管理运筹学 第6章 单纯形法的灵敏度分析与对偶

合集下载

第6章 单纯形法的灵敏度分析与对偶2007-10-15

第6章 单纯形法的灵敏度分析与对偶2007-10-15
目标:min f=300y1+400y2+250y3
s.t. y1+2y2>=50
y1+y2+y3>100
y1,y2,y3 >=0
❖ 目标:max z=50x1+100x2
❖ S.t. ❖ x1+x2<=300 ❖ 2x1+x2<=400 ❖ x2<=250

❖ x1,x2>=0
原问题
目标:min f=300y1+400y2+250y3 s.t.
x1的目标函数系数C’有:
50-50=c1+ L ≤C‘=C1+△C1≤ c1+R=50+50,
0≤C‘≤100时,最优解不变。
**********************最优解如下*************************
目标函数最优值为 : 27500
变量
最优解 相差值
-------
-------- --------
设备B
2
设备C
0
II
资源限制
1
300台时
1
400
1
250
生产I可获得50元,II可获得100元,如何安排生产,获得 MAX?
模型
❖ 目标:max z=50x1+100x2 ❖ S.t. x1+x2<=300 ❖ 2x1+x2<=400 ❖ x2<=250 ❖ x1,x2>=0
假设现在有一个公司要租用工厂设备,那 么工厂获取利润有两种方法,一是自己生 产,二是出租设备资源。自己生产已有模 型。那么,如果出租,那么如何构建模型? 设备价格为Ay1,By2,Cy3; 则

韩伯棠管理运筹学(第三版)_第六章_单纯形法的灵敏度分析与对偶

韩伯棠管理运筹学(第三版)_第六章_单纯形法的灵敏度分析与对偶

迭代 基
次数 变 量
CB
x1 x2 。 s1 50 100 0
s2
s3
0 0b
x1 50 1 0 1
0 -1 50
S2 0 0 0 -2
1 1 50
2
x2 100 0 1 0
0 1 250
zj
50 100 50 0 50
σj=cj-zj
0 0 -50
0 -50 2750 0

从上表可以发现设备台时数的约束方程中的松弛变量S1
j ck akj 0, ck akj j ,
当a kj
0, ck
j
akj
,这里 j
akj
0;
当a kj
0, ck
j
akj
,这里 j
akj
0;
而当j k时, k ck ck zk ck ck zk ckaKK ,
因为xk是基变量,知 k 0, akk 1,故知 k 0.
x1 x2 s1 50 100 0 1 01 0 0 -2 0 10
s2
s3
00
b
0 -1 50
1 1 50
0 1 250
zj σj=cj-zj
50 100 50 0 0 -50
0 50 0 -50
Z= 27500
先对非基变量s1的目标函数的系数C3进行灵敏度 分析。这里σ3=-50,所以当C3 的增量ΔC3≤-(-50)即 ΔC3≤50时,最优解不变,也就是说S1的目标函数的系 数C′3=C3+△C3≤0+50=50时,最优解不变。
规划问题的对偶价格就不变。而要使所有的基变量仍然
是基变量只要当bj 变化成b′j =bj+△bj时,原来的基不变所 得到的基本解仍然是可行解,也就是所求得的基变量的

管理运筹学 第6章 目标规划

管理运筹学 第6章 目标规划

目标规划问题及模型
∵正负偏差不可能同时出现,故总有:
x1-x2+d--d+ =0
若希望甲的产量不低于乙的产量,即不希望d->0,用目标约束可
表为:
min{d }
x1
x2
d
d
0
若希望甲的产量低于乙的产量,即不希望d+>0,用目标约束可
表为:
min{d }
x1
x2
d
d
0
若希望甲的产量恰好等于乙的产量,即不希望d+>0,也不希望
2x1 2x2 12
s.t
4
x1 x1
2x2
8 16
4x2 12
x1 , x2 0
其最优解为x1=4,x2=2,z*=14元
目标规划问题及模型
但企业的经营目标不仅仅是利润,而且要考虑多个方面,如: (1) 力求使利润指标不低于12元; (2) 考虑到市场需求,甲、乙两种产品的生产量需保持1:1的比
标决策的需要而由线性规划逐步发展起来的一个分支。 由于现代化企业内专业分工越来越细,组织机构日益复
杂,为了统一协调企业各部门围绕一个整体的目标工作,产 生了目标管理这种先进的管理技术。目标规划是实行目标管 理的有效工具,它根据企业制定的经营目标以及这些目标的 轻重缓急次序,考虑现有资源情况,分析如何达到规定目标 或从总体上离规定目标的差距为最小。
min Z = f( d ++ d - )
(2) 要求不超过目标值,但允许达不到目标值,即只有使 正偏差量要尽可能地小(实现最少或为零)
min Z = f( d +)
目标规划问题及模型
例1. 某企业计划生产甲,乙两种产品,这些产品分别要在 A,B,C,D四种不同设备上加工。按工艺文件规定,如表所示。

