七年级数学--有理数单元测试卷

合集下载

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108 3.在,-4,0,这四个数中,属于负整数的是()A.B.C.0 D.4.|x|=|﹣3|,则x是()A.3 B.-3 C.D.±35.下面计算正确的是()A.﹣(﹣2)2=22B.(﹣3)2×C.﹣34=(﹣3)4D.(﹣0.1)2=0.126.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方7.如果两个有理数的积是负数,和是正数,那么这两个有理数()A.同号,且都为正数B.异号,且正数的绝对值较大C.同号,且都为负数D.异号,且负数的绝对值较大8.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.|b|>|a| B.a﹣b<0 C.a+b<0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.有理数3.1415精确到百分位结果是.10.两个有理数的和是5,其中一个加数是12,那么另一个加数是.11.某地一天早晨的气温是-7℃,中午气温上升了11℃半夜又下降了9℃,半夜的气温是℃.12.一个数在数轴上所对应的点向右移动4个单位后,得到它的相反数的对应点,则这个数是.13.如图是一个三阶幻方,图中每行、每列、每条对角线上的数字之和相等,则的值为.三、解答题:(本题共5题,共45分)14.计算(1)(2)15.计算:(1)(2)(3)16.已知|a|=10,|b|=4(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a-b的值。

七年级数学有理数单元测试卷

七年级数学有理数单元测试卷

七年级数学有理数单元测试卷一、选择题(每题 3 分,共 30 分)1. 下列数中,是有理数的是()A. 圆周率πB. 0C. 根号 2D. 无限不循环小数。

2. 在数轴上,距离原点 3 个单位长度的点表示的数是()A. 3B. -3C. 3 或 -3D. 6 或 -6。

3. 下列计算正确的是()A. -2 + 3 = 1B. -5 - 5 = 0C. -1 × 2 = -2D. 4 ÷ 2 = 2.4. 绝对值等于 5 的数是()A. 5B. -5C. 5 或 -5D. 0。

5. 比较 -2,0,-3 的大小,正确的是()A. -2 > 0 > -3B. 0 > -2 > -3C. 0 > -3 > -2D. -3 > -2 > 0.6. 若 a + b < 0,ab > 0,则()A. a > 0,b > 0B. a < 0,b < 0C. a > 0,b < 0D. a < 0,b > 0.7. 计算 (-2)³的结果是()A. -6B. 6C. -8D. 8.8. 下列说法正确的是()A. 正数和负数互为相反数B. 数轴上表示相反数的点到原点的距离相等。

C. 任何数都有相反数D. 一个数的相反数一定是负数。

9. 若 a = 3,b = 2,且 a < b,则 a + b 的值是()A. 1 或 5B. -1 或 -5C. 1 或 -5D. -1 或 5。

10. 观察下列算式:2¹ = 2,2² = 4,2³ = 8,2⁴ = 16,2⁵ = 32,2⁶ = 64,2⁷ = 128,2⁸ = 256,…通过观察,用你所发现的规律确定 2²⁰²³的个位数字是()A. 2B. 4C. 6D. 8.二、填空题(每题 3 分,共 15 分)11. 把 -3,-2.5,0,1,2 这五个数按从小到大的顺序排列:________________。

七年级数学有理数单元测试题

七年级数学有理数单元测试题

七年级数学有理数单元测试题一、整数的加减运算1. 计算:(-9) + 6 + (-4) + 7 + (-3)解:(-9) + 6 + (-4) + 7 + (-3) = -9 + 6 - 4 + 7 - 3 = -3答案:-32. 计算:(-16) - 8 - (-6) + 14解:(-16) - 8 - (-6) + 14 = (-16) - 8 + 6 + 14 = -4答案:-43. 计算:(-15) - (-7) + (-5) - 2解:(-15) - (-7) + (-5) - 2 = (-15) + 7 - 5 - 2 = -15 + 7 - 5 - 2 = -15答案:-154. 计算:(-20) + (-40) - (-30) + (-10)解:(-20) + (-40) - (-30) + (-10) = (-20) + (-40) + 30 + (-10) = (-60) + 30 + (-10) = -40答案:-40二、有理数的乘除运算1. 计算:(-12) × 3 × (-4)解:(-12) × 3 × (-4) = (-12) × (-12) × 4 = 144 × 4 = 576答案:5762. 计算:(-18) ÷ 2 ÷ (-3)解:(-18) ÷ 2 ÷ (-3) = (-18) ÷ (-6) = 3答案:33. 计算:(-16) × (-8) ÷ 4解:(-16) × (-8) ÷ 4 = 128 ÷ 4 = 32答案:324. 计算:(-24) ÷ 6 × (-2)解:(-24) ÷ 6 × (-2) = (-24) ÷ 6 × (-2) = -4 × (-2) = 8答案:8三、有理数的混合运算1. 计算:(-3) + 4 × (-5) ÷ 2解:(-3) + 4 × (-5) ÷ 2 = (-3) + (-20) ÷ 2 = (-3) + (-10) = -13答案:-132. 计算:(-9) × (-3) - 8 ÷ 4解:(-9) × (-3) - 8 ÷ 4 = 27 - 2 = 25答案:253. 计算:(-5) - 3 × (-4) + 6 ÷ 2解:(-5) - 3 × (-4) + 6 ÷ 2 = (-5) + 12 + 3 = 10答案:104. 计算:(-16) ÷ (-8) + 3 × (-2)解:(-16) ÷ (-8) + 3 × (-2) = 2 + (-6) = -4答案:-4四、有理数的比较1. 比较:-15, 10, -12, 20, -8解:从左至右依次比较,-15 < -12 < -8 < 10 < 20答案:-15 < -12 < -8 < 10 < 202. 比较:-5, 0, -2, 3, -1解:从左至右依次比较,-5 < -2 < -1 < 0 < 3答案:-5 < -2 < -1 < 0 < 33. 比较:-6, -9, -4, -3, -5解:从左至右依次比较,-9 < -6 < -5 < -4 < -3答案:-9 < -6 < -5 < -4 < -34. 比较:-8, 4, 0, -2, 3解:从左至右依次比较,-8 < -2 < 0 < 3 < 4答案:-8 < -2 < 0 < 3 < 4五、综合应用题某地今年的气温变化如下:1月份平均气温为-3℃,2月份比1月份低4℃,3月份比2月份高6℃,4月份比3月份低9℃,5月份比4月份高7℃,6月份比5月份低5℃。

