异方差习题及自相关1

合集下载

异方差、自相关检验及修正

异方差、自相关检验及修正

异方差、自相关的检验与修正实验目的:通过对模型的检验掌握异方差性问题和自相关问题的检验方法及修正的原理,以及相关的Eviews 操作方法。

模型设定:εβββ+++=23121i i i X X YYi----人均消费支出X1--从事农业经营的纯收入X2--其他来源的纯收入 中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元 城市 y x1 x2 城市 y x1 x2 北京 5724.5 958.3 7317.2 湖北 2732.5 1934.6 1484.8 天津 3341.1 1738.9 4489 湖南 3013.3 1342.6 2047 河北 2495.3 1607.1 2194.7 广东 3886 1313.9 3765.9 山西 2253.3 1188.2 1992.7 广西 2413.9 1596.9 1173.6 内蒙古 2772 2560.8 781.1 海南 2232.2 2213.2 1042.3 辽宁 3066.9 2026.1 2064.3 重庆 2205.2 1234.1 1639.7 吉林 2700.7 2623.2 1017.9 四川 2395 1405 1597.4 黑龙江 2618.2 2622.9 929.5 贵州 1627.1 961.4 1023.2 上海 8006 532 8606.7 云南 2195.6 1570.3 680.2 江苏 4135.2 1497.9 4315.3 西藏 2002.2 1399.1 1035.9 浙江 6057.2 1403.1 5931.7 陕西 2181 1070.4 1189.8 安徽 2420.9 1472.8 1496.3 甘肃 1855.5 1167.9 966.2 福建 3591.4 1691.4 3143.4 青海 2179 1274.3 1084.1 江西 2676.6 1609.2 1850.3 宁夏 2247 1535.7 1224.4 山东 3143.8 1948.2 2420.1 新疆 2032.4 2267.4 469.9 河南 2229.3 1844.6 1416.4 数据来源:《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》参数估计:估计结果如下:2709030.01402097.01402.728X X Y ++=Λ(2.218) (2.438) (16.999) 922173.02=R D.W.=1.4289 F=165.8853 SE=395.2538实验步骤:一、检查模型是否存在异方差1.图形分析检验(1)散点相关图分析分别做出X1和Y 、X2和Y 的散点相关图,观察相关图可以看出,随着X1、X2的增加,Y 也增加,但离散程度逐步扩大,尤其表现在X1和Y .这说明变量之间可能存在递增的异方差性。

异方差与自相关问题

异方差与自相关问题

a
与 b 。 a 与 b 的线性相关系数,称为
q
z
的等级相关系数 。
(ai a )(bi b ) rs (ai a ) 2 (bi b ) 2
6 (ai bi ) 2 rs 1 n(n 2 1)
§5.2
等级相关检验
异方差问题
(a) 完成模型的OLS估计,获取残差数据
X 11 f ( X j1 ) X 12 f ( X j2 ) X 1n f ( X jn )

X k1 f ( X j1 ) X k2 f ( X j2 ) X kn f ( X jn )
~ Y
Y f (X j )
~ Xi
Xi f (X j )
1 1 1
X 11 X 12 X 1n

Y1 X k 1 f ( X j1 ) Y2 X k2 f ( X j2 ) Y n X kn f ( X jn )
1 f ( X j1 ) 1 f ( X j2 ) 1 f ( X jn )
第五章
异方差与自相关问题
除了本章讨论所涉及的同方差性与不自相关性以外,
关于线性回归模型的其它假定在本章中都成立。 ——广义最小平方估计; ——异方差模型及其估计; ——自相关模型及其估计; ——异方差模型、自相关模型的预测。
§5.1
广义最小平方法
同方差且不自相关
cov(U ) 2 I cov(U ) 2
ei ;
(b) 选择可能与异方差有关的解释变量 rs ( j ),计算变量 X j与变

