实验2 离心泵性能特性曲线测定实验

合集下载

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告离心泵特性曲线的测定实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产、农业灌溉和城市供水等领域。

了解离心泵的特性曲线对于正确选择和使用离心泵至关重要。

本实验旨在通过测定离心泵的特性曲线,分析其性能参数,为离心泵的应用提供参考。

一、实验目的1. 了解离心泵的基本原理和工作特性;2. 掌握离心泵特性曲线的测定方法;3. 分析离心泵的性能参数,如扬程、流量和效率等。

二、实验原理离心泵是利用离心力将液体从低压区域输送到高压区域的装置。

其工作原理是通过转子的旋转产生离心力,使液体在离心力的作用下产生压力,从而实现液体的输送。

离心泵的特性曲线是描述离心泵在不同工况下流量、扬程和效率之间关系的曲线。

三、实验仪器和材料1. 离心泵实验装置;2. 流量计;3. 压力计;4. 温度计。

四、实验步骤1. 连接实验装置:将离心泵与流量计、压力计和温度计等仪器连接好,确保密封良好;2. 开始实验:首先调整离心泵的转速,使其达到设定值。

然后逐渐调整流量计的开度,记录不同流量下的压力和温度数据;3. 测定数据:根据实验装置的读数,得到不同流量下的扬程、压力和温度数据;4. 绘制特性曲线:根据测得的数据,绘制离心泵的特性曲线,包括流量-扬程曲线和效率-流量曲线;5. 分析结果:根据特性曲线,计算出离心泵的最大流量、最大扬程和最佳效率点。

五、实验结果和分析根据实验数据绘制的特性曲线显示了离心泵在不同工况下的性能表现。

根据流量-扬程曲线,我们可以得到离心泵的最大流量和最大扬程。

最大流量是指离心泵能够输送的最大液体流量,而最大扬程是指离心泵能够提供的最大扬程高度。

根据效率-流量曲线,我们可以得到离心泵的最佳效率点。

最佳效率点是指离心泵在该点下的效率最高,能够以最小的能量损失输送液体。

通过分析特性曲线,可以选择合适的工况来提高离心泵的效率和使用寿命。

六、结论通过实验测定离心泵的特性曲线,我们可以得到离心泵在不同工况下的性能参数。

离心泵特性曲线测定实验

离心泵特性曲线测定实验

离心泵特性曲线测定实验一、实验目的1. 熟悉离心泵的结构、性能、操作和调节方法,掌握离心泵的工作原理。

2. 掌握离心泵特性曲线的测定方法。

测定单级离心泵在恒定转速下的特性曲线,绘制H e-q V、N a-q V、η-q V曲线,分析离心泵的额定工作点。

3. 掌握离心泵流量调节的方法。

4. 掌握离心泵特性曲线的影响因素。

5. 了解常用的测压仪表。

二、实验原理离心泵是一种液体输送机械,主要构件为旋转的叶轮、固定的泵壳和轴封装置。

离心泵泵体内的叶轮固定在泵轴上,叶轮上有若干弯曲的叶片,泵轴在外力带动下旋转,叶轮同时旋转,泵壳中央的吸入口与吸入管路相连接,侧旁的排出口和排出管路相连接。

启动前,须灌液排出泵壳内的气体,防止出现气缚现象。

启动电机后,泵轴带动叶轮一起高速旋转,充满叶片之间的液体也随着旋转,在惯性离心力的作用下液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时也增大了动能。

液体离开叶轮进入壳体,部分动能变成静压能,进一步提高了静压能。

流体获得能量的多少,不仅取决于离心泵的结构和转速,而且和流体的密度有关。

当离心泵内存在空气,空气的密度远比液体小,相应获得的能量不足以形成所需的压强差,液体无法输送,该现象称为“气缚”。

为了保证离心泵的正常操作,在启动前必须在离心泵和吸入管路内充满液体,并确保运转过程中尽量不使空气漏入。

离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H e、轴功率P a及效率η与液体流量q V之间的关系曲线,如图6-10所示,它是流体在泵内流动规律的宏观表现形式。

离心泵的特性曲线与离心泵的设计、加工情况有关,而泵内部流动情况复杂,难以用数学方法计算,只能依靠实验测定。

图6-10 离心泵的特性曲线1. 流量的测定本实验用涡轮流量计测量液体的流量。

测量时,从仪表显示仪上读取的数据是涡轮的频率f ,液体的体积流量为:(6-20) 式中:f 为涡轮流量计的脉冲频率,Hz ;C 为涡轮流量计的流量系数,脉冲数/升。