七年级数学有理数单元测试卷及其答案

七年级数学有理数单元测试卷及其答案

七年级数学有理数单元测试卷班级姓名 分数 一、选择题:每题5分,共25分1. 下列各组量中,互为相反意义的量是( )A 、收入200元与赢利200元B 、上升10米与下降7米C 、“黑色”与“白色”D 、“你比我高3cm ”与“我比你重3kg ”2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元 B 6102198⨯元 C 910198.2⨯元 D 1010198.2⨯元 3. 下列计算中,错误的是( )。

A 、3662-=-B 、161)41(2=± C 、64)4(3-=- D 、0)1()1(1000100=-+- 4. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分5.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数二、填空题:(每题5分,共25分)6. 若0<a <1,则a ,2a ,1a的大小关系是 7.若a a =-那么2a 08. 如图,点A B ,在数轴上对应的实数分别为m n ,,则A B ,间的距离是 .(用含m n ,的式子表示)9. 如果0 xy 且x 2=4,y 2 =9,那么x +y =10、正整数按下图的规律排列.请写出第6行,第5列的数字 .A B m 0 n x 第一行 第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列 1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 … 25 24 23 22 21 … ……三、解答题:每题6分,共24分11.① (-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223③(23 -14 -38 +524 )×48 ④-18÷ (-3)2+5×(-12)3-(-15) ÷5四、解答题:12. (本小题6分) 把下列各数分别填入相应的集合里.()88.1,5,2006,14.3,722,0,34,4++-----(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}1013. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14. (本小题6分) 已知在纸面上有一数轴(如图),折叠纸面. (1)若1表示的点与-1表示的点重合,则- 2表示的点与数 表示的点重合;(2)若-1表示的点与3表示的点重合,则5表示的点与数 表示的点重合;15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?七年级数学有理数测试卷 参考答案1.B 2.C 3.D 4.C 5.C 6.aa a 12 7.≤ 8.n-m 9.±1 10.32 11①-5 ②6 ③12 ④83 12①88.1,2006,722+ ②)5(,14.3,34,4+----- ③)5(,2006,0,4+-- ④88.1,14.3,722,34+--- 13.10千米14. ①2 ②-315.①最高分:92分;最低分70分.②低于80分的学生有5人。

初一数学第一章《有理数》单元测试题

初一数学第一章《有理数》单元测试题

第一章 有理数单元测试题 【1】姓名得分温馨提示:下面的数学问题是为了展示你最近的学习成果而设计的!只要你仔细审题,认真答题,遇到困难不轻易放弃,你就有出色的表现,放松一点,请相信自己的实力!一、精心选一选:(每题2分、计16分)1、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方2、下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C.12342143-+-=-+-D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 3、下列各对数中,互为相反数的是 ( )A .()2.5-+与2.5-; B.()2.5++与2.5-;C.()2.5--与2.5; D.2.5与()2.5++4、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c5、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零;(D )两个加数不能同为负数6、654321-+-+-+……+2005-2006的结果不可能是:( )A 、奇数B 、偶数C 、负数D 、整数7、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定8、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则第1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-1二.填空题:(每题3分、计30分)9、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。

七年级数学有理数单元测试题

七年级数学有理数单元测试题

七年级数学有理数单元测试题一、选择题(每题2分,共20分)1. 下列哪个选项不是有理数?A. -3B. 0C. πD. 1/22. 如果a是有理数,那么下列哪个表达式的结果不是有理数?A. a + 2B. a - 2C. a × 2D. a / 23. 两个负有理数相加,结果是什么?A. 正数B. 负数C. 零D. 无法确定4. 以下哪个数是绝对值最小的有理数?A. 5B. -5C. 0D. 1/35. 有理数的乘法运算中,下列哪个说法是错误的?A. 正数乘以正数等于正数B. 负数乘以负数等于正数C. 正数乘以负数等于负数D. 任何数乘以零等于零二、填空题(每题2分,共20分)6. 有理数的加法运算中,两个相反数相加的结果是______。

7. 如果a是有理数,那么-a的绝对值是______。

8. 有理数的除法运算中,零除以任何非零有理数的结果是______。

9. 两个有理数相乘,如果其中一个数为零,则结果一定是______。

10. 有理数的乘方运算中,任何数的零次方等于______。

三、计算题(每题5分,共30分)11. 计算下列表达式的值:(1) (-3) × (-2)(2) (-2) + 412. 计算下列表达式的值:(1) |-5| - 3(2) 1/3 + 1/413. 计算下列表达式的值:(1) (-1)^2(2) (-2)^314. 计算下列表达式的值:(1) (-3) × 0(2) 0 - (-5)四、解答题(每题10分,共30分)15. 某商店在一天内卖出了三种商品,其中A商品卖出了10件,单价为20元;B商品卖出了15件,单价为15元;C商品卖出了5件,单价为30元。

