边界)所含格点的个数有______个;(3)在图中作点(4,0)C关于直线AB的对称点D,则点D的坐标为_____;(4)若在直线AB和y轴上分别存在一点M、N使CMNV的周长最短,请在图中标出点M、N (不写作法,保留痕迹).17.曹州牡丹园售票处规定:入园门票每张80元.非节假日的票价打6折售票;节假日根据团队人数实行分段售票:不超过10人,则按原票价购买;超过10人,则其中10人按原票价购买,超过部分的按原票价打8折购买.某旅行社带团x人到牡丹园游览,设非节假日的购票款为y1元,在节假日的购票款为y2元.求:(1)当x>10时,y1、y2与x的函数关系式;(2)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙团到牡丹园游览,甲、乙两个团各25人,请问乙团比甲团便宜多少元?18.如图甲所示,已知直线139 42y x-+=与x轴和y轴分别相交于点A,B,直线2320y kx k k=+-≠()与y轴相交于点C,两直线交于点P.(1)求AOBV的面积;(2)如图乙所示,过点P作x轴的平行线交y轴于点D,若点B,C关于直线DP对称,求点C 的坐标;(3)当BCP V 是以BC 为腰的等腰三角形,求直线2y 的函数解析式.四、填空题1920.已知点A (3,0)和B (1,3),如果直线y =kx +1与线段AB 有公共点,那么k 的取值范围是.21.对于实数a ,b ,定义运算“◆”:),()a b a b ab a b ≥=<⎪⎩◆,例如32◆,因为32>,所以32◆x ,y 满足方程组2353210x y x y +=⎧⎨+=⎩,则()x y x =◆◆. 22.如图,ABC ABD ACE V V V 、、均为直角三角形,90ABC BAD ACE AB AD ∠=∠=∠=︒=,,AC CE AE =,与BD 交于点F ,若DF =EF =BC 边的长为.23.已知正比例函数y kx =(k =.五、解答题24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml 和500ml 的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元. (1)求甲、乙两种免洗手消毒液的单价.(2)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L 的免洗手消毒液全部装入最大容量分别为300ml 和500ml 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.25.如图,在平面直角坐标系中,一次函数4y x =+的图象与x 轴交于点A ,与y 轴交于点B ,与直线CD 交于点43E a ⎛⎫- ⎪⎝⎭,,C 点坐标为()02,.(1)求直线CD 的函数表达式;(2)平面内存在点F ,使得以A ,B ,D ,F 为顶点的四边形为平行四边形,请直接写出点F 的坐标;(3)直线AB 在E 点左侧部分上有一点P ,y 轴右侧有一动直线l y P 轴交AB 于M ,作直线PD 交l 于N ,是否存在点P 使得无论直线l 如何运动始终有PDE △与PMN V 相似,若存在请求出P 点坐标,若不存在请说明理由.26.定义:如图1,点,M N 把线段AB 分割成,AM MN 和BN ,若以,,AM MN BN 为边的三角形是一个直角三角形,则称点,M N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若2,3AM MN ==,求BN 的长.(2)如图2,在等腰直角ABC V 中, ,90AC BC ACB =∠=︒,点,M N 为边AB 上两点,满足45MCN ∠=︒,求证:点,M N 是线段AB 的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把CBN △绕点C 逆时针旋转90︒试一试.请根据陈老师的提示完成第(2)小题的证明过程.。

四川省成都市金牛区八年级(上)期末数学试卷

四川省成都市金牛区八年级(上)期末数学试卷

四川省成都市金牛区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)4的平方根是()A.±2B.﹣2C.2D.162.(3分)实数π,,﹣3.,,中,无理数有()个.A.1B.2C.3D.43.(3分)要使式子有意义,则x的取值范围是()A.x>2B.x>﹣2C.x≥2D.x≥﹣24.(3分)下列各组数中不能作为直角三角形三边长的是()A.,,B.7,24,25C.6,8,10D.1,2,35.(3分)如图所示,点A(﹣1,m),B(3,n)在一次函数y=kx+b的图象上,则()A.m=n B.m>nC.m<n D.m、n的大小关系不确定6.(3分)下列命题为真命题的是()A.若a2=b2,则a=bB.等角的余角相等C.同旁内角相等,两直线平行D.=,S A2>S B2,则A组数据更稳定7.(3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,308.(3分)如图所示,直线y=kx+b(k≠0)与x轴交于点(﹣5,0),则关于x的方程kx+b =0的解为x=()A.﹣5B.﹣4C.0D.19.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.10.(3分)园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.65平方米D.80平方米二、填空题(每小题4分,共16分)11.(4分)若x,y为实数,且满足|x﹣3|+=0,则()2017的值是.12.(4分)在平面直角坐标系内,一个点的坐标为(2,﹣3),则它关于x轴对称的点的坐标是.13.(4分)如图,已知一次函数y1=k1x+b1和y2=k2x+b2的图象交于点P(2,4),则关于x的方程k1x+b1=k2x+b2的解是.14.(4分)如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=.三、解答题(本大题共6个小题,共54分)15.(10分)计算下列各题(1)+|1﹣|+()﹣1﹣20170(2)×﹣(﹣1)2.16.