e 的等级相关系数
(c) 计算统计量

异方差习题及自相关1

异方差习题及自相关1

DW检验:过去曾一度流行。但只能检验一阶自相 关且要求扰动项服从严格外生性假设。不实用。
使用OLS+异方差自相关稳健的标准差:仍然使用 OLS来估计回归系数,但使用“异方差自相关稳健的 标准差”(Heteroskedasticity and Autocorrelation Consistent Standard Error,简记HAC).这种方法被称为 Newey-West估计法,它只改变标准差的估计值,并 不改变回归系数的估计值。
内插值或季节调整时,则从理论上可判断存在自相关。
统计局提供的某些数据可能已经事先经过了这些人为 处理。
设定误差:如果模型设定中遗漏了某个自相关的解 释变量,并被纳入到了扰动项中,则会引起扰动项 的自相关。
画图:可以将残差et与之后残差et-1画成散点图, 也可以画自相关与偏相关图,显示各阶样本自相关 系数。
1下列关于扰动项协方差矩阵的假设,不存在异方 差的是( )
A B C D
1, 2,3
VAR(i
)
4,
5,
6
7,8,9
1, 0, 0
VAR(i
)
0,
5,
0
0, 0,9
1, 0,1
VAR(i
)
0,1,
0
0, 0,1
0.3, 0, 0
VAR(i
)
0,
0.3,
0
0, 0, 0.3
项用0来代替,以保持样本容量仍为n,使用统计量
这是stata默认的方法
Box-Pierce Q检验:定义残差的各阶样本自相关系 数为
用这个自相关系数平方和的n倍作为统计变量。 经过改进的Ljuang-Box Q统计量为

异方差练习题

异方差练习题

异方差练习题在统计学中,方差是用来衡量一组数据的离散程度的统计量。

如果我们要比较两组数据的方差是否相等,就需要进行异方差检验。

本文将介绍一些异方差检验的练习题,帮助读者巩固对于异方差的理解和应用。

题目一:某研究人员想要比较两种不同药物在治疗头痛方面的效果。

为此,他随机选取了两组患者,第一组患者接受药物A的治疗,第二组患者接受药物B的治疗。

研究人员在治疗结束后,记录了患者的头痛缓解时间(单位:分钟)如下:药物A: 40, 45, 50, 55, 60药物B: 20, 25, 30, 35, 40请用适当的统计方法检验这两组数据的方差是否相等,并给出相应的结论。

解答一:为了比较这两组数据的方差是否相等,我们可以使用F检验。

F检验的零假设是两组数据的方差相等。

首先,我们计算两组数据的方差。

对于药物A组的数据,方差为:方差A = ((40-50)^2 + (45-50)^2 + (50-50)^2 + (55-50)^2 + (60-50)^2) / (n-1) = 62.5对于药物B组的数据,方差为:方差B = ((20-30)^2 + (25-30)^2 + (30-30)^2 + (35-30)^2 + (40-30)^2) / (n-1) = 62.5其中n为每组的样本数,这里为5。

然后,我们计算F统计量:F = 方差A / 方差B = 62.5 / 62.5 = 1接下来,我们需要根据自由度来查找F分布表中的临界值。

在这个例子中,自由度为4和4(n-1),显著性水平选择为α = 0.05。

根据F分布表可以查到,当自由度为4和4,显著性水平为0.05时,临界值为2.866。

由于计算得到的F统计量(1)小于临界值(2.866),因此我们无法拒绝零假设,即两组数据的方差相等。

结论:根据F检验结果,我们无法拒绝两组数据的方差相等的零假设。

题目二:某市场调研公司想要研究某产品在不同年龄段消费者中的满意度是否存在差异。

异方差与自相关

异方差与自相关

第六章异方差与自相关第一节异方差与自相关的定义一、例子例1,研究我国制造业利润函数,选取销售收入作为解释变量,数据为1998年的食品年制造业、饮料制造业等28个截面数据(即n=28)。

数据如下表,其中Y表示制造业利润函数,X表示销售收入(单位为亿元)。

Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较小,有的点分散幅度较大。

因此,这种分散幅度的大小不一致,可以认为是由于销售收入的影响,使得制造业利润偏离均值的程度发生了变化,而这种偏离均值的程度大小不同是一种什么现象?如何定义?下面给出制造业利润对销售收入的回归估计。

模型的书写格式为2ˆ12.03350.1044(0.6165)(12.3666)0.8547,..84191.34,152.9322213.4639,146.4905Y YX R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看出尽管表面上模型的估计效果还不错,但随机误差(残差)可能存在一种系统性的表现。

例2,研究中国城镇居民消费函数,其中选取了两个变量,城镇家庭商品性支出(现价)和城镇家庭可支配收入(现价),分别记为CSJTZC 和CSJTSR ,时间从1978年到1997年,n=20。