请计算商店这一天的总收入。

16. 某工厂生产了100个零件,其中95个是合格的,5个是次品。

如果合格品的单价为10元,次品的单价为0元,计算工厂这批零件的总收入。

17. 一个数的平方是25,这个数是什么?五、附加题(10分)18. 假设你有一个数列:1, 2, 3, ..., n。

人教版七年级数学第一章《有理数》单元测试带答案解析

人教版七年级数学第一章《有理数》单元测试带答案解析

人教版七年级数学第一章《有理数》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( )A .80.5510⨯B .75.510⨯C .65.510⨯D .65510⨯2.2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( )A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3.实数a ,b 在数轴上对应点位置如图所示,则下列不等式正确的是( )A .0a b <B .0a b ->C .0ab >D .0a b +>4.据国家统计局公布,我国第七次全国人口普查结果约为14.12亿人,14.12亿用科学记数法表示为( )A .914.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯ 5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.2022的相反数的倒数是( )A .2022B .12022-C .12022D .2022- 7.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-8.若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( )A .5B .2C .1D .0 9.数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-10.实数a ,b ,c 在数轴上的对应点的位置如图所示,如果0a c +=,那么下列结论正确的是( )A .0b <B .a b <-C .0ab >D .0b c -> 11.如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6-----这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a 的值为( )A .4-B .3-C .3D .412.一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是( )A .0B .100C .50D .﹣50二、填空题13.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米.14.2022年2月4日,第24届冬奥会在北京开幕,据统计中国地区观看开幕式的人数约为316000000人,请将数字316000000用科学记数法表示出来_________.15.目前,我国基本医疗保险覆盖已超过13.5亿人,数据13.5亿用科学记数法表示为____________.16.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题17.计算题:(1)()()()915128-+--+-(2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)2020311|24|(2)3----⨯+- (4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭18.()()113132⎛⎫---+-- ⎪⎝⎭. 19.“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日故宫的游园人数为2.1万人,请你计算“十一”黄金周期间游客人数最多的是___________(填写日期),最少的是___________(填写日期),它们相差___________万人;(2)故宫门票是60元一张,请计算出“十·一”黄金周期间,北京故宫的门票总收入(万元).20.计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可)(2)请给出正确解答.21.阅读下列材料:计算:1111()243412÷-+ 解法一:原式111111111113412243244241224242424=÷-÷+÷=⨯-⨯+⨯= 解法二:原式14311211()6241212122412244=÷-+=÷=⨯= 解法三:原式的倒数 1111111111()()24242424434122434123412=-+÷=-+⨯=⨯-⨯+⨯=, 所以,原式= 14(1)上述得到的结果不同,你认为解法___________是错误的;(2)请你选择合适的解法计算;12112()()3031065-÷-+- 22.(1)()()20171811-+----(2)()()3.75 5.18 2.25 5.18+---+(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭23.计算:(1)20(14)(18)13-+---- (2)()125366312⎛⎫-+⨯- ⎪⎝⎭(3)1599416⎛⎫-⨯ ⎪⎝⎭ (4)()221833235⎡⎤⎛⎫-+-⨯--÷ ⎪⎢⎥⎝⎭⎣⎦24.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数4-,点B 表示数5,点M 是点A ,B 的“联盟点”,点M 在A 、B 之间,且表示一个负数,则点M 表示的数为____________;(2)若点A 表示数2-,点B 表示数2,下列各数23-,0,4,6所对应的点分别为1C ,2C ,3C ,4C ,其中是点A ,B 的“联盟点”的是____________;(3)点A 表示数15-,点B 表示数25,P 为数轴上一点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,此时点P 表示的数是____________; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数____________.25.信息1:点A 、B 在数轴上表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =a b -;信息2:数轴是一个非常重要的数学工具,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合上面的信息回答下列问题:已知数轴上点A 、B 两点对应的有理数a ,b ,且a ,b 满足340a b -++=(1)填空:a =, b =,A ,B 之间的距离为;(2)数轴上的动点C 对应的有理数为c .①式子a c b c -+-最小值是,此时c 的取值范围是;②当9a c b c -+-=时,则c =;③式子a c b c d c -+-+-有最小值为9,则有理数d =;④式子12399c c c c 的最小值为.参考答案:1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将55000000用科学记数法表示为5.5×107.故选:B.【点睛】此题考查科学记数法的表示方法.熟练掌握科学记数法的表示形式并正确确定a 及n的值是解题的关键.2.C【分析】根据科学记数法的定义“把一个大于10的数表示成10na⨯的形式(其中a是整数位只有一位的数,即a大于或等于1且小于10,n是正整数),这样的记数方法叫做科学记数法”进行解答即可得.【详解】解:755750000 5.57510=⨯,故选C.【点睛】本题考查了科学记数法,解题的关键是熟记科学记数法的定义.3.C【分析】由题意可知a<b<0,故a、b同号,且|a|>|b|.根据有理数加减法乘除法法则可推断出各式的符号.【详解】解:由题意可知a<b<0,故a、b同号,且|a|>|b|.∴ab>0,a-b=a+|b|<0,ab>0,a+b<0;∴选项A、B、D错误,选项C正确,故选:C.