(12分)解方程(不等式)组(1)解方程组:(2)解不等式组:,并把解集在数轴上表示出来.17.(6分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB的度数.18.(8分)某校为了进一步改进本校八年级数学教学,提高学生学习数学的兴趣,校教务处在八年级所有班级中,每班随机抽取了部分学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢“、“B﹣比较喜欢“、“C﹣不太喜欢“、“D﹣很不喜欢“,针对这个题目,问卷时要求被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校八年级共有1000名学生,请你估计该年级学生对数学学习“不太喜欢”的有多少人?19.(8分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用A型车6辆,B型车8辆,一次运完,且恰好每辆车都满载货物,请求出该物流公司有多少吨货物要运输?20.(10分)在平面直角坐标系xOy中,一次函数的图象经过点A(4,1)与点B(0,5).(1)求一次函数的表达式;(2)若P点为此一次函数图象上一点,且S△POB=S△AOB,求P点的坐标.一、填空题(每小题4分,共20分)21.(4分)已知0≤x≤3,化简=.22.(4分)如图,圆柱体的高为12cm,底面周长为10cm,圆柱下底面A点除有一只蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm.23.(4分)如图,直线y=﹣x+m与y=nx+5n(n≠0)的交点横坐标为﹣3,则关于的不等式﹣x+m>nx+5n>0的整数解是.24.(4分)如图,点P的坐标为(2,0),点B在直线y=x+m上运动,当线段PB最短时,PB的长度是.25.(4分)如图,平面直角坐标系中,已知直线y=x上一点P(2,2),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,连接CD,直线CD与直线y=x交于点Q,当△OPC ≌△ADP时,则C点的坐标是,Q点的坐标是.二、解答题26.(8分)春天来了,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)直接写出小明开始骑车的0.5小时内所对应的函数解析式.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早12分钟到达乙地,求从家到乙地的路程.27.(10分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的,下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连结EF,试猜想EF、BE、DF之间的数量关系.(1)思路梳理把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即点F、D、G共线,易证△AFG≌,故EF、BE、DF之间的数量关系为.(2)类比引申如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°,连结EF,试猜想EF、BE、DF之间的数量关系为,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠BAD+∠EAC =45°,若BD=3,EC=6,求DE的长.28.(12分)如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).四川省成都市金牛区八年级(上)期末数学试卷参考答案一、选择题(每小题3分,共30分)1.A;2.B;3.C;4.D;5.C;6.B;7.C;8.A;9.C;10.A;二、填空题(每小题4分,共16分)11.1;12.(2,3);13.x=2;14.20°;三、解答题(本大题共6个小题,共54分)15.;16.;17.;18.比较喜欢;19.;20.;一、填空题(每小题4分,共20分)21.2x﹣3;22.13;23.﹣4;24.+m;25.(0,4+2);(2+2,2+2);二、解答题26.y=20x;27.△AFE;EF=DF+BE;EF=DF﹣BE;28.;。

2019-2020学年四川省成都市郫都区八年级(上)期末数学试卷 解析版

2019-2020学年四川省成都市郫都区八年级(上)期末数学试卷  解析版

2019-2020学年四川省成都市郫都区八年级(上)期末数学试卷A 卷一.选择题(共10小题共30分)1.下列四个实数中最大的是()A.B.0C.1D.﹣22.平面直角坐标系中,点(3,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.若(x+y)2=25,则x+y的值为()A.±5B.5C.﹣5D.104.如果∠2=∠4,那么AD∥BC.判断的依据是()A.两直线平行,内错角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.同旁内角互补,两直线平行5.在“全民读书月”活动中,小明调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图,则这40名同学购买课外书花费的众数和中位数分别为()A.30元,30元B.30元,50元C.50元,50元D.50元,80元6.是下列哪个方程的一个解()A.﹣2x+y=﹣3B.3x+y=6C.6x+y=8D.﹣x+y=1 7.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022 A.甲B.乙C.丙D.丁8.若函数y=(k﹣3)x+k2﹣9是正比例函数,则()A.k≠3B.k=±3C.k=3D.k=﹣39.如图,已知一次函数y=x+1和一次函数y=ax+3图象交于点P,点P的横坐标为1,那么方程y=x+1和方程y=ax+3的公共解为()A.B.C.D.10.在正方形网格中画格点三角形,下列四个三角形,是直角三角形的是()A.B.C.D.二.填空题(共4小题共20分)11.计算:|﹣|=.12.