但为了剔除物价的影响,分别对CSJTZC 和CSJTSR 除以物价(用CPI 表示),这里CPI 为城镇居民消费物价指数(以1990年为100%),经过扣除价格因素以后,记CPICSJTSRX CPICSJTZCY ==即如下表回归以后得到的残差为Dependent Variable: Y Method: Least Squares Date: 10/27/04 Time: 09:39 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C -103.3692 78.80739 -1.311669 0.2061 X0.9235510.01603357.603880.0000 R-squared0.994605 Mean dependent var 3939.341 Adjusted R-squared 0.994305 S.D. dependent var 2124.467 S.E. of regression 160.3247 Akaike info criterion 13.08692 Sum squared resid 462671.9 Schwarz criterion 13.18649 Log likelihood -128.8692 F-statistic 3318.207 Durbin-Watson stat1.208037 Prob(F-statistic)0.000000通过残差图可以看出,残差有随时间的系统性表现。

异方差性习题及答案

异方差性习题及答案

异⽅差性习题及答案异⽅差性⼀、单项选择1.Goldfeld-Quandt ⽅法⽤于检验()A.异⽅差性B.⾃相关性C.随机解释变量D.多重共线性2.在异⽅差性情况下,常⽤的估计⽅法是()A.⼀阶差分法B.⼴义差分法C.⼯具变量法D.加权最⼩⼆乘法3.White 检验⽅法主要⽤于检验()A.异⽅差性B.⾃相关性C.随机解释变量D.多重共线性4.Glejser 检验⽅法主要⽤于检验()A.异⽅差性B.⾃相关性C.随机解释变量D.多重共线性5.下列哪种⽅法不是检验异⽅差的⽅法()A.⼽德菲尔特——匡特检验B.怀特检验C.⼽⾥瑟检验D.⽅差膨胀因⼦检验6.当存在异⽅差现象时,估计模型参数的适当⽅法是()A.加权最⼩⼆乘法B.⼯具变量法C.⼴义差分法D.使⽤⾮样本先验信息7.加权最⼩⼆乘法克服异⽅差的主要原理是通过赋予不同观测点以不同的权数,从⽽提⾼估计精度,即()A.重视⼤误差的作⽤,轻视⼩误差的作⽤B.重视⼩误差的作⽤,轻视⼤误差的作⽤C.重视⼩误差和⼤误差的作⽤D.轻视⼩误差和⼤误差的作⽤8.如果⼽⾥瑟检验表明,普通最⼩⼆乘估计结果的残差i e 与i x 有显著的形式i i i v x e +=28715.0的相关关系(i v满⾜线性模型的全部经典假设),则⽤加权最⼩⼆乘法估计模型参数时,权数应为() A. i x B. 21i x C. i x 1 D. i x 19.如果⼽德菲尔特——匡特检验显著,则认为什么问题是严重的()A.异⽅差问题B.序列相关问题C.多重共线性问题D.设定误差问题10.设回归模型为i i i u bx y +=,其中i i x u Var 2)(σ=,则b 的最有效估计量为() A. ∑∑=2?x xy b B. 2 2)(?∑∑∑∑∑--=x x n y x xy n b C. x y b =? D. ∑=x y n b 1?⼆、多项选择1.下列计量经济分析中那些很可能存在异⽅差问题()A.⽤横截⾯数据建⽴家庭消费⽀出对家庭收⼊⽔平的回归模型B.⽤横截⾯数据建⽴产出对劳动和资本的回归模型C.以凯恩斯的有效需求理论为基础构造宏观计量经济模型D.以国民经济核算帐户为基础构造宏观计量经济模型E.以30年的时序数据建⽴某种商品的市场供需模型2.在异⽅差条件下普通最⼩⼆乘法具有如下性质()A 、线性B 、⽆偏性C 、最⼩⽅差性D 、精确性E 、有效性3.异⽅差性将导致A 、普通最⼩⼆乘法估计量有偏和⾮⼀致B 、普通最⼩⼆乘法估计量⾮有效C 、普通最⼩⼆乘法估计量的⽅差的估计量有偏D 、建⽴在普通最⼩⼆乘法估计基础上的假设检验失效E 、建⽴在普通最⼩⼆乘法估计基础上的预测区间变宽4.下列哪些⽅法可⽤于异⽅差性的检验()A 、DW 检验B 、⽅差膨胀因⼦检验法C 、判定系数增量贡献法D 、样本分段⽐较法E 、残差回归检验法5.当模型存在异⽅差现象进,加权最⼩⼆乘估计量具备()A 、线性B 、⽆偏性C 、有效性D 、⼀致性E 、精确性6.下列说法正确的有()A 、当异⽅差出现时,最⼩⼆乘估计是有偏的和不具有最⼩⽅差特性B 、当异⽅差出现时,常⽤的t 和F 检验失效C 、异⽅差情况下,通常的OLS 估计⼀定⾼估了估计量的标准差D 、如果OLS 回归的残差表现出系统性,则说明数据中不存在异⽅差性E 、如果回归模型中遗漏⼀个重要变量,则OLS 残差必定表现出明显的趋势三、名词解释1.异⽅差性2.格德菲尔特-匡特检验3.怀特检验4.⼽⾥瑟检验和帕克检验四、简答题1.什么是异⽅差性?试举例说明经济现象中的异⽅差性。

