圆锥曲线全部公式及概念
圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线全部公式及概念

圆锥曲线1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩ 离心率c e a ==准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2b a.2.椭圆22221(0)x y a b a b+=>>焦半径公式及两焦半径与焦距构成三角形的面积:21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2F PF F PFS b ∆∠=.3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线的距离(焦准距)2p c = 通径的一半(焦参数):2b a焦半径公式21|()|||a PF e x a ex c =+=+,22|()|||a PF e x a ex c=-=-,两焦半径与焦距构成三角形的面积1221cot 2F PF F PF S b ∆∠=.5.双曲线的内外部: (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.6.双曲线的方程与渐近线方程的关系:(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222bya x(0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b7.抛物线px y 22=的焦半径公式:抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122.8.抛物线px y 22=上的动点可设为P ),2(2 y py 或2(2,2)P pt pt P (,)x y ,其中 22y px =.9.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.11.直线与圆锥曲线相交的弦长公式: AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率,12||x x -=12.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.特别地,曲线(,)0F x y =关于原点O 成中心对称的曲线是(,)0F x y --=. 曲线(,)0F x y =关于直线x 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y x =轴对称的曲线是(,)0F y x =. 曲线(,)0F x y =关于直线y x =-轴对称的曲线是(,)0F y x --=.13.圆锥曲线的第二定义:动点M 到定点F 的距离与到定直线l 的距离之比为常数e ,若01e <<,M 的轨迹为椭圆;若1e =,M 的轨迹为抛物线;若1e >,M 的轨迹为双曲线.注意:1、还记得圆锥曲线的两种定义吗?解有关题是否会联想到这两个定义? 2、还记得圆锥曲线方程中的:(1)在椭圆中:a 是长半轴,b 是短半轴,c 是半焦距,其中222b ac =-,,(01)ce e a=<<是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(2)在双曲线中:a 是实半轴,b 是虚半轴,c 是半焦距,其中222b c a =-,,(1)c e e a=>是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(3)在抛物线中:p 是准焦距,也是半通径.3、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)?等轴双曲线的离心率是多少?(e =5、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).注意:尤其在求双曲线与直线的交点时:当0∆>时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况);当0∆=时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当0∆<时,直线与双曲线没有交点.6、椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.此时222a b c =+. 7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?) 8、你知道椭圆、双曲线标准方程中,,a b c 之间关系的差异吗?9、如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点.此时两个方程联立,消元后为方程变为一次方程.椭圆练习1.过椭圆12222=+by a x (a>b>0)的左焦点F 1任做一条不与长轴重合的弦AB,F 2为椭圆的右焦点,则△ABF 1的周长是( ) (A)2a (B)4a (C)2b (D)4b2.设b a b a b a +=+∈则,62,,22R 的最小值是( ) (A)22-(B)335-(C)-3(D)27-3.椭圆的两个焦点和短轴的两个顶点,是一个含600角的菱形的四个顶点,则椭圆的离心率为( ) (A )21 (B )23 (C )33 (D )21或23 4.设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值等于( ) (A )2 (B )2 (C )2或21 (D )2或225.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) (A)212 (D)136.如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的( )(A )18倍 (B )12倍 (C )9倍 (D )4倍7.当关于x,y 的方程x 2sin α-y 2cos α=1表示的曲线为椭圆时,方程(x+cos α)2+(y+ sin α)2=1所表示的圆的圆心在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.已知椭圆的焦点为F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )直线 (D )其它9.