如图,将△ABC沿着平行于BC的直线折叠,点A落在点A′,若∠B=40°,则∠A′DB的大小为.13.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.14.东汉《九章算术》中,“折竹抵底”问题,意思是:如图所示一根竹子,原高10尺,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少?.三.解答题(共5小题共50分)15.计算:(1);(2).16.解方程组:.17.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?18.洋洋九年级上学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩106102115109112110(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.19.直线y=kx+3和y轴、x轴的交点分别为A、B,过点O作直线OC,交线段AB于点C,已知∠OBA=30°.(1)求线段OA的长;(2)求点B的坐标及k的值;(3)当OC=CB时,直接写出直线OC的解析式.20.如图,在△ABC中,延长AC至点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E,延长DE至点F,使EF=DE.连接AF.(1)求证:DE=AB;(2)求证:AF∥BE;(3)当AC=BC时,连接AE,求证:AE2+DE2=AD2.B卷一.填空题(共5小题共20分)21.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为.22.有理化分母:=.23.如图,第一、三象限角平分线记为y=x,如点(﹣1,﹣2)关于直线y=x对称点坐标为(﹣2,﹣1),点(a,b)关于y=x对称点的坐标为.24.如果关于x,y的方程组无解,那么直线y=﹣(k+1)x﹣3不经过第象限.25.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若P A=AB=50,点P到AD的距离是30,有一只蚂蚁要从点P爬到点B,则蚂蚁的最短行程为.二.解答题(共3小题共30分)26.某公司在甲、乙仓库共存放某种原料45吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多3吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将30吨原料运往工厂,从甲、乙两仓库到工厂的运价分别为120元/吨和100元/吨经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明,随着m的增大,w的变化情况.27.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+4=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:.28.已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点B、A.以AB为边在第一象限内作三角形ABC,且∠ABC=90°,BA=BC,作OB的中垂线l,交直线AB与点E,交x轴于点G.(1)求线段GE的长;(2)求线段AC的解析式;(3)设l上有一点M,且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,连接CE、CM,判断△CEM的形状,并说明理由.2019-2020学年四川省成都市郫都区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列四个实数中最大的是()A.B.0C.1D.﹣2【分析】直接利用实数比较大小的方法分析得出答案.【解答】解:∵2<<3,∴四个实数的大小关系为:﹣2<0<1<.故选:A.2.平面直角坐标系中,点(3,﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据横纵坐标的正负可得所在象限.【解答】解:∵点(3,﹣1)的横坐标为正,纵坐标为负,∴在第四象限,故选:D.3.若(x+y)2=25,则x+y的值为()A.±5B.5C.﹣5D.10【分析】利用平方根的定义求解.【解答】解:∵(x+y)2=25,∴x+y=±5.故选:A.4.如果∠2=∠4,那么AD∥BC.判断的依据是()A.两直线平行,内错角相等B.两直线平行,同位角相等C.内错角相等,两直线平行D.同旁内角互补,两直线平行【分析】根据平行线的判定方法直接得出结果.【解答】解:∵∠2=∠4∴AD∥BC(内错角相等,两直线平行).故选:C.5.在“全民读书月”活动中,小明调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图,则这40名同学购买课外书花费的众数和中位数分别为()A.30元,30元B.30元,50元C.50元,50元D.50元,80元【分析】众数就是出现次数最多的数,据此即可判断;中位数就是大小处于中间位置的数,根据定义判断.【解答】解:∵购买课外书花费30元的有12人,人数最多,∴众数是30元;把这些数从小到大排列,最中间的数是20和21个数的平均数,则中位数是=50元;故选:B.6.是下列哪个方程的一个解()A.﹣2x+y=﹣3B.3x+y=6C.6x+y=8D.﹣x+y=1【分析】将分别代入四个选项,判断等式是否成立即可.【解答】解:将分别代入四个选项:﹣2×2+1=﹣3,故A选项正确;3×2+1=7,故B选项不正确;6×2+1=13,故C选项不正确;﹣2+1=﹣1,故D选项不正确;故选:A.7.甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022 A.甲B.乙C.丙D.丁【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.8.若函数y=(k﹣3)x+k2﹣9是正比例函数,则()A.k≠3B.k=±3C.k=3D.k=﹣3【分析】根据正比例函数的定义列方程即可得到结论.【解答】解:∵y=(k﹣3)x+k2﹣9是正比例函数,∴k2﹣9=0,且k﹣3≠0,解得:k=﹣3,故选:D.9.