[经济学]单纯形法与对偶问题

[经济学]单纯形法与对偶问题
’小于0,可知
c1≤50时,也就是x1的 目标函数c1’在0≤c1’≤100时最优解不变。
j ' min a 1 j 0 50 。这样可以知道当-50≤Δ a ' 1 j
3 50 j ' 50,有 max a 0 1 j 50 同样有 a13 1 a'1 j
δj δj Max a'kj 0 ΔCk Min a'kj 0(其中 k是某个固定的值, j是1到n的所有数) a' a' kj kj
管 理 运 筹 学
7
§1
单纯形表的灵敏度分析
例: 目标函数:Max z=50X1+100X2 约束条件:X1+X2≤300 2X1+X2≤400 X2≤250 X1,X2≥0 最优单纯形表如下 迭代次数 基变量 X1 S2 X2 ZJ CJ -ZJ
管 理 运 筹 学
2
第六章 单纯形法的灵敏度分析与对偶问题
• §1 • §2 • §3 • §4
单纯形表的灵敏度分析 线性规划的对偶问题 对偶规划的基本性质 对偶单纯形法





3
单纯形表





4
§1
单纯形表的灵敏度分析
一、目标函数中变量系数Ck灵敏度分析(在什么范围内变化, 最优解不变,与第二章,第三章联系起来) 在线性规划的求解过程中,目标函数系数的变动将会影响检 验数的取值,但是,当目标函数的系数的变动不破坏最优判 别准则时,原最优解不变,否则,原最优解将发生变化,要 设法求出新的最优解。下面我们具体的分析 1.在最终的单纯形表里,X k是非基变量 由于约束方程系数增广矩阵在迭代中只是其本身的行的初等 变换与Ck没有任何关系, 所以当Ck变成Ck+ Ck时,在最终单纯形表中其系数的增广 矩阵不变,又因为Xk是非基变量,所以基变量的目标函数的 系数不变,即CB不变,可知Zk也不变,只是Ck变成了Ck+ Ck。这时 K= Ck-Zk就变成了 Ck+ Ck- Zk= K+ Ck。 要使原来的最优解仍为最优解,只要 K+ Ck≤0即可,也 就是Ck的增量 Ck≤ - K。

管理运筹学ppt6第六章 单纯形法的灵敏度分析与对偶ok

管理运筹学ppt6第六章 单纯形法的灵敏度分析与对偶ok

§ 1 单纯形表的灵敏度分析
解:首先求出x3在最终表上的系数列B−1P'6,zj,σj
迭代 基变
x1
x2
s1
s2
s3
x3
次数 量
cB
50 100
0
0
0
160
x1
50
1
0
1
0
-1
10.5
s2
0
0
0
-2
1
1
20
2
x2
100
0
1
0
0
1
1
zj
50
100
50
0
50 125
σj=cj-zj
0
0
-50
0
-50 35
➢ 基变量系数cB变化 ➢ 对所有的zj都变化,包括zk
z j cB p j
假设cB=(cB1, cB2,…, ck ,…,cBm)
(cB1, cB2,…, ck+ck ,…,cBm)
§ 1 单纯形表的灵敏度分析
原最优单纯形表可表示如下。
迭代 基变

xk

xj

次数 量
cB

ck

cj

xB1
若要最优解不变
j = j ck akj
当j≠k时, j
0
akj 0
ck
j
akj
akj 0
ck
j
akj
当j=k时, k ck ck zk
xk为基变量 k 0, akk 1
k = 0
=ck ck zk ck akk
max{
j

运筹学单纯形法的灵敏度分析

运筹学单纯形法的灵敏度分析
的产量就大于零,即需考虑生产丙产品了。
• 所以,丙产品单位利润的变动范围是c3<4;
• 讨论: • 假设此时c3增加到6元,产量应为多少?
C3已超出变动范围
• 代入单纯形表 最后一段 继续计算。

