全波整流电路实验报告

合集下载

华中科技大学电子线路实验报告精密全波整流

华中科技大学电子线路实验报告精密全波整流
六、实验结果及分析
1、实验所用芯片为 LM324,管脚为 1、2、3 与 4、5、6。 输入正弦电压 vi=5V (峰峰值)、f =1kHz ,用示波器观察并 记录 vi、vo1、vo 的波形,vi、vo1 如图 3 所示、vi、vo 如图 4 所示 。
3
图3
图4 2、用示波器 X-Y 方式,观察电压传输特性曲线,如图 5 所示。
-101
370 0.253 102 498
-1520 -1030 488
-500
-999
-5030
447 -0.793
492 1010
471 -0.724
973 4980
550 -0.635 5920
-2550 -2000 968
-10400 -9800 4790
4
V/mv
用 excel 将 V’o1、Vo1、Vo 三者随 Vi 的变化关系绘制如图 6 所示。
图5
3、输入端加正负直流电压,用万用表测量三点电压, 结果如表 1 所示。
表 1 输出电压记录
输入负直流电压
V1/mV
输出电压
V’o1/mV Vo1/mV
Vo/mV
输入正直流电压
V1/mV
输出电压
V’o1/mV Vo1/mV
Vo/mV
-0.300
-246 -3.51 1.51 101
-638 -200 100
-6000
-4000
8000 6000 4000 2000
0 -200-02000 0
-4000 -6000 -8000 -10000 -12000
Vi/mV
2000
4000
6000
V'o1 Vo1 Vo

(完整版)整流滤波电路实验报告

(完整版)整流滤波电路实验报告

整流滤波电路实验报告姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4一、实验目的1、研究半波整流电路、全波桥式整流电路。

2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。

3、整流滤波电路输出脉动电压的峰值。

4、初步掌握示波器显示与测量的技能。

二、实验仪器示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。

三、实验原理1、利用二极管的单向导电作用,可将交流电变为直流电。

常用的二极管整流电路有单相半波整流电路和桥式整流电路等。

2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。

整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。

四、实验步骤1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。

2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。

5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。

改变电阻大小(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω25Ω6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω 25Ω 五、数据处理1、当C 不变时,输出电压与电阻的关系。

输出电压与输入交流电压、纹波电压的关系如下:avg)r m V V V (输+=又有i avg R C V ••=输89.2V )(r 所以当C 一定时,R 越大就越小)(r V avg越大输V2、当R 不变时,输出电压与电容的关系。

由上面的公式可知当R 一定时,C 越大就越小)(r V avg 就越大输V 3、桥式整流的优越性。

1、输出电压波动小。

2、电源利用率高,每个半周期内都有电流经过。

完整版整流滤波电路实验报告

完整版整流滤波电路实验报告

完整版整流滤波电路实验报告一、实验目的1.掌握整流电路和电容滤波器的原理;2.学习整流滤波电路的构成和基本特性,理解滤波器的放大频率、截止频率、衰减频率、阻抗匹配、负载等参数的影响;3.通过实验掌握用示波器测量电源电压和负载电压、电容滤波器工作时的电压波形,以及不同频率下电压波形的变化规律。

二、实验原理1.整流电路在交流电源上连接一个电阻和一个二极管组成的电路,能将交流电转换成直流电,这种电路称为整流电路。

半波整流电路和全波整流电路是最基本的整流电路。

其中,半波整流电路通过一个二极管使正半周电压通过,而负半周电压被截去,只保留正半周脉动电平。

全波整流电路则是通过两个二极管交替的截取来自两个方向的电压脉动,从而得到纯的正弦波。

2.电容滤波器电容滤波器是在整流电路输出直流电后,通过在输出端并联一个电容,使其中的交流分量被短路来达到滤波的目的。

电容滤波器的原理是利用电容器在电路中的充电和放电过程来消除信号中的高频噪声成分,因为当信号的变化频率很高时,电容器的充放电过程较长,其阻抗较低,从而使信号通过电容器时得以短路,而低频信号则可以通过电容器,从而实现滤波的目的。