如图,已知一次函数y=x+1和一次函数y=ax+3图象交于点P,点P的横坐标为1,那么方程y=x+1和方程y=ax+3的公共解为()A.B.C.D.【分析】利用y=x+1确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.【解答】解:当x=1时,y=x+1=2,即两直线的交点坐标为(1,2),所以方程y=x+1和方程y=ax+3的公共解为.故选:B.10.在正方形网格中画格点三角形,下列四个三角形,是直角三角形的是()A.B.C.D.【分析】利用勾股定理、勾股定理的逆定理即可判断.【解答】解:A、∵=,=,()2+()2≠42,∴三角形不是直角三角形;B、∵=,=,=,()2+()2≠()2,∴三角形不是直角三角形;C、∵=,=2,()2+()2=(2)2,∴三角形是直角三角形;D、∵=,=,=,()2+()2≠()2,∴三角形不是直角三角形.故选:C.二.填空题(共4小题)11.计算:|﹣|=5.【分析】直接利用绝对值以及立方根的性质分别得出答案.【解答】解:原式=|﹣5|=5.故答案为:5.12.如图,将△ABC沿着平行于BC的直线折叠,点A落在点A′,若∠B=40°,则∠A′DB的大小为100°.【分析】根据翻折的性质得出∠ADE=∠B=40°,继而得∠A′DE=∠ADE=40°,最后由平角的定义得出答案.【解答】解:∵∠B=40°,△ABC沿着平行于BC的直线折叠,点A落到点A′,∴∠ADE=∠B=40°,∴∠A′DE=∠ADE=40°,∴∠A′DB=180°﹣40°﹣40°=100°.故答案为:100°.13.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标(﹣2,3).【分析】以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).14.东汉《九章算术》中,“折竹抵底”问题,意思是:如图所示一根竹子,原高10尺,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为多少? 4.2尺.【分析】根据题意画出图形,由勾股定理得出方程,解方程即可.【解答】解:如图所示:由题意得:∠AOB=90°,设折断处离地面的高度OA是x尺,由勾股定理得:x2+42=(10﹣x)2,解得:x=4.2,即:折断后的竹子高度OA为4.2尺.故答案为:4.2尺.三.解答题(共5小题)15.计算:(1);(2).【分析】(1)先利用二次根式的乘除法则计算,然后化简后合并即可;(2)根据完全平方公式和平方差公式计算.【解答】解:(1)原式=+=+2=3;(2)原式=4﹣4+3+4﹣3=8﹣4.16.解方程组:.【分析】由方程组中的第一个方程可得y=2x﹣3,再利用代入消元法求解即可.【解答】解:,由①得y=2x﹣3③,把③代入②,得7x﹣3(2x﹣3)=20,解得x=11,把x=11代入③,得y=19,所以方程组的解为.17.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC =,==36.所以需费用36×200=7200(元).18.洋洋九年级上学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩106102115109112110(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.【分析】(1)根据平均数的求法列式进行计算即可得解;(2)用各自的成绩,分别乘以权重,列式计算即可得解.【解答】解:(1)平时平均成绩=×(106+102+115+109)=×432=108(分);(2)总评成绩=108×10%+112×30%+110×60%=10.8+33.6+66=110.4(分).19.直线y=kx+3和y轴、x轴的交点分别为A、B,过点O作直线OC,交线段AB于点C,已知∠OBA=30°.(1)求线段OA的长;(2)求点B的坐标及k的值;(3)当OC=CB时,直接写出直线OC的解析式.【分析】(1)对于y=kx+3,令x=0,则y=3,即可求解;(2)∠OBA=30°,OA=3,则AB=6,则OB=,进而求解;(3)求出C(m,m),进而求解.【解答】解:(1)对于y=kx+3,令x=0,则y=3,故点A(0,3),则OA=3;(2)∵∠OBA=30°,OA=3,则AB=6,则OB===3,故点B(3,0),将点B的坐标代入y=kx+3得:0=3k+3,解得k=﹣;(3)∵OC=CB,∴∠COB=∠ABO=30°,过点C作CH⊥x轴于点H,设CH=m,则CO=2m,则OH===m,则点C(m,m),设直线OC的表达式为y=tx,将点C的坐标代入上式得:m=mt,解得t=,故OC的表达式为y=x.20.如图,在△ABC中,延长AC至点D,使CD=AC,过点D作DE∥AB交BC的延长线于点E,延长DE至点F,使EF=DE.连接AF.(1)求证:DE=AB;(2)求证:AF∥BE;(3)当AC=BC时,连接AE,求证:AE2+DE2=AD2.【分析】(1)根据平行线的性质得到∠ABC=∠DEC,利用AAS定理证明△ABC≌△DEC,根据全等三角形的性质证明结论;(2)根据三角形中位线定理证明即可;(3)根据直角三角形的判定定理得到△BAE是直角三角形,根据勾股定理证明.【解答】证明:(1)∵DE∥AB,∴∠ABC=∠DEC,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴DE=AB;(2)∵DC=AC,DE=EF,∴CE是△DAF的中位线,∴AF∥BE;(3)∵△ABC≌△DEC,∴BC=CE,∵AC=BC,∴AC=BC=CE,∴△BAE是直角三角形,∴AB2+AE2=BE2,∵AB=DE,AD=2AC=2BC=BE,∴AE2+DE2=AD2.B卷一.填空题(共5小题)21.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中是平行的光线,在空气中也是平行的,如图,∠1+∠2=103°,则∠3﹣∠4的度数为77°.【分析】光在水中是平行的光线,在空气中也是平行的,依据平行线的性质进行判断,即可得出图中∠3﹣∠4的度数.