异方差与自相关

异方差与自相关

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。

二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。

这样,遗漏的变量就进入了模型的残差项中。

当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。

二是截面数据中总体各单位的差异。

后果:异方差对参数估计的影响主要是对参数估计有效性的影响。

在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。

一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。

2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。

具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。

如果散点图表现出一定的趋势,则可以判断存在异方差。

(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。

这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。

用两个子样本分别进行回归,并计算残差平方和。

异方差性习题与答案(精品).doc

异方差性习题与答案(精品).doc

第五章异方差性习题与答案1、产生异方差的后果是什么?2、下列哪种情况是异方差性造成的结果?(1)OLS估计量是有偏的(2)通常的t检验不再服从t分布。

(3)OLS估计量不再具有最佳线性无偏性。

3、已知模型:乙=0o+0]X”+02X2i+"i式中,乙为某公司在第i个地区的销售额;X“为该地区的总收入;X2,为该公司在该地区投入的广告费用(£=0,1,2……,50)。

(1)由于不同地区人口规模乙可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项g是异方差的。

假设b,依赖于总体£•的容量,逐步描述你如何对此进行检验。

需说明:A、零假设和备择假设;B、要进行的回归;C、要计算的检验统计值及它的分布(包括自由度);D、接受或拒绝零假设的标准。

(2)假设q =陋-逐步描述如何求得BLUE并给出理论依据。

4、下表数据给出按学位和年龄划分的经济学家的中位数工薪:表1经济学家的工资表中位数工薪(以千美元计算)年龄硕士博士25-29&08.830-349.29.635-3911.011.040-4412.812.545-4914.213.650-5414.714.355-5914.515.060—6413.515.065-6912.015.0(1)有硕士学位和有博士学位经济学家的中位数工薪的方差相等么?(2)如果相等,你会怎样检验两组平均中位数工薪相等的假设?(3)在年龄35至5岁之间的经济学家,有硕士学位的比有博士学位的赚更多的钱,那么你会怎样解释这一发现?5、为了解美国工作妇女是否受到歧视,可以用美国统计局的“当前人口调查” 中的截面数据,研究男女工资有没有差别。

这项多元回归分析研究所用到的变量有:W—雇员的工资率(美元/小时)1表示雇员为女性,0表示女性意外的雇员。

ED:受教育的年数。

AGE:年龄对124名雇员的样本进行的研究得到回归结果为:(括号内为估计的t值)W = -6.41 -2.76sex + 0.99ED + 0.12AGE R2 -0.867 E = 23.2求:(1)该模型调整后的决定系数艮2 (2)各估计值的标准差为多少?(3)检验美国工作妇女是否受到歧视,为什么?(4)按此模型预测一个30岁受教育16年的美国男性的平均每小时的工作收入为多少美元?6、下表给出了2000年中国部分省市城镇居民每个家庭平均全年可支配收入X 与消费支出Y的统计数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设定误差:如果模型设定中遗漏了某个自相关的解 释变量,并被纳入到了扰动项中,则会引起扰动项 的自相关。