已知椭圆14922=+y x 与圆(x-a)2+y 2=9有公共点, 则a 的取值范围是( )(A)-6<a <6 (B)0<a≤5 (C)a 2<25 (D)|a|≤610.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A)2 (B)12(C)2(D1 11.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点依次与某一焦点连结的线段长为r 1,r 2,r 3,则有( ) (A )r 1,r 2,r 3成等差数列 (B )231211r r r =+ (C )r 1,r 2,r 3成等比数列 (C )以上都不对 12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF13.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) (A)(0,1) (B)1(0,]2(C)(D)14.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为( ) (A )22186x y += (B )221166x y += (C )22184x y += (D )221164x y +=15.若椭圆19822=++y a x 的离心率是21,则a 的值为————————. 16.椭圆x 2cos 2α+y 2=1(0<α<π,α≠2π)的半长轴=——————,半短轴=——————,半焦距=——————,离心率=——————. 17.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 .18.M 是椭圆14922=+y x 上的一点,F 1,F 2 是椭圆的焦点,且∠F 1MF 2=900,则△F 1MF 2的面积等于——————. 19.与圆(x+1)2+y 2=1相外切,且与圆(x -1)2+y 2=9相内切的动圆圆心的轨迹方程是——————20.设椭圆⎪⎩⎪⎨⎧==ααsin 32cos 4y x (α为参数)上一点P 与x 轴正向所成角∠POx=3π,则点P 的坐标是__.21.在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c ,作圆M 的两条切线相互垂直,则椭圆的离心率为22.已知直线l :y=mx+b,椭圆C:22)1(ax -+y 2=1,若对任意实数m,l 与C 总有公共点,则a,b 应满足的条件是 .23.椭圆4cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)上点到直线20x y -=的最大距离是 .24.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .25.已知椭圆焦点为F 1(0,-22),F 2(0, 22),长轴长为6, 过焦点的弦的长等于短轴长,求这焦点弦的倾斜角.26.在椭圆191622=+y x 上求一点M ,使它到直线l:3x+4y -50=0的距离最大或最小. 27.在△ABC 中,BC=24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.29.椭圆12222=+by a x 与x 轴、y 轴正方向相交于A 、B ,在第一象限内的椭圆上求一点C ,使得四边形OACB 的面积最大.30.点A 、B 分别是椭圆1202362=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.双曲线练习1.F 1、F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°,则△F 1PF 2的面积是________________.2.双曲线焦点在y 轴上,且一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,35=a c ,则此双曲线的方程是________.3.已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为________________.4.已知双曲线22ax -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O为原点),则两条渐近线的夹角为______________________.5.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是_________________.6.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是_________________.7.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.8.双曲线112422=-y x 上点P 到左焦点的距离为6,这样的点有______个. 9.直线y=x+3与曲线14||92=-x x y 的交点个数是 .10.双曲线的两准线间的距离是焦距的53,则此双曲线的离心率为 .11.已知双曲线的渐近线方程是x y 32±=,且双曲线过点(3,4),则双曲线的离心率为 ,双曲线的方程为 . 12.设连接共轭双曲线四个顶点和四个焦点所成两个四边形的面积分别为S 1,S 2,则(21S S )max 为 . 13.已知双曲线的两个焦点坐标为F 1(0,-10), F 2(0,10)且一条渐近线方程是430x y -=,则双曲线的标准方程为14.已知双曲线经过)3,453(-A ,且与另一双曲线116922=-y x ,有共同的渐近线,则此双曲线的标准方程是 .15.已知双曲线的一条渐近线方程是043=+y x ,焦点是椭圆12510022=+y x 与坐标轴的交点,则双曲线的标准方程是 .16.已知双曲线的两条渐近线所夹的锐角是60︒,则此双曲线的离心率为 . 9.直线y x =-1被双曲线,3222=-y x 所截得弦的中点坐标是 ,弦长是 .17.已知关于x ,y 的二次方程4814)16()4(222+-=-+-m m y m x m 表示的是双曲线,则m 的取值范围是 .18.已知双曲线方程为191622=-y x ,经过它的右焦点F 2,作一条直线,使直线与双曲线恰好有一个交点,则该直线的斜率是 .19.已知双曲线方程为422=-x y ,过一点P (0,1),作一直线l ,使l 与双曲线无交点,则直线l 的斜率k 的集合是 .20.