1.5-1条件概率
概率论与数理统计课件1.5

有三个箱子,分别编号为1,2,3,1号箱装有1个红 球4个白球,2号箱装有2红球3白球,3号箱装有3红 球. 某人从三箱中任取一箱,从中任意摸出一球, 发现是红球,求该球是取自1号箱的概率 .
?
1红4白
12 3
某人从任一箱中任意摸出一球,
?
发现是红球,求该球是取自1号
箱的概率.
1红4白
记 Ai={球取自i号箱}, i=1,2,3; B ={取得红球}
S( AB) S( ) S( A) S( )
P( AB) . P( A)
在古典概型和几何概型这两类等可能概率模型 中总有
P(B A) P( AB) . P( A)
条件概率的定义
设A、B是某随机试验中的两个事件,且 P A 0
称 P (B | A ) = —P —(A—B )
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,
即 B= A1B+A2B+A3B,
且 A1B、A2B、A3B 两两互斥
运用加法公式得到
对求和中的每 一项运用乘法 公式得
P(B)=P( A1B)+P(A2B)+P(A3B)
多个事件的乘法公式
设 A1, A2, , An 为n个随机事件,且
PA1 A2 An1 0
则有
PA1 A2 An PA1 PA2 A1 PA3 A1 A2 P An A1 A2 An1
这就是n个事件的乘法公式.
例 3 乘法公式应用举例 (波里亚罐子模型)
AB Ω
1.5 条件概率、全概率公式与贝叶斯公式

因为 B A1 A2 A3 ,
所以 P(B) P( A1 A2 A3 ) P( A1)P( A2 A1)P( A3 A1 A2 )
(1 1)(1 7 )(1 9 ) 3 . 2 10 10 200
r ra t
ta .
r t r t a r t 2a r t 3a
此模型被波利亚用来作为描述传染病的数学模型.
三、全概率公式与贝叶斯公式
1. 样本空间的划分 (完备事件组)
定义 设 S 为试验E的样本空间, B1, B2 ,, Bn 为 E 的一组事件,若
(i) Bi Bj , i j, i, j 1,2,, n; (ii) B1 B2 Bn S, 则称 B1, B2 ,, Bn 为样本空间 S 的一个划分.
常用:
1、若AB=A,则A B; 若A B=A,则B A;
2、B A B A B AB,而AB B; 3、B S B,如:A B A (S B); 4、A AS A(B B) AB AB,
AB AB ; 5、AB BC B
6. P(B A) P(B A) P(B) P(AB) 对于任意事件A, B成立。
30 性质
不难验证,条件概率P( |A)复合概率定义中的三个条件
1°非负性: P(B | A) 0
2°规范性: P(S | A) 1
3°可列可加性:设B1 , B2 ,是两两互不相容的事
件,有 P( Bi | A) P(Bi | A)
i 1
i 1
从而,对概率所证明的重要结果都适用于条件概率。
以 (i, j) 表示第一次、 第二次分别取到第i 号、 第
概率论的基本概论

第一章概率论的基本概论确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。
由此产生的概念有:随机现象,随机事件,随机试验。
例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。
例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。
随机现象的结果(随机事件)的随机度如何解释或如何量化呢?这就要引入”概率”的概念。
概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。
§1.1随机试验以上试验的共同特点是:1.试验可以在相同的条件下重复进行;2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发生哪一个可能结果在试验之前不能预言。
我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。
我们把满足上述三个条件的试验叫随机试验,简称试验,记E。
§1.2样本空间与随机事件(一) 样本空间与基本事件E的一个可能结果称为E的一个基本事件,记为ω,e等。
E的基本事件全体构成的集,称为E的样本空间,记为S或Ω,即:S={ω|ω为E的基本事件},Ω={e}.注意:ω的完备性,互斥性特点。
例:§1.1中试验E1--- E7E1:S1={H,T}HTT,THT,TTH,TTT }E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0≥t }E 7:S 7={()y x ,10T y x T ≤≤≤}(二) 随机事件我们把试验 E 的全部可能结果中某一确定的部分称为随机事件。
概率论与数理统计1-5

例5 甲盒装有 1 个白球 2 个黑球 ,乙盒装有 3 个白
球 2 个黑球 ,丙盒装有 4 个白球 1 个黑球 . 采取掷一骰
子决定选盒 ,出现 1、 或 3 点选甲盒 , 4 、点选乙盒 , 2 5
6 点选丙盒 ,在选出的盒里随机摸出一个球 ,经过秘
密选盒摸球后 ,宣布摸得一个白球 ,求此球来自乙
B3
B1
A B4
B5
B6 B8
诸Bi是原因 A是结果
B2
B7
1.5.2 贝叶斯公式 再看一个例子: 某人从任一箱中任意摸 出一球,发现是红球,求该球 1红4白 是取自1号箱的概率. 或者问: 1 该球取自哪号箱的可能性 最大?