Cj ↓
→ 基
0 b
23 x1 x2
6 x3
0 0 Qi x4 x5
2
x1
1
1
0 (-1) 4 -1
0
0
-1 4 -1
1
2 -1 1
0
-3 -5 -1
Bi变化影响哪些因素?
• 当bi变化时,从单纯形法计算过程可知,它不影响检验数, 只影响b列本身,也就是说,它不影响基变量但会改变最优 解的具体数值,如上例中,假设b1发生变化,劳动力使用从 一个劳动力增加到2个劳动力,即b1=2,则
• ∵b变化不影响检验数 • ∴单纯形表最后一段基变量结构不变,仍是x1,x2,改变的
x5
Qi
0
x4
1
1
0
x5
3
Cj-Zj →
1/3
1/3 1/3 1
1/3 (4/3) 7/3 0
2
3
10
0
3
1 9/4 →
0
0
x4 1/4 (1/4)
0
-1/4 1 -1/4 1

2
3
x2 9/4 1/4
1 7/4 0 3/4 9
Cj-Zj →
5/4
0 -17/4 0 -9/4
2
x1
1
1
3
3
x2
2
0
Cj-Zj → -8
5b1 3
分析

第6章 运筹学课件单纯形法的灵敏度分析

第6章   运筹学课件单纯形法的灵敏度分析
第六章 单纯形法的灵敏度 分析与对偶
管 理
运 筹

1
§1 单纯形表的灵敏度分析 §2 线性规划的对偶问题 §3 对偶规划的基本性质 §4 对偶单纯形法
管 理
运 筹

2
第一节 单纯形表的灵敏度分析
管 理
运 筹

3
一,目标函数中变量Ck系数灵敏度分析 目标函数中变量C
1.在最终的单纯形表里, 1.在最终的单纯形表里,Xk是非基变量 在最终的单纯形表里 由于约束方程系数增广矩阵在迭代中只是其 没有任何关系, 本身的行的初等变换与ck 没有任何关系,所以当 ck 变成 ck + ck 时,在最终单纯形表中其系数的增 广矩阵不变,又因为X 是非基变量, 广矩阵不变,又因为Xk是非基变量,所以基变量的 目标函数的系数不变, 目标函数的系数不变,即CB不变,可知Zk也不变, 不变,可知Z 也不变,
管 理 运 筹 学
20X2 100 0 0 1 100 0
S1 0 1 -2 0 50 -50
S2 0 0 1 0 0 0
S3 0 -1 1 1 50 27500 -50
CB
50 0
50 1 0
b
50 50 250
2
X2
100 0 ZJ 50 0
CJ -ZJ
管 理

5
2. 在最终的单纯形表中, k 是基变量 在最终的单纯形表中, x 当 ck 变成 ck + ck 时,最终单纯形表中约束
方程的增广矩阵不变,但是基变量的目标函数的系 方程的增广矩阵不变, 数 cB 变了,则 变了, 妨设
cB = (cB1 , cB 2 , L , ck , L cBm ), 当 cB 变成 cB = (cB1 , cB 2 ,L , ck +Vck , L cBm ), 则:

(运筹学大作业)单纯性法与对偶单纯性法的比较

(运筹学大作业)单纯性法与对偶单纯性法的比较

对偶单纯形法与单纯形法对比分析1.教学目标:通过对偶单纯形法的学习,加深对对偶问题的理解2.教学内容:1)对偶单纯形法的思想来源 2)对偶单纯形法原理3.教学进程:1)讲述对偶单纯形法解法的来源:所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。

2)为什么要引入对偶单纯形法:单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。

由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w 。

据此可知,用单纯形法求解线性规划问题时,在得到原问题的一个基可行解的同时,在检验数行得到对偶问题的一个基解,并且将两个解分别代入各自的目标函数时其值相等。

我们知道,单纯形法计算的基本思路是保持原问题为可行解(这时一般其对偶问题为非可行解)的基础上,通过迭代,增大目标函数,当其对偶问题的解也为可行解时,就达到了目标函数的最优值。

那么对偶单纯形法的基本思想可以理解为保持对偶问题为可行解(这时一般原问题为非可行解)的基础上,通过迭代,减小目标函数,当原问题也达到可行解时,即达到了目标函数的最优值。