双曲线191622=-y x 右支上一点P 到左右两个焦点的距离之比是5:3,则P 点右准线的距离为_____________. 21.以230x y ±=为渐近线,且经过点(1 , 2)的双曲线是 .22.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .23.双曲线1322=-y x 的渐近线中,斜率较小的一条渐近线的倾斜角为 . 24.若双曲线2222by a x -=1的一条渐近线的倾斜角为锐角α,则双曲线的离心率为____________.25.已知双曲线的渐近线方程为043=±y x ,一条准线的方程为0335=+y ,则双曲线方程 .26.双曲线1422=+k y x 的离心率e ∈(,)12,则k 的取值范围是______________.27.椭圆14222=+a y x 与双曲线1222=-y a x 的焦点相同,则a = . 28.如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点, 且∠=︒BAO 30,S ABF∆=)336(21-,则该双曲线方程是 . 29.已知双曲线的中心在原点,以坐标轴为对称轴,且与圆x y 2217+=相交于点A (4 , -1),若圆在点A 的切线与双曲线的渐近线平行,求此双曲线的方程.30.双曲线与椭圆1362722=+y x 有共同的焦点,它们的一个交点的纵坐标为4,求双曲线的方程.31.直线231+=x y 与双曲线14922=-y x 的两个交点与原点构成三角形,求此三角形的面积.32.已知双曲线b x a y a b 222222-=上有一点P ,焦点为F 1、F 2,且∠=F PF 12α,求证:2221αctg b S PF F ·=∆.33.斜率为2的直线l 被双曲线12322=-y x 截得的弦长为1552,求直线l 的方程. 34.已知P 为双曲线x y 2244-=上的动点,Q 是圆41)2(22=-+y x 上的动点,求PQ 的最小值。
圆锥曲线公式大全

圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为B C -)(6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(0yx ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D)其中圆心为(,)22D E --,半径为22142r D E F =+-.2、直线与圆的位置关系 点),(0y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+--(2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】 ④弦长公式:222||d r AB -=2212121()4k x x x x =+--3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B2.双曲线轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距222122()F F c c a b ==- 离心率22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径0,0()M x y左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径 过焦点且垂直于长轴的弦叫通径: ab 22焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a , 即21||||2MF MF a -=(2102||a F F <<)第二定义与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=>【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a by a x b y a x b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长;②弦长公式3.抛物线图形) (消 ) (消x y y y y ky y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=五、.直线与圆锥曲线的关系 1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y2b2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(bx x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸ 112.||||FA FB P+=。
高中圆锥曲线公式总结大全

高中圆锥曲线公式总结大全
高中数学中,圆锥曲线是一个重要的内容,包括椭圆、双曲线和抛物线。
这些曲线的公式是
几何、物理、工程等领域中常用的,下面是圆锥曲线公式总结:
1. 椭圆公式
椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1。
其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x和y方向上的半轴长度。
2. 双曲线公式
双曲线的标准方程为:((x-h)^2)/a^2 - ((y-k)^2)/b^2 = 1。
其中,(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x和y方向上的半轴长度。
3. 抛物线公式
抛物线的标准方程为:y = ax^2 + bx + c。
其中,a、b和c分别为常数,a表示抛物线的开口方向、大小,b表示抛物线水平方向位置,c表示抛物线的最低点(也就是y轴截距)。
4. 曲率半径公式
曲线在某一点的曲率半径R可以使用以下公式计算:R = [(1+(y')^2)^(3/2)]/|y''|。
其中,y'和y''分别表示曲线在该点处的一阶和二阶导数。
5. 弧长公式
曲线在两点之间的弧长可以使用以下公式计算:L = ∫(a to b)[((1+(y')^2)^(1/2)]dx。
其中,a和b分别代表起点和终点,在这个区间内,x的取值范围满足 a≤x≤b。
总之,圆锥曲线的公式是高中数学中的重要内容,不仅在理论研究方面有着广泛的应用,也
在实际问题的建模和解决中具有重要意义。
圆锥曲线公式大全

圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为B C -)(6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(0yx ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D)其中圆心为(,)22D E --,半径为22142r D E F =+-.2、直线与圆的位置关系 点),(0y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+--(2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】 ④弦长公式:222||d r AB -=2212121()4k x x x x =+--3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a by a x b y ax b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式) (消 ) (消x y y y y ky y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=五、.直线与圆锥曲线的关系图形标准方程22y px =()0p >22y px =- ()0p >22x py = ()0p >22x py =-()0p >开口方向向右向左向上向下定义与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)顶点 ()0,0离心率 1e =对称轴 x 轴y 轴范围0x ≥0x ≤0y ≥ 0y ≤ 焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =焦半径0,0()M x y 02p MF x =+02p MF x =-+02p MF y =+02p MF y =-+通径 过抛物线的焦点且垂直于对称轴的弦称为通径:2HH p '=焦点弦长 公式 12AB x x p =++参数p几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b 2=1 (a >b >0)的位置关系: 直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有2解,即Δ>0.直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(bx x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸ 112.||||FA FB P+=。
最全圆锥曲线知识点总结

最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。
这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。
注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。
2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。
如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。
3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。
5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。
如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。
如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。
6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。
在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。
1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。
圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
下面我们来详细整理一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。
圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩ 离心率c e a ==准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2b a.2.椭圆22221(0)x y a b a b+=>>焦半径公式及两焦半径与焦距构成三角形的面积:21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2F PF F PFS b ∆∠=.3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y b⇔+>.4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线的距离(焦准距)2p c = 通径的一半(焦参数):2b a焦半径公式21|()|||a PF e x a ex c =+=+,22|()|||a PF e x a ex c=-=-,两焦半径与焦距构成三角形的面积1221cot 2F PF F PF S b ∆∠=.5.双曲线的内外部: (1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.6.双曲线的方程与渐近线方程的关系:(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b7.抛物线px y 22=的焦半径公式:抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122.8.抛物线px y 22=上的动点可设为P ),2(2 y py 或2(2,2)P pt pt P (,)x y ,其中 22y px =.9.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.11.