2
3
这一类问题是“已知结果求原因”. 在实际中 更为常见,它所求的是条件概率,是已知某结果 发生条件下,探求各原因发生可能性大小.
(i=1,2,...,n), 则
P( Bi | A) P( A | Bi ) P( Bi )
n
, i 1, 2,.n. (1 12)
j
P( A | B ) P( B )
j j 1
(1-12)式称为贝叶斯(Bayes)公式. 该公式于1763年由贝叶斯给出. 它是在观察到 事件A已发生的条件下,寻找导致A发生的每个原因 的概率.Fra bibliotek一个发生.
定理1.5.1 设试验E的样本空间为Ω, A为E的事件,
B1,B2,...,Bn为Ω的一个划分, 且P(Bi)>0(i=1,2,...,n),
则
P ( A) P ( A | B1 ) P ( B1 ) P ( A | B2 ) P( B2 ) P ( A | Bn ) P ( Bn ) P( A | B j ) P( B j )
概率论的基本概念

概率论的基本概念1.1 随机试验1.随机现象在一定条件下具有多个可能的结果,个别几次观察中结果呈现出随机性(不确定性),在大量重复观察中结果又呈现出固有的客观规律性的自然现象称为随机现象.随机现象的三大特点:(1)在一定条件下具有多个可能的结果,所有可能的结果已知;(2)在一次观察中,结果呈现出随机性,不能确定哪一个结果将会出现;(3)在大量的重复观察(相同条件下的观察)中,结果的出现又呈现出固有的客观规律性.2.随机试验具有以下几个特点的实验称为随机实验,常用E 来表示1)可以在相同的条件下重复进行;2)试验的结果不止一个,并且能事先明确试验所有可能的结果;3)进行一次试验之前不能确定哪一个结果会出现.注:随机试验即可在相同条件下重复进行的针对随机现象的试验.1.2 样本空间与随机事件1. 样本空间与随机事件的概念1) 样本空间随机试验E的所有可能结果E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.样本空间依据样本点数可分为以下三类(1)有限样本空间:样本空间中样本点数是有限的;(2)无限可列样本空间:样本空间中具有可列无穷多个样本点;(3)无限不可列样本空间:样本空间中具有不可列无穷多个样本点.2) 随机事件一般,称随机试验E的样本空间S的任何一个子集为E的随机事件,简称为事件. 在一次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.注:(1):随机事件在一次试验中可能发生,也可能不发生;(2):由一个样本点构成的单点集,称为基本事件;(3):样本空间S是必然事件,空集 是不可能事件,它们两个发生与否不具有随机性,为了方便将它们两个也称为随机事件。
2. 事件之间的关系与运算 假设,,,,1,2,i i A B A B i =是随机事件,1) 包含关系 若事件B 发生必然导致事件A 发生,则称事件B 包含于事件A 或事件A 包含事件B ,记作B A ⊂.若A B ⊂,且B A ⊂,则称事件A 与事件B 相等,记作A B =. 2) 和事件 事件{|}A B x x A x B =∈∈或称为事件A 与事件B 的和事件,当且仅当事件,A B 中至少有一个发生(或者A 发生或者B 发生)时事件AB 发生.类似地,称1n i i A =为n 个事件12,,n A A A 的和事件;称1i i A ∞=为可列个事件12,,,n A A A 的和事件.3) 积事件 事件{|}A B x x A x B =∈∈且称为事件A 与事件B 的积事件,当且仅当事件,A B 同时发生(A 发生且B 发生)时事件AB 发生.类似地,称1n i i A =为n 个事件12,,n A A A 的积事件;称1i i A ∞=为可列个事件12,,,n A A A 的积事件.4) 差事件 事件{|}A B x x A x B -=∈∉且称为事件A 与事件B 的差事件.当且仅当事件A 发生且事件B 不发生时事件A B -发生.5) 互斥关系 若AB φ=,则称事件A 与事件B 是互斥的,或称为互不相容的.两个互不相容的事件不能同时发生.6) 对立关系 若A B S =且A B φ=,则称事件A 与事件B 互为对立事件,或互为逆事件.每次试验中互为对立的两个事件有且仅有一个发生.事件A 的对立事件一般记作A .图1.1 事件之间关系文氏图3. 事件的运算律 1) 交换律;A B BA AB BA ==.2) 结合律 ()();A B C A B C = ()()A B C A B C =. 