【解答】解:如图,∵AB∥CD,∴∠5=180°﹣∠2,∵AC∥BD,∴∠3=∠5,∵AE∥BF,∴∠1=∠6,∵EF∥AB,∴∠4=∠6,∴∠3﹣∠4=180°﹣∠2﹣∠1=180°﹣(∠1+∠2)=77°.故答案为:77°.22.有理化分母:=3﹣.【分析】把的分子、分母同时乘3﹣即可.【解答】解:==3﹣.故答案为:3﹣.23.如图,第一、三象限角平分线记为y=x,如点(﹣1,﹣2)关于直线y=x对称点坐标为(﹣2,﹣1),点(a,b)关于y=x对称点的坐标为(b,a).【分析】根据图形,关于直线y=x的对称点的横坐标与纵坐标互相交换解答.【解答】解:∵点(﹣1,﹣2)关于y=x对称点为(﹣2,﹣1),∴点(a,b)关于y=x对称点的坐标为(b,a).故答案为:(b,a).24.如果关于x,y的方程组无解,那么直线y=﹣(k+1)x﹣3不经过第一、二象限.【分析】方程组无解,即直线y=﹣x+1与y=(2k+1)x﹣3平行,那么﹣1=2k+1,求出k的值,进而求解即可.【解答】解:∵方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,∴直线y=﹣(k+1)x﹣3=﹣3经过第三、四象限,不经过第一、二象限.故答案为一、二.25.如图,教室的墙面ADEF与地面ABCD垂直,点P在墙面上.若P A=AB=50,点P到AD的距离是30,有一只蚂蚁要从点P爬到点B,则蚂蚁的最短行程为40.【分析】可将教室的墙面ADEF与地面ABCD展开,连接P、B,根据两点之间线段最短,利用勾股定理求解即可.【解答】解:如图,过P作PG⊥BF于G,连接PB,∵AG=30,AP=AB=50,∴PG=40,∴BG=80,∴PB===40.故这只蚂蚁的最短行程应该是40.故答案为:40.二.解答题(共3小题)26.某公司在甲、乙仓库共存放某种原料45吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多3吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将30吨原料运往工厂,从甲、乙两仓库到工厂的运价分别为120元/吨和100元/吨经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明,随着m的增大,w的变化情况.【分析】(1)根据某公司在甲、乙仓库共存放某种原料45吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多3吨,可以得到相应的二元一次方程组,从而可以求得甲、乙两仓库各存放原料多少吨;(2)根据题意,可以写出总运费w关于m的函数解析式;(3)根据10≤a≤30和一次函数的性质,利用分类讨论的方法可以解答本题.【解答】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,,解得,,答:甲仓库存放原料24吨,乙仓库存放原料21吨;(2)从甲仓库运m吨原料到工厂,则从乙仓库云原料(30﹣m)吨到工厂,w=(120﹣a)m+100(30﹣m)=(20﹣a)m+3000,即总运费w关于m的函数解析式是w=(20﹣a)m+3000;(3)当10≤a<20时,20﹣a>0,由一次函数的性质,得w随m的增大而增大;当a=20是,20﹣a=0,w随m的增大没变化;当20<a≤30时,则20﹣a<0,w随m的增大而减小.27.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=m2+6n2,b=2mn;(2)若a+4=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:.【分析】(1)利用完全平方公式展开得到(m+n)2=m2+6n2+2mn,从而可用m、n表示a、b;(2)直接利用完全平方公式,变形得出答案;(3)直接利用完全平方公式,变形化简即可.【解答】解:(1)∵(m+n)2=m2+6n2+2mn,a+b=(m+n)2,∴a=m2+6n2,b=2mn.故答案为m2+6n2,2mn;(2)∵(m+n)2=m2+3n2+2mn,a+4=(m+n)2,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3)===2+1,则====﹣1.28.已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点B、A.以AB为边在第一象限内作三角形ABC,且∠ABC=90°,BA=BC,作OB的中垂线l,交直线AB与点E,交x轴于点G.(1)求线段GE的长;(2)求线段AC的解析式;(3)设l上有一点M,且点M与点C位于直线AB的同侧,使得2S△ABM=S△ABC,连接CE、CM,判断△CEM的形状,并说明理由.【分析】(1)l是OB的中垂线,则点G(1,0),当x=1时,y=﹣2x+4=2,即点E(1,2),即可求解;(2)证明△AOB≌△HCB(AAS),求出C(6,2),即可求解;(3)由2S△ABM=S△ABC得到5=(a﹣2)+(a﹣2),求出M(1,7),进而求解.【解答】解:(1)过点C作x轴的垂线,交x轴于点H,∵y=﹣2x+4,∴A(0,4),B(2,0),∵l是OB的中垂线,则点G(1,0),当x=1时,y=﹣2x+4=﹣2+4=2,即点E(1,2),故GE=2;(2)∵BA=BC,∴△AOB≌△HCB(AAS),OA=4,OB=2,AB=2,∴BH=AO=4,CH=OB=2,∴C(6,2),设直线AC的表达式为y=kx+b,则,解得,故直线AC的表达式为y=﹣x+4;(3)∵S ABC=10,2S△ABM=S△ABC,∴S△ABM=5,而S△ABM=S△AEM+S△EMB,设M(1,a),则5=(a﹣2)+(a﹣2),解的a=7,则M(1,7);连接CM,CE,由点E(1,2),C(6,2),M(1,7)得:则CE=5,EM=5,CM=5,则CE2+EM2=CM2,CE=EM,∴△EMC是等腰直角三角形.。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

四川省成都市成华区2018-2019学年八年级(上)期末数学试卷(解析版)