实验二 离心泵特性曲线测定

实验二 离心泵特性曲线测定

长江大学化工原理实验报告实验名称:离心泵特性曲线测定学院:化学与环境工程学院专业:环境工程班级:环工10902班姓名:闵红博学号:200903183 序号:17 指导教师:侯明波日期:2012年3月实验二 离心泵特性曲线测定一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法。

二、实验内容1.练习离心泵操作;2.了解通过压力传感器的工作原理; 3.了解离心泵流量的自动控制和调节4.练习通过计算机用一元多项式回归方法,求特征曲线。

三、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:fh gu g p z H g u g p z ∑+++=+++2222222111ρρ(1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1212)-+-210(H H H ++=表值)(2)由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N 的测量与计算k N N ⨯=电(W )(3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算:g HQ Ne ρ=(4)故泵效率为 %100⨯=N gHQ ρη(5)4.转速改变时的换算泵的特性曲线是在定转速下的实验测定所得。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告
马达—天平测功仪测定轴功率P计算公式为:
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。

离心泵特性曲线测定实验

离心泵特性曲线测定实验
实验准备。 启动泵。 调节流量。 读取数据。 要求:测定6-8组数据,最大和最小流量一定要进行测
定。 思考:管路特性曲线如何测定?
五、数据记录和处理
液体温度: 液体密度: 泵进出口高0.18m
仪表常数K:77.902次/L 电机频率: 电机效率:60%
qV
360f0m3 100K0
/h
离心泵特性曲线测定实验
ቤተ መጻሕፍቲ ባይዱ
一、实验目的
1)熟悉离心泵的结构、特性和操作,掌握其工作原 理,了解常用的测压仪表。
2)掌握离心泵特性曲线的测定方法,测定离心泵在 一定转速下的特性曲线。
3)掌握用作图法处理实验数据的方法。
二、基本原理
离心泵的主要性能参数:
泵的流量、压头、轴功率、效率和气蚀余量。 离心泵的特性曲线:
Hp2gp116 0h0u2 22gu12
轴功 N电 率机 N 电 功 电率 机 电 效
HV q10% 0gHVq10% 0
10N 2
N
qV m3/s
要求: 数据记录在表格里,表头标明符号与单位。数
据表格手写。 数据处理要有一组计算示例。 在坐标纸上绘图,或利用相关软件绘图。注明
坐标轴名称,要有数据点。 对实验结果进行讨论分析。
离心泵的H、η 、 P都与离心泵的qV有关
H~ qV 、η~ qV 、 P~ qV
注意:特性曲线随转速而变。 各种型号的离心泵都有本身独自的特性曲线,
但形状基本相似,具有共同的特点 。
1)H~ qV曲线:表示泵的压头与流量的关系,离心泵的压头 普遍是随流量的增大而下降(流量很小时可能有例外)。 2)P~ qV曲线:表示泵的轴功率与流量的关系,离心泵的轴 功率随流量的增加而上升,流量为零时轴功率最小。

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

实验二 离心泵特性曲线的测定一、实验目的1、熟悉离心泵的操作,了解离心泵的结构和特性;2、测定一定转速下的离心泵特性曲线;3、测定不同转速下的管路特性曲线。

二、实验原理1、离心泵的特性曲线离心泵是最常用的一种液体输送设备。

它的主要特性参数包括流量Q 、扬程H 、轴功率N 及效率η。

在一定的转速下,H 、N 及η均随实际流量Q 的变化而变化。

通过实验测定出H ~Q 、N ~Q 及η~Q 之间的关系,并以曲线表示之,即为泵的特性曲线。

特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。

测定泵特性曲线的具体方法为:测得不同流量下泵的入口真空度和出口压强,在泵的吸入口和压出口之间列柏努利方程()出入入出入出入出出入入出出入入入--+-+-+-=+++=+++f f H gu ugP P Z Z H H g u g P Z H g u g P Z 2222222ρρρ上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:()gu u gP P Z Z H 222入出入出入出-+-+-=ρ 将测得的()入出Z Z -和入出P P -的值以及计算所得的出入u u ,代入上式即可求得H 的值。