3)分配律 ()()()AB C A B A C =;()()()A B C A B A C =.4)狄-摩根(De-Morgan )律 ;AB A B = A B A B =;11i i i i A A ∞∞===;11i i i i A A ∞∞===1.3 频率与概率2. 概率的概念及其性质1) 概率的统计定义:对于随机试验E ,当试验次数逐渐增大时,频率()n f A 将逐渐稳定与唯一确定的实数:()n f A 的稳定值,所以将此稳定值定义为随机事件A 的概率,记为()P A .它反映了随机事件A 在一次实验中发生可能性大小.1.4 等可能概型(古典概型)1. 古典概型的特点1)样本空间由有限个样本点构成12{,,}n S e e e =;2)每个样本点出现的可能性相等:12()()()1/n P e P e P e n ===.2. 古典概型中事件A 的概率计算公式()/P A m n =其中n 为样本空间中样本点的个数,m 为事件A 中样本点的个数.1.5 条件概率1. 条件概率1) 条件概率的定义:设,A B 是两事件,且()0P A >,则称()(|)()P AB P B A P A =为事件A 发生的条件下,事件B 发生的条件概率.条件概率也满足性质(1)非负性:对任一事件B ,(|)0P B A ≥; (2)规范性:(|)1P S A =;(3)可列可加性:设12,,B B 是一列两两互不相容的随机事件,则有()11||i i i i P B A P B A ∞∞==⎛⎫= ⎪⎝⎭∑注:条件概率也满足概率的上述三条基本性质,所以条件概率它也是概率:样本空缩小为事件A 的概率,因而它满足概率的所有性质.2. 乘法原理 乘法原理:设,A B是两个事件,且()0P A >,则有()(|)()P AB P B A P A =;一般,设12,,n A A A 是n 个事件,2n ≥,且121()0n P A A A ->,则有1211112211()(|)(|)(|)()n n n n n P A A A P A A A P A A A P A A P A ---=乘法原理是计算积事件的概率的基本公式.3. 全概率公式与贝叶斯公式1)样本空间的划分:设随机试验的样本空间是S ,12,,n B B B 为一组事件,如果满足(1),,,1,2,,i j B B i j i j n φ=≠=;(2)12n B B B S =.则称12{,,}n B B B 是样本空间S 的一个划分.2)全概率公式:设S 是试验E 的样本空间,12{,,}n B B B 是S的一个划分,且()0,1,2,i P B i n >=,对任一事件A ,则有1()(|)()ni i i P A P A B P B ==∑3)贝叶斯公式:设S 是试验E 的样本空间,12{,,}n B B B 是S的一个划分,A 是一个随机事件,且()0,1,2,i P B i n >=,()0P A >,则有1(|)()(|)1,2,(|)()i i i njjj P A B P B P B A i n P A B P B ===∑注:(1)一个复杂的随机事件往往有若干个互不相容的原因导致发生,求这一类随机事件的概率时就要用到全概率公式;而已知事件已经发生,求由某一个原因导致发生的概率时,用贝叶斯公式.(2) 用全概率公式和贝叶斯公式求事件概率时,样本空间划分的选取是关键.一般划分由导致事件发生的互不相容的所有原因组成,即由题设中给出的或隐含的所有条件概率的条件组成.1.6 事件的独立性1. 两个事件的独立性两个事件独立:设,A B 是两个事件,如果满足等式()()()P AB P A P B =则称随机事件A 与B 相互独立.(1)若,A B 是两个事件,()0P A >,则A 与B 独立等价于(|)()P B A P B =.(2) 若事件A 与B 相互独立,则事件A 与B ,A 与B ,A 与B 也相互独立.2. 多个事件的独立性1)两两独立:设,,A B C 是三个事件,若满足()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C === 则称事件,,A B C 两两独立.一般,设12,,n A A A 是n 个事件,若对任意的,1,2,i j i j n ≠=,有()()()i j i jP A A P AP A =,则称12,,n A A A 两两独立.2)相互独立:设,,A B C 是三个事件,若满足()()()()()()()()()()()()()P AB P A P B P AC P A P C P BC P B P C P ABC P A P B P C ====则称事件,,A B C 相互独立.一般,设12,,n A A A 是n 个事件,从中任取(2)k k n ≤≤个事件12,,k i i i A A A ,总有1212(,,)()()()k k i i i i i i P A A A P A P A P A =成立,则称12,,n A A A 相互独立.。