【点睛】此题主要考查了不等式的基本性质和实数和数轴的基本知识点,比较简单.4.C【分析】根据把一个大于10的数记成a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:14.12亿91412000000 1.41210==⨯.故选:C.【点睛】本题主要考查了科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,解题的关键是确定a与n的值.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∴1624a -+=-=, ∴144a =-=,∵56254a =-+⨯=, ∴15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】根据和为零的两个数互为相反数,利用乘积为1的两个数互为倒数计算.【详解】∵2022的相反数是-2022,∴-2022的倒数是12022-, 故选B .【点睛】本题考查了相反数即只有符号不同的两个数,倒数即乘积为1的两个数,熟练掌握定义,灵活计算是解题的关键.7.C【分析】结合图1和图2求出1个单位长度=0.6cm ,再求出求出AB 之间在数轴上的距离,即可求解;【详解】解:由图1可得AC =4-(-5)=9,由图2可得AC =5.4cm ,∴数轴上的一个长度单位对应刻度尺上的长度为=5.4÷9=0.6(cm ),∵AB =1.8cm ,∴AB =1.8÷0.6=3(单位长度),∴在数轴上点B 所对应的数b =-5+3=-2;故选:C【点睛】本题考查了数轴,利用数形结合思想解决问题是本题的关键.8.C【分析】通过阅读自定义运算规则:()lg lg lg M N MN +=,再得到lg101, 再通过提取公因式后逐步进行运算即可得到答案. 【详解】解:()lg lg lg M N MN +=,∴()2lg5lg5lg 2lg 2+⨯+lg5lg5lg2lg2lg5lg10lg 2lg5lg 2=+lg10= 1.=故选C【点睛】本题考查的是自定义运算,理解题意,弄懂自定义的运算法则是解本题的关键.9.D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∴m 和2m +互为相反数,∴m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键.10.B【分析】由图可知,a b c <<,由0a c +=,可得a c =-,0a b c <<<,则0b >,0ab <,0b c -<,进而可判断A ,C ,D 的对错;由0a b a c +<+=,可得a b <-,进而可判断B 的正误.【详解】解:由图可知,a b c <<,∵0a c +=,∴a c =-,∴0a b c <<<,∴0b >,0ab <,0b c -<,∴A ,C ,D 错误;故不符合题意;∵0a b a c +<+=,∴a b <-,∴B 正确,故符合题意;故选:B .【点睛】本题考查了根据点在数轴的位置判断式子的正负.解题的关键在于从数轴上得出0a b c <<<.11.B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,所以5,1,5--这一行最后一个圆圈数字应填3,则a 所在的横着的一行最后一个圈为3,2,1,1--这一行第二个圆圈数字应填4,目前数字就剩下4,3,0,6--,1,5这一行剩下的两个圆圈数字和应为4-,则取4,3,0,6--中的4,0-,2,2-这一行剩下的两个圆圈数字和应为2,则取4,3,0,6--中的4,6-,这两行交汇处是最下面那个圆圈,应填4-,所以1,5这一行第三个圆圈数字应为0,则a 所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a 为3-故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.12.D【分析】根据题意写出数字并总结出变化规律,然后计算即可得到答案.【详解】解:根据题意可知:10210320(1)(2)(1)(2)(3)(1)(2)(3)k k k k k k k k =+-=++=+-++=+-=+-+++-……0(1)(2)(3)...(1)n n k k n =+-+++-++-当n =100时,1000000(1)(2)(3) (100)(12)(34)...(9910015050k k k k k =+-+++-+++=+-++-+++-+=+⨯=+=)∴050k =-故选D .【点睛】本题考查了有理数的加法,掌握相关知识,找到数字的变化规律,同时注意解题中需注意的相关事项是本题的解题关键.13.5-【分析】根据用正负数表示两种具有相反意义的量,如果向东走了5米,记作+5米,那么向西走5米,可记作5-米.【详解】解:∵向东走了5米,记作+5米,∴向西走5米,可记作5-米,故答案为:5-.【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的. 14.83.1610⨯【分析】先确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,写成10n a ⨯的形式即可.【详解】∵316000000=83.1610⨯,故答案为:83.1610⨯.【点睛】本题考查了绝对值大于1的数的科学记数法,确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,确定这两个关键要素是解题的关键. 15.91.3510⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵13.5亿=91.3510⨯,故答案为:91.3510⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.16. 2.5-或4.5【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.17.(1)10;(2)12-;(3)11-;(4)5648【分析】有理数的混合运算法则:先算乘方及乘除,再算加减;同级运算,按从左到右的顺序进行计算;如果有括号,先算括号里面的.【详解】解:(1)()()()915128-+--+-(9)1512(8)612(8)18(8)10=-+++-=++-=+-= (2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 713()()(2)231412=-⨯-⨯⨯-=-(3)2020311|24|(2)3----⨯+- 1(1)6(8)3(1)2(8)(1)(2)(8)11=--⨯+-=--+-=-+-+-=-(4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭ 1326()361818181536185648⎛⎫=-⨯-- ⎪⎝⎭⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭= 【点睛】本题主要考查了有理数的混合运算,熟记运算法则是解题的关键.18.146- 【分析】根据有理数的加减运算法则求解即可. 【详解】解:原式11=3132-+-- 1=46-. 【点睛】本题主要考查了有理数的加减运算,熟知相关计算法则是解题的关键. 19.(1)10月4日,10月7日,3.5(2)2346万元【分析】(1)根据每一天的人数比前一天的变化情况,求出各天的游客人数;(2)求出这7天的总游客人数,即可求出门票总收入.(1)10月1日 2.1 3.2 5.3+=(万人),10月2日 5.30.6 5.9+=(万人),10月3日 5.90.3 6.2+=(万人),10月4日 6.20.7 6.9+=(万人),10月5日 6.9 1.3 5.6-=(万人),10月6日 5.60.2 5.8+=(万人),10月7日 5.82.4 3.4=﹣(万人),游园人数最多的是10月4日,最少的是10月7日;6.9 3.4=3.5-(万人)故答案为:10月4日,10月7日,3.5(2)解:()60 5.3 5.9 6.2 6.9 5.6 5.8 3.4=2346⨯++++++(万元),答:北京故宫的门票总收入2346万元.