功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。

即:泵的轴功率N=电动机的输出功率,KW电动机的输出功率=电动机的输入功率×电动机的效率。

泵的轴功率=功率表的读数×电动机效率,KW 。

η的测定:KWHQ g HQ Ne N Ne 1021000ρρη===式中:η—泵的效率; N —泵的轴功率,KW Ne —泵的有效功率KW H —泵的有效功率,KWQ —泵的流量,m 3/sρ—水的密度,kg/m 32、管路特性曲线当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关。

离心泵特性曲线测定实验

离心泵特性曲线测定实验

实验二 离心泵特性曲线测定实验1.实验目的(1)了解离心泵结构与特性,熟悉离心泵的使用; (2)测定离心泵的特性曲线;(3)了解电动调节阀的工作原理和使用方法。

2.基本原理离心泵特性曲线包括H ~Q 、N ~Q 、η~Q 曲线。

(1)流量Q (m 3/h )本装置采用涡轮流量计测定。

(2)扬程(压头)H (m )分别取离心泵进口真空表和出口压力表处为1、2截面,列柏努利方程得:fH g ug p z H g u g p z +++=+++2222222111ρρ因两截面间的管长很短,通常可忽略阻力损失项H f ,流速的平方差也很小故可忽略,则:g p p z z H ρ1212)(-+-=式中 ρ:流体密度,kg/m 3 ;p 1、p 2:分别为泵进、出口的压强,Pa ; u 1、u 2:分别为泵进、出口的流速,m/s ;z 1、z 2:分别为真空表、压力表的安装高度,m 。

由上式可知,由真空表和压力表上的读数及两表的安装高度差,就可算出泵的扬程。

(3)轴功率N (W )电电η⨯=N N其中,N 电为功率表显示值(电机功率),电η代表电机效率,可取95.0=电η。

(4)效率η(%)泵的效率η是泵的有效功率与轴功率的比值。

反映泵的水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算:g HQ Ne ρ=故泵的效率为 %100⨯=N gHQ ρη(5)泵转速改变时的换算泵的特性曲线是在定转速下的实验测定所得。

但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n ' 下(可取离心泵的额定转速)的数据。

换算关系如下:流量n n QQ '='扬程2)(n n H H '='轴功率3)(nnNN'='效率ηρρη==''='NgQHNgHQ'3.实验装置与流程实验装置流程(本装置为流体流动阻力与离心泵性能综合实验装置,做离心泵性能实验时将仪控柜上“实验选择”转到“泵特性”位置。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告离心泵特性曲线测定实验是一种真实模拟性强的实验,了解离心泵在供压、流量、叶轮拖曳功率和效率范围内的、水轮机各种工况下的性能特性曲线。

为保证离心泵特性曲线测定实验结果准确,需要经过调试的充分准备、仪器准备、设备的管道接口准备、特性测试夹具的使用准备、实验参数设定、试验保护措施的采取等一系列操作。

实验开始前要进行调试,主要是调整控制参数,使得离心泵状态正常,这样才能得出准确的特性曲线。

调试程序主要包括检查叶轮、叶轮壳之间的压力:调节叶轮的截面,控制水振、水紊流等状况;核查叶轮出口后的状态:检查叶轮运动状况、防止空载及轮转频率等。

实验的实施,主要有仪器的准备、设备的管道接口准备、特性测试夹具的使用准备、实验参数设定、试验保护措施的采取等。

其中仪表准备主要是按照特性曲线测试实验要求,实验所需仪器设备,准备压力表、流量表、热表等测量仪器。

设备的管道接口采用管道压力表、流量表、热表在泵常规排管交叉口处,或者采用现场接口。

特性测试夹具用于测量叶轮拖曳功率、效率。

试验参数一般为:供水压力、流量和水轮机的轮转频率。

实验中还要根据实际情况,准备消防器材,控制实验过程中发生的火灾,以保障安全。

最后,完成数据的采集测试,以找出最优的状态,根据测试数据,画出离心泵的全特性曲线和部分特性曲线,以及用于评价离心泵性能的水轮机各种工况下的叶轮拖曳功率、效率、熵生成率曲线,对比画出叶轮当量曲线。