画图:可以将残差et与之后残差et-1画成散点图, 也可以画自相关与偏相关图,显示各阶样本自相关 系数。

.05 -.1
-.1
-.05
0
.1
-.05 Residuals
0 rel1
.05 Fitted values

使用OLS+聚类稳健的标准差:如果样本观测值可 以分为不同聚类(cluster),在同一聚类内的观测值 互相相关,而不同聚类之间的观测值不相关,这种 样本称为聚类样本(cluster sample).例如 Nerlove(1963)的例子中,同一个州的电力企业可以 作为一个聚类,此时州(state)被称为聚类变量 (cluster variable)。如果将观测值按聚类的归属顺序 排列,则扰动项的协方差矩阵为块对角,此时,仍 然可以用OLS来估计系数,但需要用聚类稳健的标准 差(Cluster robust standard error)。在处理面板数 据的时候经常用到聚类稳健的标准差。


所以只要估计一个参数就能应用FGLS了。

转换之后的模型为:
用OLS估计这个转换后的方程模型,即为“PraisWinsten估计法”(Prais and Winsten,1954,简记为 PW)。如果为了计算方便而将第一个方程删去,则称 为“Cochrane-Orcutt估计法”( Cochrane and Orcutt,1949,简记为CO)。

修改模型法:许多情况下,存在自相关的深层原因 是模型本身的设定有误,比如遗漏了自相关的解释 变量。例如真实模型为 如果错误 地被估计为 则会导致扰动项vt自 相关

滞后算子与差分算子:L.滞后一阶。L2.滞后两 阶……D.X=Xt-Xt-1,D2.X=Xt-Xt-2 自相关与偏相关图:ac; pac BG检验:estat bgodfrey 默认p=1 estat bgodfrey,lags(p) 可以看自相关与偏 相关图确定滞后阶数 estat bgodfrey ,nomiss0 不添加0

何为自相关:违反球型扰动假设的另一情形是自相 关。如果i≠j, ,即扰动项的协方差矩阵非 主对角线元素不全为0,则称存在“自相关” (autocorrelation)或“序列相关”(serial correlation) 自相关的后果:

OLS仍然无偏且一致 OLS估计量依然服从渐进正态分布 OLS估计量方差VAR(b|X)的表达式不再是 ,因此t检 验与F检验失效 高斯马尔科夫订立不再成立,即OLS不再是BLUE。

3 下列样本数据最不可能产生异方差的是( ) A 全国所有企业的年产值数据 B 不同班级的平均分数据 C 成人与少年的身高数据 D 3岁幼儿的牙齿数量

4 下列散点图中最不可能存在异方差的是( ) A
Residuals 4
B
Residuals
2
0
-itted values
D
0.3, 0, 0 VAR (i ) 0, 0.3, 0 0, 0, 0.3
2 下列关于异方差表述正确的是( ) A 单纯的异方差问题对系数估计的一致性没有影响 B 单纯的异方差问题对系数估计的有效性没有影响 C 存在异方差的情况下t检验与F检验仍是准确的 D异方差普遍存在于时间序列数据中
1下列关于扰动项协方差矩阵的假设,不存在异方 差的是( )

1, 2,3 4,5, 6 A VAR(i ) 7,8,9
1, 0,1 1, 0, 0 C VAR(i ) 0,1, 0 B VAR(i ) 0,5, 0 0, 0,1 0, 0,9
4000
6000
20 Mileage (mpg)
30
40
5 某人用150个样本数据,研究产量、劳动力成本、 燃料价格对总成本的影响,如果用怀特检验来检验 异方差的存在性,则应该用的统计量为( ) A. F(3,146) B. t(146) C 2(9) D F(3,147)

6 某人分别用怀特检验和BP检验来验证异方差的 存在性,其结果如下所示,则说法正确的是( )
.1

BG检验:考虑扰动项的p阶自回归过程:
检验原假设 。由于扰动项不可观测, 故用残差et来代替。并引入所有解释变量(为了消除 扰动项与不同期的解释变量相关的情况即不满足严 格外生性的情况),考虑以下辅助回归:

由于使用了滞后残差值et-p,损失了p个样本值,故 辅助回归的样本容量仅为n-p,使用统计量 如果超过临界值,则拒绝无自相关的假 设,这个检验被称为Breusch-Godfrey检验 (Breusch,1978;Godfrey,1978)。Davidson and Mackinnon(1993)建议把残差向量e中因滞后而缺失的 项用0来代替,以保持样本容量仍为n,使用统计量 这是stata默认的方法