概率论与数理统计

A
3)在应用上,那些不便直接求某一事件的概 B2
率时,先找到一个合适的划分,再用全概率公式计算
ቤተ መጻሕፍቲ ባይዱ
7/21
§1.5 条件概率
2.贝叶斯(Bayes)公式 (计算后验概率问题)
事件A的发生,iff构成S划分的事件B1,B2,…,Bn中的一个发生时才发 生,一般在实验之前仅知道Bi的先验概率,那么如果试验后事件A已经发 生了,Bi发生的概率又是多少呢?这种问题我们称他为后验概率问题,有 利于我们查找事件发生的原因。解决此类问题可采用贝叶斯(Bayes)公式
在实际应用 中,对于事 件的独立性 常常根据事 件的实际意 义来判断,
注意:仅满足前三个等式的三个事件称为两两相互独立 见习题33 如果两个事
当然,如果事件A,B,C相互独立
件关联很弱 也可以看作
则 A, B,C; A, B,C; ... ; A, B,C 也相互独立
是独立的。
推广到多个事件
由定义可以得到以下两点推论: 1.若事件A1, A2, … , An相互独立,n2,则其中任意k(2kn)个事件也是相互独立 的。 2.若n个事件A1, A2, … , An(n2)相互独立,则将A1, A2, … , An中任意多个事件换13/成21 他们的对立事件,所得的n个事件仍相互独立
§1.6 独立性
对样本空间适当分解的思想,有利于解决稍微复杂一点的概率问题
首先看一下关于划分的概念
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件。若
(i) BiBj=Φ,i≠j,i,j=1,2,…,n; (ii) B1∪B2∪…∪Bn=S 则称B1,B2,…,Bn为S的一个划分。
※每次试验,事件B1,B2,…,Bn中有且仅有一个发生
第10讲 条件概率 (III) 全概率公式 贝叶斯公式

概率论与数理统计主讲:四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式1§1.5 条件概率四川大学第10讲条件概率(III): 全概率公式贝叶斯公式3第10讲条件概率(III)全概率公式贝叶斯公式四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式4四川大学第10讲条件概率(III): 全概率公式贝叶斯公式5在前面两讲,我们讲了条件概率和乘法公式。
现在来讲全概率公式和贝叶斯公式()()(|)P AB P A P B A =(()0)P A >(一)全概率公式四川大学第10讲条件概率(III): 全概率公式贝叶斯公式6A ()(|)B P A B1AB 2AB 3AB 4AB 5AB )B1AB2AB 3AB 4AB 5AB四川大学第10讲条件概率(III): 全概率公式贝叶斯公式11全概率公式的意义事件A 的发生有各种可能的原因B i (i =1,…,n )。
如果A 是由原因B i 引起,则A 发生的概率为()()(|)i i i P AB P B P A B 每一个原因都可能导致A 发生,故A 发生的概率是全部原因引起A 发生的概率的总和,即为全概率公式。
由此可以形象地把全概率公式看成是“由原因推结果”的公式,每个原因对结果的发生有一定的作用,结果发生的可能性与各种原因的作用大小有关,全概率公式就表达了它们之间的关系。
四川大学四川大学第10讲条件概率(III): 全概率公式贝叶斯公式12在很多实际问题中,P (A )不容易直接求得,但却容易找到S 的一个划分B 1, B 2,…, B n ,且P (B i )和P (A |B i )容易求得,那么就可以用全概率公式求出P (A )。
使用全概率公式的关键是作出S 的一个划分。
何时用全概率公式求A 的概率?四川大学1()()(|)ni i i P A P B P A B ==∑四川大学第10讲条件概率(III): 全概率公式贝叶斯公式16例2 有12个足球都是新球,每次比赛时取出3个,比赛后又放回去,求第三次比赛时取到的3 个足球都是新球的概率。
条件概率与概率的三个基本公式

球”, 则事件 A “第一次取到黑球”, 事件 B “第二次取到黑球”. (1)法一 已知第一次取到白球,那么袋中剩 4 个球,其中 2 个
白球, 2 个黑球,则已知第一次取到白球的条件下,第二次取到的是黑
球的概率为
P(B |
A)
2
1
.