曲线需要画出来,以便进行实验结果的分析。

通过实验数据的分析,得出离心泵的性能特性等,以评价其工作状况是否合理,并且可以为离心泵的调整和改进提供依据。

总之,经过调试及数据测试,可以得出实验准确的离心泵特性曲线,为离心泵的正确运行提供可靠的参考依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2离心泵性能特性曲线测定实验 1.
2.1实验目的
1).了解离心泵结构与特性,学会离心泵的操作。

2).测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

3).测定改变转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

4).测定串联、并联条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(V)之间的曲线关系。

5).掌握离心泵流量调节的方法(阀门、转速和泵组合方式)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。

6).学会轴功率的两种测量方法:马达天平法和扭矩法。

7).了解电动调节阀、压力传感器和变频器的工作原理和使用方法。

8).学会化工原理实验软件库(组态软件MCGS 和VB 实验数据处理软件系统)的使用。

1.2.2基本原理
离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H 、轴功率N 及效率η与流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。

由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。

1 ) 流量V 的测定与计算
采用涡轮流量计测量流量,智能流量积算仪显示流量值V m 3/h 。

2) 扬程H 的测定与计算
在泵进、出口取截面列柏努利方程:
g
u u Z Z g p p H 22122121
2-+
-+-=ρ (1—9) p 1,p 2:分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3
u 1,u 2:分别为泵进、出口的流量m/s g :重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: g
p p H ρ1
2-=
(1—10)
由式(1-10)可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。

本实验中,还采用压力传感器来测量泵进口、出口的真空度和压力,由16路巡检仪显示真空度和压力值。

3) 轴功率N 的测量与计算 轴功率可按下式计算:
N=M ω=M 60
281.9602n
PL n ππ..
= (1—11)
式中,N—泵的轴功率,W
M—泵的转矩,N.m
ω—泵的旋转角速度,1/s
n—泵的转速,r/min
P—测功臂上所加砝码的质量,Kg
L—测功臂长,m; L=0.4867m(马达天平法);L’=0.3867m(扭矩法)
由式(3—11)可知:要测定泵的轴功率,需要同时测定泵轴的转矩M和转速n,泵轴的转矩采用马达天平法或扭矩法测量,泵轴的转速由XJP-20A数值式转速表直接读出。

4)效率η的计算
泵的效率η为泵的有效功率Ne与轴功率N的比值。

有效功率Ne是流体单位时间内自泵得到的功,轴功率N是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne可用下式计算:
Ne=HVρg (1—12)
故η=Ne/N=HVρg/N (1—13)
5)转速改变时的换算
泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。

但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。

换算关系如下:

⎪⎪⎪⎭⎪⎪⎪
⎪⎬⎫
=='''=''=''=''='ηρρηN g
VH N g H V n
n H H n
n H H n
n V
V 效率轴功率扬程流量2
2)
()
( (1—14)
此外,本实验装置安装了变频器,以改变离心泵的转速,实现测定变转速时离心泵的性能特性曲线的目的。

本实验装置还设计安装了用于两台离心泵的串联和并联操作的阀门,以实现离心泵的串联和并联操作。

1.2.3实验装置流程图
离心泵性能特性曲线测定系统装置工艺控制流程图和离心泵性能特性曲线测定实验仪控柜面板图如图1-2和图1-3所示:
图1-2 离心泵性能特性曲线测定系统装置工艺控制流程图
图1-3离心泵性能特性曲线测定实验仪控柜面板图
1.2.4实验步骤及注意事项
1.实验步骤:
1)仪表上电:打开总电源开关,打开仪表电源开关;打开三相空气开关,把离心泵电源转换开关旋到直接位置,即为由电源直接启动,这时离心泵停止按钮灯亮。

2)打开离心泵出口阀门,打开离心泵灌水阀,对水泵进行灌水,注意在打开灌水阀时
要慢慢打开,不要开的太大,否则会损坏真空表的。

灌好水后关闭泵的出口阀与灌水阀门。

3)检查扭矩传感器的挂绳有没有脱离水泵(如没有脱离,一定要让挂绳脱离水泵否则
会拉坏扭矩传感器的。


4)实验软件的开启:打开“离心泵性能特性曲线测定实验.MCG”组态文件,出现提示
输入工程密码对话框,输入密码1121后,进入组态环境,按“F5”键进入软件运行环境。