【点睛】本题考查了正负数的意义,有理数的加减的应用,掌握正负数的意义是解题的关键.20.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误;解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.21.(1)一和三 (2)110-【分析】(1)观察三种解法解答过程可得答案;(2)先求出倒数,再求原式的值.【详解】(1)解:由已知可得,解法一和三是错误的,故答案为:一和三;(2)原式的倒数为21121()()3106530-+-÷- 2112()(30)31065=-+-⨯- 2112(30)(30)(30)(30)31065=⨯--⨯-+⨯--⨯- 203512=-+-+10=-,∴原式1(10)=÷-110=-. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数相关的运算法则和运算律. 22.(1)30-;(2)6;(3)10;(4)5960- 【分析】(1)根据有理数的加减法进行计算即可求解;(2)根据有理数的加减法进行计算即可求解;(3)根据有理数的加减法进行计算即可求解;(4)根据有理数的加减法进行计算即可求解.【详解】解:(1)()()20171811-+----20171811=--+-()20171118=-+++4818=-+30=-:(2)()()3.75 5.18 2.25 5.18+---+3.75 5.18 2.25 5.18=-++3.75 2.25 5.18 5.18=+-+=6;(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1443512365757=-+-+ 1443531265577⎛⎫=--++ ⎪⎝⎭919=-+=10;(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭ 111245222645=+--+ 111245222645=--+++-- 30101524160+--=-+ 1=160-+ 5960=-. 【点睛】本题考查了有理数的加减混合运算,正确的计算是解题的关键.23.(1)29-(2)3 (3)33994- (4)285-【分析】(1)减法转化为加法,再进一步计算即可;(2)利用乘法分配律展开,再进一步计算即可;(3)原式变形为1(100)416=-⨯,再利用乘法分配律展开,再进一步计算即可; (4)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:原式20141813=--+-29=-;(2)解:原式125(36)36366312=⨯-+⨯-⨯ 62415=-+-3=;(3)解:原式1(100)416=-⨯ 14100416=⨯-⨯ 14004=-33994=-; (4)解:原式819(1)54=-+-⨯ 29(1)5=-+- 395=-+ 285=-. 【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.24.(1)-1;(2)C 1或C 4;(3)①5355533--,,;②65;45;105.【分析】(1)先求出AB =9,再根据联盟点的定义求出M 表示的数是2与 -1,最后根据点M 表示一个负数,即可求解;(2)根据题意求得CA 与BC 的关系,得到答案;(3)①分点P 位于点A 左侧、点P 表示的数位于AB 之间,且靠近点A 、点P 表示的数位于AB 之间,且靠近点B 三种情况讨论,即可求解;②分当P 为A 、B 的联盟点、点B 为AP 联盟点且AB =2BP 、点B 为AP 联盟点且PB =2AB 三种情况讨论,即可求解.(1)解:由题意得()=54=9AB --,因为点M 是点A ,B 的“联盟点”,点M 在A 、B 之间, ∴AM =2BM ,或BM =2AM ,所以AM = 229633AB ⨯=⨯=或AM = 119333AB ⨯=⨯=, 所以点M 表示的数是-4+6=2或-4+3=-1,因为点M 表示一个负数,所以点M 表示的数为-1.故答案为:-1;(2)解:由题意得 C 1A =43,C 1B =83,C 1B =2C 1A ,故C 1符合题意; C 2A =C 2B =2,故C 2不符合题意;C 3A =6,C 3B =2,故C 3不符合题意;C 4A =8,C 4B =4,C 4A =2C 4B ,故C 4符合题意.故答案为:C 1或C 4;(3)解;由题意得AB =40.①当点P 位于点A 左侧时,PB =2P A ,所以P A =AB =40,所以点P 表示的数为-15-40=-55;当点P 表示的数位于AB 之间,且靠近点A 时,PB =2P A ,所以P A =14040=33⨯,所以点P 表示的数为40515=33-+-; 当点P 表示的数位于AB 之间,且靠近点B 时,P A =2PB ,所以P A =28040=33⨯,所以点P 表示的数为803515=33-+; 故答案为:5355533--,,; ②当P 为A 、B 的联盟点时,则P A =2PB ,所以AB =PB =40,所以点P 表示的数为25+40=65;当点B 为AP 联盟点且AB =2BP 时,BP =140=202⨯,所以点P 表示的数为2520=45+; 当点B 为AP 联盟点且PB =2AB 时,BP =240=80⨯,所以点P 表示的数为2580=105+; 故答案为:65;45;105.【点睛】本题为新定义问题,难度较大.考查了在数轴上表示有理数,有理数的加减运算等知识,理解“联盟点”的意义,根据题意结合数轴分类讨论是解题关键.25.(1)3;4-;7(2)①7;43c -≤<;②5-或4;③-6或5;④2450【分析】(1)根据绝对值的非负性,求出a 、b 的值,然后根据数轴上两点之间的距离公式,求出A ,B 之间的距离即可;(2)①根据动点C 在A 、B 之间时AC BC +最小,即可确定c 的取值范围;②分两种情况:当4c -<或3c >,分别求出c 的值即可;③根据43d -≤≤时,a c b c d c -+-+-的最小值为7,得出4d -<或3d >,然后分两种情况求出d 的值即可;④根据c 取中间的数50时,12399c c c c 有最小值,求出最小值即可.(1)解:340a b -++=∵,30a ∴-=,40b +=, 3a ∴=,4b =-, ()347AB =--=.故答案为:3;4-;7.(2) 解:①∵点C 在A 、B 之间时AC BC +最小,即a c b c -+-最小,∴43c -≤<时,a c b c -+-的值最小, ∵3a =,4b =-,∴34c c -+--()34c c =-+---⎡⎤⎣⎦ 34c c =-++7=即a c b c -+-的最小值为7.故答案为:7;43c -≤<.②∵当43c -≤<时,7a c b c -+-=,∴4c -<或3c >, 当4c -<时,34349a c b c c c c c -+-=-+--=---=, 解得:5c =-;当3c >时,34349a c b c c c c c -+-=-+--=-++=,解得:4c =;故答案为:5-或4. ③∵当43d -≤≤时,a c b c d c -+-+-的最小值为7,∴4d -<或3d >,当4d -<,4c =-时,a c b c d c -+-+-的值最小, 此时,()()()344449a c b c d c d -+-+-=--+---+--=,即()749d -+=,解得:6d =-;当3d >,3c =时,a c b c d c -+-+-的值最小, 此时,334339a c b c d c d -+-+-=-+--+-=,即739d +-=,解得:5d =;故答案为:-6或5.④∵c 取中间的数50时,12399c c c c 有最小值, ∴12399c c c c 的最小值为: 5015025035099 49484710123474849=+++⋅⋅⋅+++++⋅⋅⋅+++()212349=+++⋅⋅⋅+()1494922+⨯=⨯ 2450=故答案为:2450.【点睛】本题主要考查了数轴上两点间的距离,绝对值的意义,有理数的混合运算,熟练掌握绝对值的意义,是解题的关键.。