42
法二 由古典概率知 P( A) 3 , P( AB) P31 P21 3 .
注意 ① P(B) 表示“事件 B 发生”的概率,计算时,是
在整个样本空间 上考察事件 B 发生的概率;②而 P(B | A)
为已知事件 A 发生的条件下,事件 B 发生的条件概率,计算 时,实际上仅限于在事件 A 发生的范围内,来考察事件 B 的 概率.一般地, P(B | A) P(B) .
§1.4 条件概率与概率的三个基本公式
条件概率是概率论的基本概念之一,同时又是计算概率 的重要工具.概率的三个基本公式(乘法公式、全概率公式
和贝叶斯 (Bayes) 公式)都建立在条件概率的概念之上.本
节重要学习以下内容: 一、条件概率
二、乘法公式
三、全概率公式
四、贝叶斯(Bayes)公式
第一章 随机事件与概率 1
3 这是因为事件 A 的发生,排除了 bb 发生的可能性,这时样本空间 也 随 之 缩 小 为 A , 而 在 A 中 事 件 B 只 含 2 个 样 本 点 , 故 P(B | A) 2 . 事实上,以上条件概率还可写成
3 P(B | A) 2 2 / 4 P( AB) . 3 3 / 4 P( A)
公式(1.5)和(1.6)都称为两个事件积的概率的乘法公式.这 两个乘法公式还可推广到有限个事件积的概率的情形:
设 A1, A2 , , An 是任意 n 个事件,且 P( A1A2 An ) 0 ,则 P( A1A2 An ) P( A1)P( A2 | A1)P( A3 | A1A2 ) . P( An | A1A2 An1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P(ABC)=P(A)P(B|A)P(C|AB). 一般地,有下列公式: P(A1A2…An)=P(A1)P(A2|A1)...P(An|A1…An-1).
例6 有5个签中,3个写“有”,二个写“无”,
五人依次各抽一签,求各人抽到“有”的概率。
(1)若为放回抽样:
P(B)
1 2
1 2
1 2
1 2
C21
(
1 2
)1
(
1 2
)1
1 2
(2)若为不放回抽样:
P(B)
26 52
26 51
26 52
26 51
C216C216
/
C522
26 51
§1.5 条件概率
教学内容
(1)深刻理解条件概率的意义,掌握条 件概率的计算;
(2)了解概率的乘法定理在实际应用中 的重要性;掌握两个及多个事件乘积的 概率计算;
引例
袋中有十只球,其中九只白球,一只红球,十 人依次从袋中各取一球(不放回),问
第一个人取得红球的概率是多少? 第二 个人取得红球的概率是多少?