其实对偶单纯形法本质上就是单纯形法, 只不过在运用时需要将单纯形表旋转一下而已。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 单纯形法的灵敏度分析与对偶
• §1 单纯形表的灵敏度分析 • §2 线性规划的对偶问题 • §3 对偶规划的基本性质 • §4 对偶单纯形法
管理运筹学
1
§1 单纯形表的灵敏度分析
一、目标函数中变量Ck系数灵敏度分析
1.在最终的单纯形表里,X k是非基变量 由于约束方程系数增广矩阵在迭代中只是其本身的行的初等变换与Ck没有任何关系, 所以当Ck变成Ck+ Ck时,在最终单纯形表中其系数的增广矩阵不变,又因为Xk是非 基变量,所以基变量的目标函数的系数不变,即CB不变,可知Zk也不变,只是Ck变
0 0 -50 0 -50
从上表我们可以发现各个松弛变量的值,正好等于相应变量的对偶价格。在最 优解中S2 =50是基变量,即为,原料A有50千克没用完,再增加A原料是不会增 加利润的, A的对偶价格为0。对于任何为基变量的松弛变量所对应的约束条件的 对偶价格为0。
管理运筹学
7
§1 单纯形表的灵敏度分析
下面我们研究当右端项bj发生变化时,在什么范围内其对偶价格不变。由于bj 的变化并不影响系数矩阵的迭代,故其最终单纯形表中的系数矩阵没有变化。由
此可见当bj变化时,要使原来的基不变得到的基本可行解仍然是可行解,也就是所 求的基变量的值一定要大于0。所谓使其对偶价格不变的bj的变化范围,也就是使 其最优解的所有基变量不变,且所得的最优解仍然是可行的bj的变化范围。
50
0
0 0 -2 1 1
50
100 0 1 0 0 1
250
C’1 100 C’1 0 -C’1+100
CJ -ZJ
0
0 - C’1 0 C’1-100
从δ3≤0,得到-c1’≤0,即c1’≥0,并且从δ5≤0,得 到c1’≤100。
那么如果c1’取值超出这个范围,必然存在一个检验数 大于0,我们可以通过迭代来得到新的最优解。
换,Pk变成Pk’仅仅影响最终单纯形表上第k列数据,包括Xk的系数列、Zk以 及 k,这时最终单纯形表上的Xk的系数列就变成了B-1Pj’,而Zk就变成CBB-1Pk’, 新的检验数 k=Ck-CBB-1Pk’。若 k≤0,则原最优解仍然为最优解。若 k 〉0,
则继续进行迭代以求出最优。
例 以第二章例1为基础,设该厂除了生产Ι,Ⅱ种产品外,现在试制成一个新产 品Ⅲ,已知生产产品Ⅲ,每件需要设备2台时,并消耗A原料0.5公斤。B原料 1.5公斤,获利150元,问该厂应该生产该产品多少?
解:首先求出X3在最终表上的系数列 B1P'6
1 0 1 1.5 0.5
0.5
B1P6'2
11
•2
0
,z6(50,0,01001)2,5
0 01 1 1
1
'6C'jZ'63,5填入下表
迭代 基变量 CB X1 X2 S1 S2 S3 X3
b
次数
50 100 0 0 0 150
2 X1Biblioteka S250 1 0 1 0 -1 0.5 50 50/0.5
0 0 0 -2 1 1 0
50
X2
100 0 1 0 0 1 1
250 250/1
ZJ
50 100 50 0 50 125 27500
CJ -ZJ
0 0 -50 0 -50 35
管理运筹学
16
§1 单纯形表的灵敏度分析
由 于 6 0 , 可 知 此 解 不 是 最 优 解 , 我 们 要 进 行 第 3 次 迭 代 , 选 X 3 为 入 基 变 量 ,
实际意义可以描述为:当设备台时数的对偶价格不变,都为每设备台
时数在250与325之间变化,则设备台时数的对偶价格不变,都为每台设备
台时50元。
管理运筹学
13
§1 单纯形表的灵敏度分析
三、约束方程系数矩阵A灵敏度分析
下面分两种情况讨论
1.在初始单纯形表上的变量Xk的系数列Pk改变为P’k经过迭代后,在最终单 纯形表上Xk是非基变量。由于单纯形表的迭代是约束方程的增广矩阵的行变
如要使XB成为可行解,只要使上述等式的右边>0,就可求出
b k 的取值范围,也就是使得第K个约束条件的对偶价格不变的
bk的变化范围。
Dk
d '1k d '2k .d..'mk
, 则B-1b
bk
bk
bk
...
bk
d'1k
d'2k
d'3k
d'm
k
X'B1 bkd1'k
新的最优 XB 解 ',有X 为 B'.X X..''B B2m. .bb.kkddm 2''kk
这个约束条件的对偶价格就和这个剩余变量的
z
有关了。这将使得最优目
j
标值特别“恶化”而不是改进,故这时约束条件的对偶价格应取z j 值的相反
数-
z