第一章 有理数 单元测试卷(含答案) 初中数学人教版(2024)七年级上册

第一章 有理数  单元测试卷(含答案)   初中数学人教版(2024)七年级上册

人教版(2024新教材)七年级(上)单元测试卷第一章《有理数》满分100分时间80分钟题型选择题填空题解答题分值一.选择题(共10小题,满分30分,每小题3分)1.下列数中,属于负数的是( )A.2024B.﹣2024C.D.12.零上5℃记作+5℃,零下3℃可记作( )A.3℃B.﹣3℃C.3D.﹣33.﹣2的相反数是( )A.﹣2B.2C.﹣D.±24.下列四个数中,属于负整数的是( )A.﹣2.5B.﹣3C.0D.65.一名同学画了四条数轴,只有一个正确,你认为正确的是( )A.B.C.D.6.在﹣1,0,3.5,﹣4这四个数中,最大的数是( )A.﹣1B.3.5C.﹣4D.07.下列各式中,等式不成立的是( )A.|﹣2|=2B.﹣|2|=﹣|﹣2|C.|﹣2|=|2|D.﹣|2|=28.如图,点A在数轴上表示的数为1,将点A向左移动4个单位长度得到点B,则点B表示的数为( )A.﹣2B.﹣3C.﹣5D.59.在数轴上,到表示﹣1的点的距离等于6的点表示的数是( )A.5B.﹣7C.5或﹣7D.810.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是( )A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共8小题,满分24分,每小题3分)11.在3,﹣0.01,0,﹣2,+8,,﹣100中,负分数有 个.12.计算:﹣(﹣2024)= .13.比较大小:﹣ ﹣.14.某种零件,标明要求是φ25±0.2mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件 (填“合格”或“不合格”).15.如图,数轴上A,B两点表示的数是互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是 .16.数轴上表示2的点与表示﹣5的点之间的距离为 .17.若|a|+|b﹣2|=0,则a= ,b= .18.一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数个数是 .三.解答题(共6小题,满分46分)19.(8分)把下列各数填在相应的集合内(1)整数集合:{ …};(2)负分数集合:{ …};(3)非负数集合:{ …};(4)有理数集合:{ …}.20.(6分)在一条东西方向的大街上,约定向东前进为正,向西前进为负,某天某出租车自A地出发,到收工时所走路程(单位:千米)分别为:+10,﹣3,+4,+2,﹣8,+13,﹣2,+12,+8,+5.(1)收工时在A地的 面(哪个方向);距A地有 (多远);(2)若每千米耗油0.5升,问从A地出发到收工时共耗油多少升?21.(8分)如图是一个不完整的数轴,(1)请将数轴补充完整,并将下列各数表示在数轴上;(2)将下列各数按从小到大的顺序用“<”号连接起来:﹣3;3.5;;﹣|﹣1|.22.(8分)六一到了,嘉嘉和同学要表演节目.嘉嘉骑车到同学家拿东西,再到学校,她从自己家出发,向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,然后又向西骑了4.5km到达学校.演出结束后又向东骑回到自己家.(1)以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A 表示出淇淇家,用点B表示出小敏家,用点C表示出学校的位置;(2)求淇淇家与学校之间的距离;(3)如果嘉嘉骑车的速度是300m/min,那么嘉嘉骑车一共用了多长时间?23.(8分)(1)如果|a|=5,|b|=2,且a,b异号,求a、b的值.(2)若|a|=5,|b|=1,且a<b,求a,b的值.24.(8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5×5的方格(每个小方格的边长表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点B,C,D,E处的某只羊,规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为A→B(+1,+3),从点B到点A记为B→A(﹣1,﹣3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向的移动情况.(1)填空:从点C到点D记为C→D .(2)若灰太狼从点A处出发去找点E处的喜羊羊,行走路线依次为(+3,+2),(+1,+2),(﹣3,﹣1),(+1,﹣1),请在图中标出喜羊羊的位置点E.(3)在(2)中,若灰太狼每走1米消耗0.5焦耳的能量,则灰太狼寻找喜羊羊的过程共消耗多少焦耳的能量?参考答案一.选择题1.B.2.B.3.B.4.B.5.C.6.B.7.D.8.B.9.C.10.C.二.填空题11.1.12.2024.13.>.14.合格.15.﹣2.16.7.17.0,2.18.120.三.解答题19.(8分)解:(1)整数集合:{﹣8,+5,0,……}.故答案为:﹣8,+5,0;(2)负分数集合:{﹣5.15,,﹣5%,……}.故答案为:﹣5.15,,﹣5%;(3)非负数集合:{+5,0.06,0,π,1.5,……}.故答案为:+5,0.06,0,π,1.5;(4)有理数集合:{﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5,……}.故答案为:﹣8,+5,0.06,﹣5.15,0,,﹣5%,1.5.20.(6分)解:(1)答案为:东;41千米;(2)|+10|+|﹣3|+|+4|+|+2|+|﹣8|+|+13|+|﹣2|+|+12|+|+8|+|+5|=67(千米),67×0.5=33.5(升).答:从A地出发到收工时共耗油33.5升.21.(8分)解:(1),﹣|﹣1|=﹣1,(2)由数轴可得,.22.(8分)解:(1)根据题意得:∵以嘉嘉家为原点,向东为正方向,用1个单位长度表示1km,且向东骑了2km到达淇淇家,继续向东骑了1.5km到达小敏家,则1×2=2,2+1.5=3.5;∴淇淇家的位置对应的数为2,小敏家的位置对应的数为3.5,学校的位置对应的数为﹣1,如图所示:;(2)依题意,2﹣(﹣1)=3(km).答:淇淇家与学校之间的距离是3km.(3)依题意2+1.5+|﹣4.5|+1=9(km),则9km=9000m,∴9000÷300=30(min).答:嘉嘉骑车一共用了30min.23.