四川省成都市成华区2018-2019学年八年级(上)期末数学试卷(解析版)

2018-2019学年四川省成都市成华区八年级(上)期末数学试卷一.选择题(本大题共10个小题,每小题3分)1.(3分)下列各数中,为无理数的是( )A .13B C D2.(3 )A .在数轴上不存在表示的点BC 2D =3.(3分)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数 4.(3分)如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b 的是( )A .∠2=∠5B .∠1=∠3C .∠5=∠4D .∠1+∠5=180°5.(3分)已知直线a ∥b ,将一块含45°角的直角三角板(∠C =90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°6.(3分)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是( )A.2xy=⎧⎨=-⎩B.2xy=⎧⎨=⎩C.2xy=⎧⎨=⎩D.2xy=-⎧⎨=⎩7.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<08.(3分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.352294x yx y+=⎧⎨+=⎩B.354294x yx y+=⎧⎨+=⎩C.354494x yx y+=⎧⎨+=⎩D.352494x yx y+=⎧⎨+=⎩9.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.12-B.12C.﹣2D.210.(3分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题:(每小题4分,共16分)11.(4分)若关于x、y的二元一次方程3x﹣ay=1有一个解是32xy=⎧⎨=⎩,则a=.12.(4分)若|3x﹣2y0,则xy的算术平方根是.13.(4分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.14.(4分)如图,在Rt △ABC 中,∠C =90°,AC =3,AB =5,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P ,Q ,过P ,Q 两点作直线交BC 于点D ,则CD 的长是 .三.解答下列各题(共54分)15.(10分)计算下列各题:(112 (2)计算:6(π﹣2019)0﹣|5﹣(12)﹣2 16.(10分)解下列方程组:(1)20346x y x y +=⎧⎨+=⎩ (2)17331732x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩ 17.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A ,B ,C ,D ,E 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期末数学模拟试卷一、选择题(本题共10个小题,每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.下列计算正确的是()A.3a+3b=6ab B.19a2b2﹣9ab=10abC.﹣2x2﹣2x2=0 D.5y﹣3y=2y3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×1044.下列方程中是一元一次方程的是()A.4x﹣5=0 B.2x﹣y=3 C.3x2﹣14=2 D.﹣2=35.用平面去截五棱柱,在所得的截面中,不可能出现的是()A.八边形B.四边形C.六边形D.三角形6.下列说法中错误的是()A.有理数可以分为正有理数、负有理数和零B.0的相反数等于它本身C.0既不是正数也不是负数D.任何一个有理数的绝对值都是正数7.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A.0.4 B.18 C.0.6 D.278.如图所示,OC平分∠AOB,OD平分∠AOC,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100°D.20°9.已知a+b=4,c+d=2,则(b﹣c)﹣(d﹣a)的值为()A.6 B.﹣6 C.2 D.﹣210.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8D.(1+50%)x﹣x=8二、填空题(本大题共5个小题,每小题3分,共15分)11.为了调查一批灯泡的使用寿命,一般采用(选填抽样调查或普查)的方式进行.12.在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y= .13.已知关于x的方程3a+x=的解为2,则a的值是.14.观察下列图形,它们是按一定规律排列的,依照此规律,第7个图形有个.15.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x的值是.三、解答下列各题(共20分,答案写在答题卡上)16.(1)计算:﹣32+100÷(﹣2)2﹣(﹣2)×(﹣)(2)计算:(1+﹣2.75)×(﹣24)+(﹣1)2017﹣|﹣2|3.17.(1)解方程: =1﹣(2)先化简,再求值:(9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.四、解下列各题(共22分)18.(1)如图所示为一几何体的三视图:①写出这个几何体的名称;②画出这个几何体的一种表面展开图;③若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.(2)方程 [(a﹣)x+]=1和方程﹣1=的解相同,求a的值.19.(1)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.(2)如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=3.