按提示输入班级、姓名、学号、装置号后按“确定”进入“离心泵性能特性测定实验软件”界面,点击“恒定转速下的离心泵性能特性曲线测定”按钮,进入实验界面。

5)当一切准备就绪后,按下离心泵启动按钮,启动离心泵,这时离心泵启动按钮绿灯
亮。

启动离心泵后把出水阀开到最大,开始进行离心泵实验。

6)流量调节:(1)手动调节:通过泵出口闸阀调节流量;(2)自动调节:通过图1-3
所示仪控柜面板中流量自动调节仪表来调节电动调节阀的开度,以实现流量的手自
动控制:①仪表手动调节:在仪表面板上进行,按照万迅仪表说明书第20页的操作方式将仪表调到手动操作模式,按上下键(^、v)进行调节,输出信号的增大或减小来控制调节阀开度的增大或减小,达到调节流量的目的;②仪表自动调节:在“恒定转速下的离心泵性能特性曲线测定”实验界面中,单击手动调节中按钮,则进入自动调节状态,直接单击设定输出按钮,输入调节阀开度值即可自动由调节阀控制流量。

7)手动调节实验方法:调节出口闸阀开度,使阀门全开。

等流量稳定时,在马达天平
上添加砝码使平衡臂与准星对准读取砝码重量p。

在仪表台上读出电机转速n,流量v,水温t,真空表读数p1和出口压力表读数p2并记录;关小阀门减小流量,重复以上操作,测得另一流量下对应的各个数据,一般重复8~9个点为宜。

8)自动调节实验做法:关闭流量手动调节阀门,打开电动调节阀前面的阀门,打开电
动调节阀电源开关,给电动调节阀上电;流量自动调节仪的使用:①仪表手动调节:在仪表手动状态下按向上键(^)增大输出到最大,使调节阀开到最大。

然后等流量稳定时,把扭矩传感器的挂钩挂在电机力臂上,旋转下面的圆盘,使平衡臂对准准星。

等数据稳定后,按下软件的“数据采集”按钮采集数据。

采集完数据,把扭矩传感器的挂钩御下。

用向下键(v)减小流量,在不同流量下分别按下“数据采集”按钮采集数据;②仪表自动调节:在软件界面中单击“手动调节中”按钮,则进入自动调节状态(“自动调节中”),单击“设置输出”按钮,输入100,把调节阀开到最大。

等流量稳定后,把扭矩传感器的挂钩挂在电机平衡臂上,旋转下面的圆盘,使平衡臂对准准星。

等数据稳定后,按下软件的“数据采集”按钮采集数据。

采集完数据,把扭矩传感器的挂钩取下。

改变设置输出的大小,改变不同的流量,采集不同流量下的数据。

9)实验完毕,一定先把扭矩传感器的挂钩取下,让挂钩与力臂脱离,按下仪表台上的
水泵停止按钮,停止水泵的运转。

关闭水泵出口阀。

单击“退出实验”。

回到“离心泵性能特性测定实验软件”界面,再单击“退出实验”按钮退出实验系统。

10)如果要改变离心泵的转速,测定另一转速下的性能特性曲线,则可以用变频器来调
节离心泵的转速,变频器的使用方法见4.10.2,其余步骤同前步骤2-9。

11)如果要测定离心泵的串联或并联的组合性能特性曲线,则可以通过管路上的阀门把
两台泵组合为串联或并联,其余步骤同前2-9。

12)关闭以前打开的所有设备电源。

2.注意事项
1)实验开始时,灌泵用的进水阀门开度要小,以防进水压力过大损坏真空表。

2)在实验开始时扭矩传感仪钩子要取下,在测数据时再装上,每测量一组数据后立刻取下,当测下一组数据时再装上。

1.2.5实验报告
1)在同一张坐标纸上描绘一定转速下的H~V、N~V、η~V曲线
2)分析实验结果,判断泵较为适宜的工作范围。

1.2.6思考题
1) 试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?
2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么?
3) 为什么用泵的出口阀门调节流量?这种方法有什么优缺点?十分还有其他方法调节流量?
4) 泵启动后,出口阀如果打不开,压力表读数是否会逐渐上升?为什么?
5) 正常工作的离心泵,在其进口管路上安装阀门是否合理?为什么?
6) 试分析,用清水泵输送密度为1200kg/m3的盐水(忽略密度的影响),在相同流量下你认为泵的压力是否变化?轴功率是否变化?
1.2.7实验数据记录及数据处理结果示例
原始数据记录
装置号:1# 水温:15.0℃
图形
计算结果:。

相关文档
最新文档