三、实验器材示波器、直流稳压电源、万用表、电阻、电容、二极管等。

四、实验步骤1.搭建半波整流电路(1)将直流稳压电源的正极接入电路实验板的“+”端,负极接入电路实验板的“-”端。

(2)将一根导线连接实验板的正极输出端口,另一端连接到电阻上,再将电阻另一端连接到一根全向二极管的负极,再将二极管的正极连接“+”端口。

(3)将示波器的地线夹具接入电路实验板上的“-”端,探头夹具接到“+”端口。

2.观察半波整流电路的输出波形并记录数据当电路接通,给直流稳压电源接上交流电源后,打开示波器的电源开关,选择一个适当的时间基和交流电源的频率进行观察,调整电源供应电压,将示波器指针设置在一个适当的位置,记录电压值和电阻的电压值。

4.搭建电容滤波电路(1)在搭建半波整流电路的基础上,将一个电容电器连接在二极管的负极上,另一端连接在接地端口上,即在短路的电阻之间并联一个电容。

整流与滤波电路实验报告

整流与滤波电路实验报告

整流与滤波电路实验报告整流与滤波电路实验报告一、引言整流与滤波电路是电子电路中常用的两种基本电路。

整流电路用于将交流电信号转换为直流电信号,滤波电路则用于去除电路中的噪声和波动,使电路输出更加稳定。

本实验旨在通过实际操作,深入理解整流与滤波电路的原理和应用。

二、实验目的1. 学习整流电路和滤波电路的基本原理;2. 掌握整流电路和滤波电路的实验操作方法;3. 分析整流电路和滤波电路的性能指标。

三、实验器材和仪器1. 电源:直流电源、交流电源;2. 电阻:可变电阻、固定电阻;3. 电容:可变电容、固定电容;4. 示波器;5. 连接线等。

四、实验原理1. 整流电路原理:整流电路用于将交流电信号转换为直流电信号。

常见的整流电路有半波整流电路和全波整流电路。

半波整流电路仅利用正半周或负半周的信号,而全波整流电路则同时利用正负半周的信号。

2. 滤波电路原理:滤波电路用于去除电路中的噪声和波动,使电路输出更加稳定。

常见的滤波电路有低通滤波电路和高通滤波电路。

低通滤波电路能够通过低频信号,而阻断高频信号;高通滤波电路则相反。

五、实验步骤1. 搭建半波整流电路:将交流电源连接到二极管的正端,将负端接地。

连接一个负载电阻,并通过示波器观察输出波形。

2. 搭建全波整流电路:将交流电源连接到两个二极管的正端,将负端接地。

连接一个负载电阻,并通过示波器观察输出波形。

3. 搭建低通滤波电路:将交流电源连接到一个电容的正极,将负极接地。

连接一个负载电阻,并通过示波器观察输出波形。

4. 搭建高通滤波电路:将交流电源连接到一个电容的负极,将正极接地。

连接一个负载电阻,并通过示波器观察输出波形。

六、实验结果与分析1. 半波整流电路:观察示波器上的波形,可以发现输出信号仅包含正半周的波形。

这是因为二极管在正向导通时,电流可以流过,而在反向截止时,电流无法通过。

2. 全波整流电路:观察示波器上的波形,可以发现输出信号包含正负半周的波形。

整流滤波电路实验报告

整流滤波电路实验报告

整流滤波电路实验报告整流滤波电路实验报告一、引言整流滤波电路是电子工程中常用的一种电路,用于将交流电信号转换为直流电信号,并通过滤波电路去除交流信号中的纹波。

本实验旨在通过搭建整流滤波电路,了解其原理和特性,并通过实验数据进行分析和验证。

二、实验装置和原理本实验所用的实验装置包括电源、变压器、二极管、电容器、电阻器和示波器。

实验中,交流电源通过变压器降压,并接入整流电路。

整流电路由二极管和电容器组成,二极管起到整流作用,将交流信号转换为半波或全波直流信号,而电容器则用于滤波,去除纹波。

三、实验步骤和数据记录1. 按照实验电路图搭建整流滤波电路,注意连接的正确性。

2. 打开电源,调节电源输出电压为适当值,例如10V。

3. 使用示波器测量电路输入和输出的电压波形,并记录数据。

4. 调节电源输出电压,分别记录不同电压下的输入和输出波形数据。

四、实验数据分析通过实验记录的数据,我们可以进行以下分析:1. 输入电压和输出电压的关系:根据实验数据,我们可以得到输入电压和输出电压的关系曲线。

一般情况下,输出电压随着输入电压的增加而增加,但在一定范围内,输出电压会趋于稳定。

这是因为当输入电压过大时,电容器已经无法完全充电,无法继续提高输出电压。

2. 纹波电压的大小:纹波电压是指在整流滤波电路输出的直流电压中所包含的交流成分。

通过示波器测量输出电压波形,我们可以计算得到纹波电压的大小。

纹波电压的大小与电容器的滤波能力有关,一般情况下,电容器越大,滤波效果越好,纹波电压越小。

3. 输出电压的稳定性:通过观察输出电压波形,我们可以判断整流滤波电路的稳定性。

如果输出电压的波形较为平稳,没有明显的波动和纹波,则说明整流滤波电路的稳定性较好。

五、实验结论通过本次实验,我们对整流滤波电路的原理和特性有了更深入的了解。

实验数据分析表明,输入电压和输出电压呈正相关关系,但在一定范围内输出电压趋于稳定。

此外,电容器的大小对纹波电压的大小有影响,电容器越大,滤波效果越好。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。

通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。