直线与圆锥曲线相交的弦长公式: AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率,2121212||()4x x x x x x -=+-.12.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 特别地,曲线(,)0F x y =关于原点O 成中心对称的曲线是(,)0F x y --=. 曲线(,)0F x y =关于直线x 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y 轴对称的曲线是(,)0F x y -=. 曲线(,)0F x y =关于直线y x =轴对称的曲线是(,)0F y x =. 曲线(,)0F x y =关于直线y x =-轴对称的曲线是(,)0F y x --=.13.圆锥曲线的第二定义:动点M 到定点F 的距离与到定直线l 的距离之比为常数e ,若01e <<,M 的轨迹为椭圆;若1e =,M 的轨迹为抛物线;若1e >,M 的轨迹为双曲线.注意:1、还记得圆锥曲线的两种定义吗解有关题是否会联想到这两个定义 2、还记得圆锥曲线方程中的:(1)在椭圆中:a 是长半轴,b 是短半轴,c 是半焦距,其中222b ac =-,,(01)ce e a=<<是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(2)在双曲线中:a 是实半轴,b 是虚半轴,c 是半焦距,其中222b c a =-,,(1)c e e a=>是离心率,2a c 是准心距,2b c 是准焦距, 2b a是半通径.(3)在抛物线中:p 是准焦距,也是半通径.3、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序(到定点的距离比到定直线的距离)4、离心率的大小与曲线的形状有何关系(圆扁程度,张口大小)等轴双曲线的离心率是多少(2e =)5、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).注意:尤其在求双曲线与直线的交点时:当0∆>时:直线与双曲线有两个交点(包括直线与双曲线一支交于两点和直线与双曲线两支各交于一点两种情况);当0∆=时,直线与双曲线有且只有一个交点(此时称指向与双曲线相切),反之,当直线与双曲线只有一个交点时,直线与双曲线不一定相切,此时直线与双曲线的一条渐近线平行,当0∆<时,直线与双曲线没有交点.6、椭圆中,注意焦点、中心、短轴端点所组成的直角三角形.此时222a b c =+. 7、通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论) 8、你知道椭圆、双曲线标准方程中,,a b c 之间关系的差异吗9、如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点.此时两个方程联立,消元后为方程变为一次方程.椭圆练习1.过椭圆12222=+by a x (a>b>0)的左焦点F 1任做一条不与长轴重合的弦AB,F 2为椭圆的右焦点,则△ABF 1的周长是( ) (A)2a (B)4a (C)2b (D)4b2.设b a b a b a +=+∈则,62,,22R 的最小值是( )(A)22- (B)335-(C)-3(D)27-3.椭圆的两个焦点和短轴的两个顶点,是一个含600角的菱形的四个顶点,则椭圆的离心率为( ) (A )21 (B )23 (C )33 (D )21或23 4.设常数m>0,椭圆x 2+m 2y 2=m 2的长轴是短轴的两倍,则m 的值等于( ) (A )2 (B )2 (C )2或21 (D )2或225.过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为12 (D)136.如果椭圆的两个焦点将长轴分成三等份,那么这个椭圆的两条准线间的距离是焦距的( )(A )18倍 (B )12倍 (C )9倍 (D )4倍7.当关于x,y 的方程x 2sin α-y 2cos α=1表示的曲线为椭圆时,方程(x+cos α)2+(y+ sin α)2=1所表示的圆的圆心在( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.已知椭圆的焦点为F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q,使得|PQ|=|PF 2|,那么动点Q 的轨迹是( ) (A )圆 (B )椭圆 (C )直线 (D )其它9.已知椭圆14922=+y x 与圆(x-a)2+y 2=9有公共点, 则a 的取值范围是( )(A)-6<a<6 (B)0<a≤5 (C)a 2<25 (D)|a|≤610.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) (A)2 (B)12(C)2(D1 11.在椭圆12222=+by a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点依次与某一焦点连结的线段长为r 1,r 2,r 3,则有( ) (A )r 1,r 2,r 3成等差数列 (B )231211r r r =+ (C )r 1,r 2,r 3成等比数列 (C )以上都不对 12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF13.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) (A)(0,1) (B)1(0,]2(C)(D)14.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为( ) (A )22186x y += (B )221166x y += (C )22184x y += (D )221164x y +=15.若椭圆19822=++y a x 的离心率是21,则a 的值为————————. 16.椭圆x 2cos 2α+y 2=1(0<α<π,α≠2π)的半长轴=——————,半短轴=——————,半焦距=——————,离心率=——————. 17.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =,则该椭圆的离心率的取值范围为 .是椭圆14922=+y x 上的一点,F 1,F 2 是椭圆的焦点,且∠F 1MF 2=900,则△F 1MF 2的面积等于——————. 