解: 设 Ai={ 第i人抽到“有” },i=1,2,3,4,5
3 P( A1) 5
A2 A1 A2 A1 A2
P( A2 ) P( A1A2 ) P( A1A2 )
利用乘 法公式
P( A1)P( A2 | A1) P( A1)P( A2 | A1)
3223 3 54 54 5
例2 一盒中混有100只新 ,旧乒乓球,各有红、 白两色,分 类如下表。从盒中随机取出一球 ,若取得的是一只红球,试求该红球是新球 的概率。
解:设A=“从盒中随机取到一只红球”。
B=“从盒中随机取到一只新球”。
红白
新 40 30
旧 20 10
解:nA 40, nAB 60
P(B | A) 40 2 60 3
是一等奖的概率
解:设A=“任取一张,中奖”,B=“任取一张,取到 一等奖”
(1)P(A) 2 1 10 5
(3)P(B | A) 1 2
(2)P( AB) 1 10
P(B | A) P(AB) P( A)
S A
B
显然,若事件A、B是古典概型的样本空间S中的 两个事件,其中A含有nA个样本点,AB含有nAB个 样本点,则
A={ 这人通过考核 },
A A1 A1 A2 A1 A2 A3
P( A) P( A1) P( A1A2 ) P( A1A2 A3)
P( A1) P( A1) P( A2 | A1) P( A1) P( A2 | A1)P( A3 | A1A2 )
0.60+0.40.8 0.40.20.9 0.992
例3 一盒子有4只产品,其中3只一等品,1只二等品,从 中不放回地抽取两只,设事件A为“第一次取到的是一等 品”,B为“第二次取到的也是一等品”,求P(B|A)。
解:法1
n P42 12 mA C31 C31 9
mAB C31 C21 6
P(A) 9 , P(AB) 6
解:设A={乌龟活到100岁},B={乌龟活到
60岁},因为 AB
所以
p(AB) p(A) 0.83
p{已活到60岁的乌龟再存活40年}=
p(A|B) p(AB) p(A) 0.83 0.93 p(B) p(B) 0.89
也可以理解为100只活到60岁的乌龟中大约有93只 能活到100岁.
例7:某行业进行专业劳动技能考核,一个月安排一 次,每人最多参加3次;某人第一次参加能通过的概率 为60%;如果第一次未通过就去参加第二次,这时能 通过的概率为80%;如果第二次再未通过,则去参加 第三次,此时能通过的概率为90%。求这人能通过考 核的概率。 解: 设 Ai={ 这人第i次通过考核 },i=1,2,3
若已知第一个人取到的是白球,则第二个人取到 红球的概率是多少?
已知事件A发生的条件下, 事件B发生的概率称为
A发生条件下件概率
例1 设有10张奖券,其中一张是一 等奖,一张二等奖,
(1)求任取一张,中奖的概率 (2)求任取一张,中一等奖的概率 (3)求任取一张,且已知中奖,则
P(B | A) nAB nA
nAB n
P( AB)
nA n
P( A)
一般地,设A、B是S中的两个事件,则
P(B | A) P( AB) P( A)
称为事件A发生的条件下事件B发生的条件概率
备注:
在A发生的条件下B发生当然是A发生且B发 生,即AB发生,但是,现在A发生成了前提 条件,因此应该以A做为整个样本空间,而 排除A以外的样本点,因此P(B|A)是 P(AB)与P(A)之比。
P(A) P(AB AB) P(AB) P(AB)
P(B) P(A | B) P(B) P(A | B)
0.30.2 0.70 6%
利用乘 法公式
另解:A B, A AB, P(A) P(AB) P(B)P(A B) 0.30.2 6%
12
12
P(B | A) P( AB) 2 P( A) 3
法2
设一等品编号为1,2,3,二等品为b,则 缩减的样本空间为
A={(1,2),(1,3),(2,1),(2,3), (3,1),(3,2),(1,b),(2,b),(3,b)}
P(B | A) 6 2 93
AB
例4:设一只乌龟能存活60年的概率为0.89,能存活 100年的概率为0.83,若现在这只乌龟已经60岁,则 它能再存活40年的概率是多少?
例6:某厂生产的产品能直接出厂的概率为70%,余下
的30%的产品要调试后再定,已知调试后有80%
的产品可以出厂,20%的产品要报废。求该厂产
品的报废率。 解:设 A={生产的产品要报废}
∵AB与 AB 不相容
B={生产的产品要调试}
已知P(B)=0.3,P(A|B)=0.2,P(A | B) 0
解:
设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}
A1 A2 与 A1 A2
不相容
P(B) P( A1A2 A1A2 )
利用乘 法公式
P( A1A2 ) P( A1A2 ) P( A1) P( A2 | A1) P( A1) P( A2 | A1)
条件概率的性质
1、P( | A) 0
2、P(B | A) 1 P(B | A)
3、P((B C) | A) P(B | A) P(C | A) P(BC | A)
4、B A P(B | A) P(C | A)
二、乘法公式
设A、B ,P(A)>0,则 P(AB)=P(A)P(B|A).
P( A2 | A1) 1 P( A2 | A1) 1 0.8 0.2
亦可:
P(A) 1 P(A) 1 P( A1A2 A3) 1 P( A1)P( A2 | A1)P( A3 | A1A2 )
1 0.40.20.1 0.992
例8:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。