本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。

一、整流电路实验整流电路是电力电子技术中最基本的电路之一。

通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。

在实验中,我们使用了半波和全波整流电路进行测试。

半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。

实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。

实验结果显示,输出电压为正半周的峰值。

全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。

实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。

实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。

二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。

通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。

在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。

单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。

实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。

实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。

三相逆变电路是现代电力系统中常用的逆变电路。

它通过三个开关管和三个滤波电感将直流电转换为三相交流电。

实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。

实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。

三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。

通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。

整流、滤波、稳压电路

整流、滤波、稳压电路

实验六整流、滤波、稳压电路一、实验目的1.掌握桥式整流的特点。

2.了解稳压电路的组成和稳压作用。

3.熟悉集成三端可调稳压器的使用。

二、实验属性验证性实验三、实验仪器设备及器材1.试验台2.示波器3.数字万用表四、预习要求1.二极管全波整流的工作原理及整流输出波形。

2.整流电路分别接电容、稳压管时的工作原理及输出波形。

3.熟悉集成三端可调稳压器的工作原理。

五、实验内容与步骤首先校准示波器1.桥式整流:按图 8-1 接线,在输入端接入交流 14V 电压,调节 W2 使 I0= 50mA时,测出 Vo,同时用示波器的 DC 档观察输出波形并记入表 8-1 中。

表8-1图8-1 仿真参考电路2.加电容滤波:上述实验电路不动,在桥式整流后面加电容滤波,如图8-2 接线,测量接电容的情况下输入电压V0 及输出电流I0 ,同时用示波器的DC 档观察输出波形并记入表8-2 中。

表8-2图8-2 仿真参考电路3.加稳压二极管上述电路不动,在电容后面加稳压二极管电路,如图8-3 接线,在接通交流14V 电源后,调整W2 使I0 分别为10mA、15mA、20 mA 时,测出V AO 和V0,并用示波器的DC 档观测波形,记入表8-3 中。

、表8-3图8-3仿真参考电路当I0=10mA时当I0=15mA时当I0=20mA时六、实验报告1.总结桥式整流的特点。

答:脉动较小,使用的整流器件较全波整流时多一倍,整流电压脉动与全波整流相同,每个器件所承受的反向电压为电源电压峰复值。

2.说明滤波电容 C 的作用。

C有关答:滤波。

输出电压的脉动程度与平均值与放电时间常数RL3.总结稳压二极管的稳压作用和可调三端稳压器的稳压作用。

答:稳压二极管:稳定电压,稳压值是固定的,并联在电路上,功率较小,主要用在电路中稳定某一点的工作电压,多应用在控制电路,在击穿情况下才起控制作用的。

可调三端稳压器:稳定电压,稳压值是可调,串联在电路上,功率较大,主要用在为整个或部分电路提供稳定或可调的供电电源,多用在供电电路,不能击穿。

电子电路与系统基础实验报告:全波整流电路和验证叠加定理

电子电路与系统基础实验报告:全波整流电路和验证叠加定理

电路仿真实验报告题目一:题目要求搭建一个全波整流电路,并给出了并给出了单端接地转双端悬浮的电压源模型,搭建实验电路如下:搭建完成后,将原理图保存,新建仿真用的文件;其中仿真用的电路图如下:进行电路仿真时,设置为瞬态仿真;仿真结果如下截图:仿真时遇到问题:①电路仿真时,在原理图中刚开始由于未将两个输入端口重命名,两个输入端口都是PORTRIGHT-R,导致在导入仿真图中时总是只有一个输入端口,仿真无法进行。