(8分)解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2,∵a,b异号,∴a=5,b=﹣2,或a=﹣5,b=2;(2)∵|a|=5,|b|=1,∴a=±5,b=±1,∵a<b,∴a=﹣5,b=﹣1,或a=﹣5,b=1.24.(8分)解:(1)故答案为:(+1,﹣2);(2)如图:;(3)(3+2+1+2+3+1+1+1)×0.5×10=70(焦耳),故灰太狼共消耗了70焦耳能量.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学--有理数单元测试卷姓名:__________ 班级:__________考号:__________题号一二三四评分1.大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为()A. 1.6×105B. 1.6×106C. 1.6×107D. 1.6×1082.有四包洗衣粉,每包以标准克数(500克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A. +6B. ﹣7C. ﹣14D. +183.下面各组数中,相等的一组是( )A. 与B. 与C. 与D. 与4.如图所示的图形为四位同学画的数轴,其中正确的是()A. B.C. D.5.若实数a与-3互为相反数,则a的值为()A. B. 0.3 C. -3 D. 36.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A. a•b>0B. a+b<0C. |a|<|b|D. a﹣b>07.如果a=-,b=-2, c=-2 ,那么︱a︱+︱b︱-︱c︱等于()A. -B.C.D.8.下列各式:①a0=1;②a2•a3=a5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x2+x2=2x2,其中正确的是()A. ①②③B. ①③⑤C. ②③④D.②④⑤9.下列算式中,结果是正数的是()A. -[-(-3)]B. -|-(-3)|3C. -(-3)2D. -32×(-2)310.实数,,在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.二、填空题(共10题;共20分)11.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在________℃范围内保存才合适.12.数轴上到原点的距离小于2个单位长度的点中,表示整数的点共有________个.13.若|x+2|+|y﹣3|=0,则x+y=________ ,x y=________.14.一天早晨的气温是﹣5℃,中午上升了10℃,半夜又下降了7℃,则半夜的气温是________℃.15.定义新运算:对于任意实数都有 ,其中等式右边是通常的加法、减法及乘法运算.例如:.那么不等式的解集为________ .16.观察下列各式:,,,…,根据观察计算:=________.(n为正整数)17.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人,350000000用科学记数法表示为________.18.数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是________.19.计算:(3×108)×(4×104)=________(结果用科学记数法表示)20.已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是________三、计算题(共1题;共20分)21.计算:(1)(-12)-5+(-14)-(-39)(2)(3)-22-(4)×(-15)(用简便方法计算)四、解答题(共5题;共50分)22.已知a、b互为相反数,c、d互为倒数,|m|=2,求代数式2m﹣(a+b﹣1)+3cd的值.23.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天航行路程记录如下:14,﹣9,﹣18,﹣7,13,﹣6,10,﹣5(单位:千米).(1)B地在A地何位置?(2)若冲锋舟每千米耗油0.5升,出发前冲锋舟油箱有油29升,求途中需补充多少升油?24.有一次同学聚会,他们的座位号是:小王的座位号与下列一组数中的负数的个数相等,小李的座位号与下列一组数中的正整数的个数相等6,,0,−200,,−5.22,−0.01,+67,,−10,300,−24.(1)试问小王、小李坐的各是第几号位置?(2)若这次同学聚会的人数是小王的座位号的2倍与小李的座位号的4倍的和,请问这次聚会到了多少同学?25.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A,B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A,B的其它字母表示),并写出这些点表示的数.26. 已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。

答案解析部分一、单选题1.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将160万用科学记数法表示为1.6×106.故选B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【考点】正数和负数【解析】【解答】解:|6|<|﹣7|<|﹣14|<|18|,A越接近标准,故选:A.【分析】根据正负数的绝对值越小,越接近标准,可得答案.3.【答案】B【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,乘方的定义【解析】【解答】A、-22=-4,(-2)2=4,-4≠4,故本选项错误;B、(-3)3=-27,-33=-27,故本选项正确;C、-|-2|=-2,-(-2)=2,-2≠2,故本选项错误;D、= ,= ,故本选项错误.故答案为:B.【分析】根据乘方的意义,绝对值的意义,相反数的意义,分别化简,然后再按有理数比大小的方法,比较即可得出结果。

4.【答案】D【考点】数轴【解析】【解答】解:(A)该数轴没有原点,故A错误;(B)该数轴单位长度不一致,故B错误;(C)该数轴没有正方向,故C错误;故选(D)【分析】根据数轴三要素即可判断.5.【答案】D【考点】相反数及有理数的相反数【解析】【分析】相反数的定义:符合不同,绝对值相同的两个数互为相反数。