j
对于含有等于号的约束条件,其约束条件的对偶价格就和该约束方
程的人工变量有关了。其约束条件的对偶价格就等于此约束方程的人工变
量的 z j值。
管理运筹学
8
§1 单纯形表的灵敏度分析
b
50 100 0 0 0 150
1 0 1 0 -1 0.5 50 0 0 -2 1 1 -2 50 0 1 0 0 1 1.5 250 50 100 50 0 50 175 27500
0 0 -50 0 -50 -25
管理运筹学
15
§1 单纯形表的灵敏度分析
例 假设上例题中产品Ш的工艺结构有了改进,这时生产1件Ш产品需要 使用1.5台设备 ,消耗原料A为2千克,原料B为1千克,每件Ш产品的 利润为160元,问该厂的生产计划是否要修改。
管理运筹学
11
§1 单纯形表的灵敏度分析
要 使 X 'B0也 就 是 各 个 分 量 均 不 小 于 0, 用 一 个 数 学 式 子 来 表 示 bk的 允 许 变 化 范 围 是
M ax d xB 'iik|d'ik0 bkM in d xB 'iik|d'ik0 下面我们仍以第二章例1在最终单纯形表上对bj 进行灵敏度分析。 最终单纯形表如下所示:
120 100 80 20 0 160
CJ -ZJ
-70 0 -80 -20 0 0
200 ---
50 50/1
0
250/3
32000
可知此规模的最优解X1=0, X2=0, S1=0, S2=0, S3=50, X3=200,此时, 最大目标函数为32000元。也就是说,该厂的新的生产计划为不生产Ι、
我们对b1进行灵敏度分析,因为在第一个约束方程中含有松弛变量S1,
所以松弛纯 变形 量表 在中 最 1, 2 的 , 终 0) T就 系 单 B 是 -的 1 数第 列一 (
因d为 1'110,d2'120,X150,X250,可M 以axxdB i1i|d'i1050 而 MinxdB i1i|d'i102,5故有5当 0b12,5即 250bb32第 5 一个 约束条件的变 对。 偶价格不
迭代次数 基变量
CB
X1
50
S2
0
2
X2
100
ZJ
CJ -ZJ
X1 X2 S1 S2 S3 50 100 0 0 0 1 0 1 0 -1 0 0 -2 1 1 0 1 00 1 50 100 50 0 50
0
0 -50 0 -50
b
50 50 250 27500
管理运筹学
12
§1 单纯形表的灵敏度分析
解:这是一个增加新变量的问题。我们可以把它认为是一个改变变量X3在初始 表上的系数列的问题,
管理运筹学
14
§1 单纯形表的灵敏度分析
接上页
从(0,0,0)T变成 (2,0., 15.)5T。这样在原来 上的 添最 上终 新表 的一 X3的 列一 变列 量, , 把它放 S3之在后的第六列 X3是 上非 ,基 显变 然量, 上(在 2,0最 ., 15.)终 5就表 变成了
B-1P612
0 1
11•02.50.25,这时 Z6500.51001.52515,06
C6Z6
25
0 0 1 1.5 1.5
如下表,这 所时 示新6变 0,量 可知原最优解 题就 的是 最,见 新 优表 .问 解
迭代次数 基变量
CB
X1
50
S2
0
X2
100
ZJ
CJ -ZJ
X1 X2 S1 S2 S3 X3
ZJ=(CB1, CB2。。。, Ck,…,CBm)(a’1j , a’2j ,…, a’Kj ,…, a’mj) Z’J=(CB1, CB2。。。, Ck+ Ck,…,CBm)(a’1j , a’2j ,…, a’Kj ,…, a’mj) T = ZJ + Ck a’Kj
T
管理运筹学
2
§1 单纯形表的灵敏度分析
管理运筹学
6
§1 单纯形表的灵敏度分析
二、约束方程中常数项的灵敏度分析
迭代次数 基变量
CB
X1 X2 S1 S2 S3
b
50 100 0 0 0
2
X1
50
1 0 1 0 -1 50
S2
0
0 0 -2 1 1 50
X2
100
0 1 0 0 1 250
ZJ
50 100 50 0 50 27500
CJ -ZJ
--50/1 250/3
相关文档
最新文档