Box-Pierce Q检验:定义残差的各阶样本自相关系 数为


用这个自相关系数平方和的n倍作为统计变量。 经过改进的Ljuang-Box Q统计量为
这两种Q统计量在大样本下是等价的,但LjuangBox Q 统计量的小样本性质更好,故为Stata所采用。

DW检验:过去曾一度流行。但只能检验一阶自相 关且要求扰动项服从严格外生性假设。不实用。

Ljuang-Box Q检验:wntestq res(使用stata提供 的默 认滞后期) wntestq el,lags(p)
DW检验:estat dwatson HAC稳健标准差:newey y x1 x2 x3,lag(p) reg y x1 x2 x3,cluster(state)聚类稳健标准差 处理一阶自相关的FGLS: prais y x1 x2 x3(默认为 PW估计法);prais y x1 x2,corc(使用CO估计法)
由于自相关的存在,使得根据样 本数据估计的回归线上下摆动幅 度增大,导致参数估计变得不准 确。
时间序列数据:由于经济活动通常具有某种连续性 或持久性,自相关现象在时间序列中比较常见。相邻 两年的GDP增长率、通货膨胀率。 截面数据中的自相关:一般来说,截面数据不容易 出现自相关,但相邻的观测单位之间也可能存在”溢出 效应”,这种自相关也称为“空间自相关”(spatial autocorrelation).比如相邻的省份、国家之间的经济活 动互相影响;相邻地区的产业产量受类似的天气变化 影响;同一社区的房价…… 对数据的人为处理:如果数据中包含移动平均数, 内插值或季节调整时,则从理论上可判断存在自相关。 统计局提供的某些数据可能已经事先经过了这些人为 处理。

以全班同学为样本,聚类变量可以是哪些?
使用可行广义最小二乘法(FGLS):与处理异方差 异一样,可以用FGLS估计模型,前提是要确切估计 扰动项的方差形式,并且为了FGLS可行,必须做简 化假设,在自相关的问题里,我们一般假设存在一 阶自相关 ,很容易计算, 在这种假设条件下,扰动项的协方差矩阵为


A 怀特检验显示不存在异方差 B BP检验显示存在异方差 C 异方差可能是由于解释变量而产生的 D 异方差可能由解释变量的交互项产生
7 某人的计量模型检验存在异方差,并且测算出扰 动项的协方差矩阵的估计值为一对角矩阵V(X),则下 列说法正确的是( ) A 如果用FWLS进行估计权重为V(X)-1 B 最有效的估计是OLS+稳健标准差 C 如果用FWLS进行估计,权重为V(X) D 样本容量较小时可以直接用OLS估计得到一致估 计值


准差分法(quasi differences):原模型为 滞后一期后方程两边同时乘以ρ得到 两式相减



新扰动项服从球型扰动假设
实际软件运行中通过迭代得到最终结果,即不断重 复估计ρ与β直到,这最近一次两者的估计值和上一 次的估计值差距足够小。 应用FGLS的前提:应用FGLS解决自相问题比解决 异方差问题更不稳健,除了要求准确估计协方差矩 阵外,还必须要满足严格外生性假设,仅仅满足前 定解释变量会导致FGLS不一致。

使用OLS+异方差自相关稳健的标准差:仍然使用 OLS来估计回归系数,但使用“异方差自相关稳健的 标准差”(Heteroskedasticity and Autocorrelation Consistent Standard Error,简记HAC).这种方法被称为 Newey-West估计法,它只改变标准差的估计值,并 不改变回归系数的估计值。 在使用Newey-West估计法时需要指定自相关阶数, 一般建议取p=n1/4或p=0.75n1/3 为什么不能继续用异方差稳健标准差进行估计? 因为推导异方差稳健标准差的过程中,引入了扰动 不相关的假设即gi=xi*εi为鞅差分序列的假定。
3.5
4
-.5
0
0
.5
1
5
10 15 recent unemp duration
20
25
6000
4000
Residuals
2000
-2000

C
D
2000 4000 6000 8000 Fitted values 10000 12000
Residuals
0
2000 -4000 -2000 0
10
-4000
相关文档
最新文档