若实数a与-3互为相反数,则a的值为3,故选D.【点评】本题属于基础应用题,只需学生熟练掌握相反数的定义,即可完成。

6.【答案】D【考点】相反数及有理数的相反数,实数在数轴上的表示,有理数的加法,有理数的减法,有理数的乘法【解析】【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.7.【答案】A【考点】绝对值及有理数的绝对值,有理数的加减混合运算【解析】【解答】︱a︱+︱b︱-︱c︱=【分析】注意先算出绝对值8.【答案】D【考点】有理数的混合运算,同底数幂的乘法,零指数幂,负整数指数幂【解析】【解答】解:①当a=0时不成立,故本小题错误;②符合同底数幂的乘法法则,故本小题正确;③2﹣2=,根据负整数指数幂的定义a﹣p= (a≠0,p为正整数),故本小题错误;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0符合有理数混合运算的法则,故本小题正确;⑤x2+x2=2x2,符合合并同类项的法则,本小题正确.故选D.【分析】分别根据0指数幂、同底数幂的乘法、负整数指数幂、有理数混合运算的法则及合并同类项的法则对各小题进行逐一计算即可.9.【答案】D【考点】绝对值,合并同类项法则和去括号法则,有理数的乘方【解析】【解答】A、-[-(-3)]=-3,结果是负数,不合题意;B、-|-(-3)|3=-27,结果是负数,不合题意;C、-(-3)2 =-9,结果是负数,不合题意;D、-32×(-2)3=-9(-8)=72,结果是正数,符合题意.故答案为D.【分析】本题考查有理数的乘方、相反数等知识. 准确计算,逐项判断即可.10.【答案】B【考点】数轴及有理数在数轴上的表示,有理数的加法,有理数的减法,有理数的乘法【解析】【解答】解:∵,∴,故A不符合题意;数轴上表示的点在表示的点的左侧,故B符合题意;∵,,∴,故C不符合题意;∵,,,∴,故D不符合题意.故答案为:B.【分析】根据数轴上表示的数的特点,右边的数总比左边的大,原点右边的是正数,原点左边的是负数,每个数离开原点的距离就是它的绝对值,以及有理数的加法,减法乘法法则,即可一一判断。

二、填空题11.【答案】18~22【考点】正数和负数【解析】【解答】解:温度是20℃±2℃,表示最低温度是20℃﹣2℃=18℃,最高温度是20℃+2℃=22℃,即18℃~22℃之间是合适温度.故答案为:18℃~22℃.【分析】此题比较简单,根据正数和负数的定义便可解答.12.【答案】5【考点】数轴【解析】【解答】解:数轴上到原点的距离小于2个单位长度的点中,表示整数的点有:﹣2,﹣1,0,1,2,共有5个,故答案为:5.【分析】结合数轴,即可解答.13.【答案】1;-8【考点】绝对值的非负性【解析】【解答】解:由题意得,x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【分析】根据非负数的性质列出算式求出x、y的值,代入代数式计算即可.14.【答案】-2【考点】运用有理数的运算解决简单问题,有理数的加减混合运算【解析】【解答】解:根据题意得:﹣5+10﹣7=﹣2, 则半夜的气温是﹣2℃,故答案为:﹣2 【分析】根据题意由中午上升了10℃,得到﹣5+10;半夜又下降了7℃,得到﹣5+10﹣7. 15.【答案】x>1【考点】解一元一次不等式,定义新运算【解析】【解答】解:∵,∴等式可以化为,解得.故答案为:x>1.16.【答案】【考点】探索数与式的规律【解析】【解答】∵,,, …∴=∴=====【分析】找出规律,简化计算.17.【答案】3.5×108【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:350000000=3.5×108.故答案为3.5×108.【分析】科学记数法的表示形式为a10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350000000有9位,所以可以确定n=9-1=8.18.【答案】0或2或﹣4或﹣6【考点】数轴及有理数在数轴上的表示【解析】【解答】∵A,B两点间的距离是3,点A表示的数是﹣2,∴点B表示的数为1或﹣5,当点B表示的数为1时,B,C两点的距离是1,则点C表示的数为:0或2;当点B表示的数为﹣5时,B,C两点的距离是1,则点C表示的数为:﹣4或﹣6;故答案为:0或2或﹣4或﹣6.【分析】A,B两点间的距离是3,点A表示的数是﹣2,但点B可以在A点的左边,也可以在A点的右边;当点B表示的数为1时,B,C两点的距离是1,但点C可以在B点的左边,也可以在B点的右边,从而得出C点表示的数;当点B表示的数为﹣5时,B,C 两点的距离是1,但点C可以在B点的左边,也可以在B点的右边,从而得出C点表示的数.19.【答案】1.2×1013【考点】同底数幂的乘法,科学记数法—表示绝对值较大的数【解析】【解答】解:(3×108)×(4×104)=3×108×4×104=12×1012=1.2×1013故答案为:1.2×1013. 【分析】科学记数法的标准形式为:.20.【答案】y<a<b<x【考点】有理数大小比较,解一元一次不等式,一元一次不等式的应用【解析】【解答】解:∵x+y=a+b,∴y=a+b﹣x,x=a+b﹣y,把y=a+b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b,2b<2x,b<x①,把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b,2y<2a,y<a②,∵b>a③,∴由①②③得:y<a<b<x,故答案为:y<a<b<x【分析】根据等式的性质,由x+y=a+b,得出y=a+b﹣x,x=a+b﹣y,然后利用整体代换将把y=a+b﹣x 代入y﹣x<a﹣b得出b<x①;把x=a+b﹣y代入y﹣x<a﹣b得出y<a②,又b>a,从而得出答案。

相关文档
最新文档