①若CE=8,求AC的长;②若C是AB的中点,求CD的长.五、解下列各题(20题6分,21题7分,共13分)20.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年达到“优”和“良”的总天数.21.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.2.下列计算正确的是()A.3a+3b=6ab B.19a2b2﹣9ab=10abC.﹣2x2﹣2x2=0 D.5y﹣3y=2y【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+3b无法计算,故此选项错误;B、19a2b2﹣9ab无法计算,故此选项错误;C、﹣2x2﹣2x2=﹣4x2,故此选项错误;D、5y﹣3y=2y,正确.故选:D.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()A.18.1×105B.1.81×106C.1.81×107D.181×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:181万=181 0000=1.81×106,故选:B.4.下列方程中是一元一次方程的是()A.4x﹣5=0 B.2x﹣y=3 C.3x2﹣14=2 D.﹣2=3【考点】一元一次方程的定义.【分析】根据一元一次方程的定义得出即可.【解答】解:A、是一元一次方程,故本选项正确;B、不是一元一次方程,故本选项错误;C、不是一元一次方程,故本选项错误;D、不是一元一次方程,故本选项错误;故选A.5.用平面去截五棱柱,在所得的截面中,不可能出现的是()A.八边形B.四边形C.六边形D.三角形【考点】截一个几何体.【分析】用一个平面截一个几何体得到的面叫做几何体的截面,依此即可求解.【解答】解:用一个平面去截五棱柱,边数最多的截面是七边形.故选A.6.下列说法中错误的是()A.有理数可以分为正有理数、负有理数和零B.0的相反数等于它本身C.0既不是正数也不是负数D.任何一个有理数的绝对值都是正数【考点】有理数;相反数;绝对值.【分析】根据有理数的含义和分类方法,绝对值的含义和求法,以及相反数的含义和求法,逐一判断即可.【解答】解:∵有理数可以分为正有理数、负有理数和零,∴选项A正确;∵0的相反数等于它本身,∴选项B正确;∵0既不是正数也不是负数,∴选项C正确;∵任何一个有理数的绝对值是正数或0,∴选项D不正确.故选:D.7.某校七(3)班的同学进行了一次安全知识测试,测试成绩进行整理后分成四个组,并绘制如图所示的频数直方图,则第二组的频数是()A.0.4 B.18 C.0.6 D.27【考点】频数(率)分布直方图.【分析】根据频数分布直方图即可求解.【解答】解:根据频数分布直方图可知,第二组的频数是18.故选B.8.如图所示,OC平分∠AOB,OD平分∠AOC,且∠CO D=25°,则∠AOB等于()A.50° B.75° C.100°D.20°【考点】角平分线的定义.【分析】根据角的平分线定义得出∠AOD=∠COD,∠AOB=2∠AOC=2∠BOC,求出∠AOD、∠AOC的度数,即可求出答案.【解答】解:∵OC是∠AOB的平分线,OD是∠AOC的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC,∴∠AOB=2∠AOC=2(∠AOD+∠COD)=2×(25°+25°)=100°,故选:C.9.已知a+b=4,c+d=2,则(b﹣c)﹣(d﹣a)的值为()A.6 B.﹣6 C.2 D.﹣2【考点】整式的加减.【分析】先将(b﹣c)﹣(d﹣a)变形为(b+a)﹣(c+d),然后将a+b=4,c+d=2代入求解即可.【解答】解:∵a+b=4,c+d=2,∴(b﹣c)﹣(d﹣a)=(b+a)﹣(c+d)=4﹣2=2.故选C.10.某商场把一个双肩背书包按进价提高50%标价,然后再按八折出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题意列一元一次方程,正确的是()A.(1+50%)x•80%﹣x=8 B.50%x•80%﹣x=8C.(1+50%)x•80%=8D.(1+50%)x﹣x=8【考点】由实际问题抽象出一元一次方程.【分析】首先根据题意表示出标价为(1+50%)x,再表示出售价为(1+50%)x•80%,然后利用售价﹣进价=利润即可得到方程.【解答】解:设每个双肩背书包的进价是x元,根据题意得:(1+50%)x•80%﹣x=8.故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.为了调查一批灯泡的使用寿命,一般采用抽样调查(选填抽样调查或普查)的方式进行.【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:为了调查一批灯泡的使用寿命,一般采用抽样调查的方式进行,故答案为:抽样调查.12.在如图所示的运算流程中,若输入的数x=﹣4,则输出的数y= ﹣8 .【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出若输入的数x=﹣4,则输出的数y是多少即可.【解答】解:(﹣4)2÷(﹣2)=16÷(﹣2)=﹣8∴若输入的数x=﹣4,则输出的数y=﹣8.故答案为:﹣8.13.已知关于x的方程3a+x=的解为2,则a的值是﹣.【考点】一元一次方程的解.【分析】把x=2代入方程3a+x=得出3a+2=,求出方程的解即可.【解答】解:把x=2代入方程3a+x=得:3a+2=,解得:a=﹣,故答案为:﹣.14.观察下列图形,它们是按一定规律排列的,依照此规律,第7个图形有71 个.【考点】规律型:图形的变化类.【分析】由图形可以看出:第一行小太阳的个数是从1开始连续的自然数,第二行小太阳的个数是1、2、4、8、…、2n﹣1,由此计算得出答案即可.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第7个图形共有7+64=71个太阳.故答案为:71.15.一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,x的值是26 .