②仿真时,刚开始设置的仿真时间太长了,为1s,最大步长设置的太小了为100ns,仿真进行时间很长,得到的曲线也很杂乱。

经多次调整才符合要求。

文件在文件夹ZHENGLIU中题目二:题目要求验证叠加定理,应在不同的源激励下仿真三次:实验用的完整仿真原理图为:仿真用的文件图:由于电源已加在原理图的电路中,故仿真图没有输入与输出端口;在不同源激励下进行三次仿真,仿真结果为:仅在VS1激励下:仅在VS2激励下:在VS1和VS2共同激励下:验证:在VS1单独激励下:I S11=3.462mA在VS2单独激励下:I S12=230.8μA−461.5μA=−230.7μA 在VS1和VS2共同作用下:I S1=3.231mA而I S11+I S12=3.2313mA与共同作用时的电流基本一致,叠加定理成立。

在VS1单独激励下:I S21=−96.15μA在VS2单独激励下:I S22=1.923mA在VS1和VS2共同作用下:I S2=1.827mA而I S21+I S22=1,82685mA与共同作用时的电流基本一致,叠加定理成立。

有仿真结果已知I R7=346.2μA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全波整流电路实验报告
全波整流电路实验报告
引言:
全波整流电路是一种常见的电子电路,用于将交流电转换为直流电。

在本次实验中,我们将通过搭建全波整流电路并进行实验,来深入了解其工作原理和性能特点。

一、实验目的
本次实验的主要目的是:
1. 理解全波整流电路的基本原理;
2. 掌握搭建全波整流电路的方法;
3. 通过实验测量,了解全波整流电路的性能特点。

二、实验原理
全波整流电路主要由变压器、二极管桥、负载电阻等组成。

其工作原理如下:
1. 变压器:将输入的交流电转换为适合整流的电压;
2. 二极管桥:由四个二极管组成,将输入的交流电转换为单向的直流电;
3. 负载电阻:连接在二极管桥的输出端,用于消耗电流。

三、实验材料与设备
本次实验所需材料与设备如下:
1. 1个变压器;
2. 4个二极管;
3. 1个负载电阻;
4. 电压表、电流表等测量仪器;
5. 连接线等实验用具。

四、实验步骤
1. 搭建电路:根据实验原理,按照电路图搭建全波整流电路;
2. 接通电源:将变压器的输入端接入交流电源,输出端接入电路;
3. 测量电压:使用电压表分别测量变压器的输入端和输出端的电压,并记录数据;
4. 测量电流:使用电流表测量负载电阻上的电流,并记录数据;
5. 观察波形:使用示波器观察输入端和输出端的电压波形,并记录观察结果;
6. 分析数据:根据测量数据和波形观察结果,分析全波整流电路的性能特点。

五、实验结果与分析
根据实验测量数据和波形观察结果,我们得到以下结论:
1. 变压器的输出电压较大,适合用于整流电路;
2. 在负载电阻上,电流呈现周期性的正脉冲,表明电流方向已经被正确整流;
3. 输出端的电压波形经过整流后,变为单向的直流电;
4. 全波整流电路具有较高的效率和较好的稳定性。

六、实验总结
通过本次实验,我们深入了解了全波整流电路的工作原理和性能特点。

同时,
我们也掌握了搭建全波整流电路的方法,并通过实验测量和观察,验证了理论
分析的正确性。

全波整流电路作为一种常见的电子电路,具有广泛的应用前景,对于电力供应、电子设备等领域都有重要的意义。

七、改进意见
在实验过程中,我们发现一些可以改进的地方:
1. 可以尝试使用不同规格的二极管,比较它们对全波整流电路性能的影响;
2. 可以进一步研究全波整流电路的效率和稳定性,探索如何提高其性能;
3. 可以结合其他电子电路,设计更复杂的电路系统,进一步拓展实验研究的范围。

总之,本次实验对于我们深入了解全波整流电路的工作原理和性能特点具有重要意义。

通过实验,我们不仅掌握了搭建全波整流电路的方法,还通过测量和观察验证了理论分析的正确性。

希望通过今后的学习和实践,我们能够进一步拓展对电子电路的认识,并将其应用于实际工程中。

相关文档
最新文档