19.与圆(x+1)2+y 2=1相外切,且与圆(x -1)2+y 2=9相内切的动圆圆心的轨迹方程是—————— 20.设椭圆⎪⎩⎪⎨⎧==ααsin 32cos 4y x (α为参数)上一点P 与x 轴正向所成角∠POx=3π,则点P 的坐标是__.21.在平面直角坐标系xOy 中,椭圆22221(0)y x a b a b+=>>的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c ,作圆M 的两条切线相互垂直,则椭圆的离心率为22.已知直线l :y=mx+b,椭圆C:22)1(a x -+y 2=1,若对任意实数m,l 与C 总有公共点,则a,b 应满足的条件是 .23.椭圆4cos 2sin x y ϕϕ=⎧⎨=⎩(ϕ为参数)上点到直线20x y -=的最大距离是 .24.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .25.已知椭圆焦点为F 1(0,-22),F 2(0, 22),长轴长为6, 过焦点的弦的长等于短轴长,求这焦点弦的倾斜角.26.在椭圆191622=+y x 上求一点M ,使它到直线l:3x+4y -50=0的距离最大或最小. 27.在△ABC 中,BC=24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.29.椭圆12222=+by a x 与x 轴、y 轴正方向相交于A 、B ,在第一象限内的椭圆上求一点C ,使得四边形OACB 的面积最大.30.点A 、B 分别是椭圆1202362=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值.双曲线练习、F 2为双曲线1422-=-y x 的两个焦点,点P 在双曲线上,且∠F 1PF 2=90°,则△F 1PF 2的面积是________________.2.双曲线焦点在y 轴上,且一个焦点在直线5x -2y +20=0上,两焦点关于原点对称,35=a c ,则此双曲线的方程是________.3.已知双曲线22163x y -=的焦点为1F 、2F ,点M 在双曲线上且1MF x ⊥轴,则1F 到直线2F M 的距离为________________. 4.已知双曲线22ax -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O为原点),则两条渐近线的夹角为______________________.5.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是_________________.6.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是_________________.7.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.8.双曲线112422=-y x 上点P 到左焦点的距离为6,这样的点有______个. 9.直线y=x+3与曲线14||92=-x x y 的交点个数是 .10.双曲线的两准线间的距离是焦距的53,则此双曲线的离心率为 .11.已知双曲线的渐近线方程是x y 32±=,且双曲线过点(3,4),则双曲线的离心率为 ,双曲线的方程为 . 12.设连接共轭双曲线四个顶点和四个焦点所成两个四边形的面积分别为S 1,S 2,则(21S S )max 为 . 13.已知双曲线的两个焦点坐标为F 1(0,-10), F 2(0,10)且一条渐近线方程是430x y -=,则双曲线的标准方程为14.已知双曲线经过)3,453(-A ,且与另一双曲线116922=-y x ,有共同的渐近线,则此双曲线的标准方程是 .15.已知双曲线的一条渐近线方程是043=+y x ,焦点是椭圆12510022=+y x 与坐标轴的交点,则双曲线的标准方程是 .16.已知双曲线的两条渐近线所夹的锐角是60︒,则此双曲线的离心率为 . 9.直线y x =-1被双曲线,3222=-y x 所截得弦的中点坐标是 ,弦长是 .17.已知关于x ,y 的二次方程4814)16()4(222+-=-+-m m y m x m 表示的是双曲线,则m 的取值范围是 .18.已知双曲线方程为191622=-y x ,经过它的右焦点F 2,作一条直线,使直线与双曲线恰好有一个交点,则该直线的斜率是 .19.已知双曲线方程为422=-x y ,过一点P (0,1),作一直线l ,使l 与双曲线无交点,则直线l 的斜率k 的集合是 .20.双曲线191622=-y x 右支上一点P 到左右两个焦点的距离之比是5:3,则P 点右准线的距离为_____________. 21.以230x y ±=为渐近线,且经过点(1 , 2)的双曲线是 .22.双曲线的离心率e =2,则它的一个顶点把焦点之间的线段分成长、短两段的比是 .23.双曲线1322=-y x 的渐近线中,斜率较小的一条渐近线的倾斜角为 . 24.若双曲线2222by a x -=1的一条渐近线的倾斜角为锐角α,则双曲线的离心率为____________.25.已知双曲线的渐近线方程为043=±y x ,一条准线的方程为0335=+y ,则双曲线方程 .26.双曲线1422=+k y x 的离心率e ∈(,)12,则k 的取值范围是______________.27.椭圆14222=+a y x 与双曲线1222=-y a x 的焦点相同,则a = . 28.如图,OA 是双曲线的实半轴,OB 是虚半轴,F 为焦点,且∠=︒BAO 30,S ABF∆=)336(21-,则该双曲线方程是 . 29.已知双曲线的中心在原点,以坐标轴为对称轴,且与圆x y 2217+=相交于点A (4 , -1),若圆在点A 的切线与双曲线的渐近线平行,求此双曲线的方程.30.双曲线与椭圆1362722=+y x 有共同的焦点,它们的一个交点的纵坐标为4,求双曲线的方程.31.直线231+=x y 与双曲线14922=-y x 的两个交点与原点构成三角形,求此三角形的面积.32.已知双曲线b x a y a b 222222-=上有一点P ,焦点为F 1、F 2,且∠=F PF 12α,求证:2221αctg b S PF F ·=∆.33.斜率为2的直线l 被双曲线12322=-y x 截得的弦长为1552,求直线l 的方程. 34.已知P 为双曲线x y 2244-=上的动点,Q 是圆41)2(22=-+y x 上的动点,求PQ 的最小值。