【考点】一元一次方程的应用.【分析】由题意可先得到右上角的数为28,由于要求每一行,每一列,及每一对角线上的三个数之和有相同的值,所以中央的数是右上角与左下角的数的平均数,故可求得x的值.【解答】解:右上角的数为:22+27+x﹣x﹣21=28,中央数为:(22+28)÷2=25,故x+27+22=22+25+28,解得:x=26.故本题答案为:26.三、解答下列各题(共20分,答案写在答题卡上)16.(1)计算:﹣32+100÷(﹣2)2﹣(﹣2)×(﹣)(2)计算:(1+﹣2.75)×(﹣24)+(﹣1)2017﹣|﹣2|3.【考点】有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律,乘方的意义,以及绝对值的代数意义计算即可得到结果.【解答】解:(1)原式=﹣9+25﹣5=11;(2)原式=﹣32﹣3+66﹣1﹣8=22.17.(1)解方程: =1﹣(2)先化简,再求值:(9ab2﹣3)+(7a2b﹣2)+2(ab2+1)﹣2a2b,其中a、b满足(a+2)2+|b﹣3|=0.【考点】解一元一次方程;非负数的性质:绝对值;非负数的性质:偶次方;整式的加减—化简求值.【分析】(1)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解;(2)去括号、合并同类项即可化简,然后根据非负数的性质求得a和b的值,代入化简后的式子即可求值.【解答】解:(1)去分母,得5(x﹣1)=15﹣3(3x+2),去括号,得5x﹣5=15﹣9x﹣6,移项,得5x+9x=15﹣6+5,合并同类项,得14x=14,系数化成1得x=1;(2)原式=3ab2﹣1+7ab2+2﹣2a2b=10ab2﹣2a2b+1,∵(a+2)2+|b﹣3|=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3.则原式=10×(﹣2)×9﹣2×4×3+1=﹣180﹣24+1=﹣203.四、解下列各题(共22分)18.(1)如图所示为一几何体的三视图:①写出这个几何体的名称;②画出这个几何体的一种表面展开图;③若长方形的高为10cm,正三角形的边长为4cm,求这个几何体的侧面积.(2)方程 [(a﹣)x+]=1和方程﹣1=的解相同,求a的值.【考点】由三视图判断几何体;同解方程;几何体的展开图.【分析】(1)①如图所示,根据三视图的知识来解答;②根据几何体画出这个几何体的一种表面展开图即可;③根据求图形的面积的方法即可得到结果;(2)根据题意即可得到结论.【解答】解:(1)①根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱;②如图所示,③这个几何体的侧面积=3×10×4=120cm2;(2)解 [(a﹣)x+]=1得x=﹣,解﹣1=得x=,∵方程 [(a﹣)x+]=1和方程﹣1=的解相同,∴﹣=,∴a=.19.(1)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.(2)如图,已知线段AB=20,C是AB上的一点,D为CB上的一点,E为DB的中点,DE=3.①若CE=8,求AC的长;②若C是AB的中点,求CD的长.【考点】两点间的距离;整式的加减.【分析】(1)根据题意列出关系式,去括号合并后由结果不含有x2,y项,求出m与n的值,代入代数式即可得到结论;(2)①由E为DB的中点,得到BD=DE=3,根据线段的和差即可得到结论;②由E为DB的中点,得到BD=2DE=6,根据C是AB的中点,得到BC=AB=10,根据线段的和差即可得到结论.【解答】解:(1)根据题意得:A﹣2B=2x2﹣xy+my﹣8﹣2(﹣nx2+xy+y+7)=(2+2n)x2﹣3xy+(m﹣2)y﹣22,∵和中不含有x2,y项,∴2+2n=0,m﹣2=0,解得:m=2,n=﹣1,∴n m+mn=﹣1;(2)①∵E为DB的中点,∴BD=DE=3,∵CE=8,∴BC=CE+BE=11,∴AC=AB﹣BC=9;②∵E为DB的中点,∴BD=2DE=6,∵C是AB的中点,∴BC=AB=10,∴CD=BC﹣BD=10﹣6=4.五、解下列各题(20题6分,21题7分,共13分)20.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年达到“优”和“良”的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年即可求出达到优和良的总天数.【解答】解:(1)扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,∴被抽取的总天数为:12÷20%=60(天);(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;表示优的圆心角度数是360°=72°,如图所示:;(3)样本中优和良的天数分别为:12,36,一年达到优和良的总天数为:×365=292(天).故估计本市一年达到优和良的总天数为292天.21.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.(1)两台复印机同时复印,共需多少分钟才能印完?(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?【考点】一元一次方程的应用.【分析】(1)设共需x 分钟才能印完,依题意得(+)x=1,解方程即可;(2)设由A 机单独完成剩下的复印任务需要y 分钟才能印完,依题意得(+)×30+=1,求解与13分进行比较即可;(3)当B 机恢复使用时,两机又共同复印了z 分钟印完试卷,依题意得(+)×30++(+)z=1,求解后加9再与13进行比较【解答】解:(1)设共需x 分钟才能印完,(+)x=1,解得x=36 答:两台复印机同时复印,共需36分钟才能印完;(2)设由A 机单独完成剩下的复印任务需要y 分钟才能印完,(+)×30+=1,解得y=15>13答:会影响学校按时发卷考试;(3)当B 机恢复使用时,两机又共同复印了z 分钟印完试卷,(+)×30++(+)z=1解得z=2.4则有9+2.4=11.4<13.答:学校可以按时发卷考试.2017年2月21日。

相关文档
最新文档