运筹学-对偶单纯形法

合集下载

运筹学-单纯形法灵敏度对偶

运筹学-单纯形法灵敏度对偶

若新增约束如下:
max z 50x1 100x2 x1 x2 300 2x1 x2 400 x2 250 10x1 30x2 5000(电力约束) x1, x2 , 0
x1 x2 s1
把最优解x1=50,x2 =250代入电力约束 1050+30 250=80005000 新约束不满足,最优解变化
例题:已知某线性规划初始可行基是(S1 S2 S3 a1), 最终单纯形表如下,求对偶价格不变时的△bi变化范围
x1 x2 s1
50 100 0
X1 50
1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0
0
1
Zj
50 100 0
δj
0
0
0
(1) △b1的变化范围: ?
(2) △b2的变化范围:?
(3) △b3的变化范围: ? (4) △b4的变化范围:?
1 0 1 2 0.5
B1 p6'
2
1
1
0.5
2
0 0 1 1.5 1.5
Z6' 50 0.5 0 (2) 100 1.5 175
' 6
C6
Z6'
150 175
25
δ6´<0,最优解不变,即仍生产Ⅰ50件,Ⅱ100件。
2、变量xk系数列由pk变为pk´,在最终单纯形表 上xk是基变量
x1 x2 s1
50 100 0
X1 50 1
0
0
S3 0
0
0
0
X2 100 0
1
0
s1 0
0

运筹学 对偶单纯形法

运筹学 对偶单纯形法
3.若所有akj’≥0( j = 1,2,…,n ),则原问题 无可行解,停止;否则,若有akj’<0 则选
=min{j’ / akj’┃akj’<0}=r’/akr’那么 xr为进基变量,转4; 4.以akr’为转轴元,作矩阵行变换使其变为1,该
列其他元变为0,转2。
2.对偶单纯形法
例3.2:求解线性规划问题:
1.线性规划对偶问题
对称形式: (P) Max z = cT x s.t. Ax ≤ b x ≥0 “Max -- ≤ ”
互为对偶 (D) Min f = bT y s.t. AT y ≥ c y ≥0 “Min-- ≥”
线性规划的对偶模型
原问题(或对偶问题) 约束条件右端项 目标函数变量的系数 目标函数 max 约 束 条 件 m个 ≤ ≥ = n个 变 量 ≥0 ≤0 无约束 对偶问题(或原问题) 目标函数变量的系数 约束条件右端项 目标函数 min m个 ≥0 ≤0 无约束 n个 ≥ ≤ = 约 束 条 件 变 量

所有aik
计算
0


Hale Waihona Puke 0 bi be min aik 0 aik aek
计算
j min aej 0 k < aej aek
以为中心元素进行迭代
以为中心元素进行迭代
单纯形法和对偶单纯形法步骤
2.对偶单纯形法 对偶单纯形法的适用范围 对偶单纯形法适合于解如下形式 的线性规划问题
0 x4 0 1 0 0 0 1 0 0 0 1 0 0
0 x5 0 0 1 0 -1 -1 1 -100 -1 1 1 -50
I
θ i 300 400 250 50 75

运筹学及其应用4.3 对偶单纯形法

运筹学及其应用4.3 对偶单纯形法
3
min w= 2x1+3x2+4x3+0x4+0x5 x1+2x2+ x3-x4= 1 2x1- x2+3x3– x5=4 x1,x2,x3,x4,x5≥ 0
min w= 2x1+3x2+4x3+0x4+0x5 -x1-2x2- x3+x4= -1 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4,x5≥ 0
4
234 000
0
x1 x2 x3 x4 -1 -2 -1
x4 x5 b 1 0 -1
max

2 −2
4 ,
−3

=
−1
0 x5 -2* 1 -3 0 1 -4
σ 234 000
0 x4 0 -2.5 0.5 1 -0.5 1
2 x1 1 -0.5 1.5 0 -0.5 2
σ 0 4 1 0 1 -4
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格; (2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
1
步骤:(1)保持σj ≥ 0,j= 1,···,n,确定XB,建立计算表格;
(2)判别XB = B-1b ≥ 0是否成立? ①若成立,XB为最优基变量; ②若不成立,转(3);
5
• 作业 • P81 1.12(1)
6
§3 对偶单纯形法
单纯形法:由 XB = B-1b ≥ 0,使σj ≥ 0,j = 1,···,m 对偶单纯形法:由σj ≥ 0(j= 1,···,n),使XB = B-1b ≥ 0 相同点:都用于求解原问题

运筹学(对偶问题及性质)

运筹学(对偶问题及性质)
1
若初始矩阵中变量 xj的系数向量为Pj, 迭代后为P’j, 则有 P’j=B-1 Pj
2
当B为最优基时,应有
3
令Y=CBB-1, 则
项 目
基变量
非基变量
XB
XN Xs
CB XB B-1b
I
B-1N B-1
cj-zj
0 -Ys1
XB XN
Xs
0 Xs b
B N
I
cj-zj
CB CN
0
项 目
基变量
非基变量
XB
XN Xs
CB XB B-1b
I
B-1N B-1
cj-zj
0
CN-CBB-1N -CBB-1
02
对偶性质
对偶性质
例2.4 已知线性规划 的最优解是X*=(6,2,0)T,求其对偶问题的最优解Y*。 解:写出原问题的对偶问题,即 标准化
Y*=(1,1),最优值w=26。
解此线性方程组得y1=1,y2=1,从而对偶问题的最优解为:
对偶问题的第一、二个约束的松弛变量等于零,即y3=0,y4=0,带入方程中:
在市场竞争的时代,厂长的最佳决策显然应符合两条: 吃亏原则。即机时定价所赚利润不能低于加工甲、乙型产品所获利润。由此原则,便构成了新规划的不等式约束条件。 竞争性原则。即在上述不吃亏原则下,尽量降低机时总收费,以便争取更多用户。
设A、B、C、D设备的机时价分别为y1、y2、y3、y4,则新的线性规划数学模型为:
原问题的松弛变量
x1
x2
x3
x4
x5
x3
15/2
0
0
1
5/4
-15/2
x1
7/2

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

运筹学02对偶理论(2)对偶单纯形法,灵敏度与参数分析

运筹学02对偶理论(2)对偶单纯形法,灵敏度与参数分析
从满足条件(2)的基出发去找原问题的最优解→ 对偶单纯形法思想: 从满足条件(2) 的基(一般称为正则基)B出发,经 过换基运算到另一个正则基,即一直保证条件 (2)成立, 直到找到一个满足条件(1)的正则基。
3.3 对偶单纯形法 Dual Simplex Method
Chapter3 对偶理论 Dual Theory
注:当模型的数据发生变化后,不必对线性规划问题
重新求解,而用灵敏度分析方法直接在原线性规划取
得的最优结果的基础上进行分析或求解 . 线性规划的参数分析(Parametric Analysis)是研究和分
析目标函数或约束中含有的参数μ在不同的波动范围内 最优解和最优值的变化情况.这种含有参数的线性规划
3.3 对偶单纯形法 Dual Simplex Method
Chapter3 对偶理论 Dual Theory
X XB σ
b
B-1A B-1b C-CBB-1A -CBB-1b 若上表为最优单纯形表,则下列两个式子同时成立:
(1) B1b 0 (可行性条件,又叫对偶最优性条件)
(2) C CB B 1 A 0 (最优性条件,又叫对偶可行性条件)
4.最优解、无可行解的判断。
作业:教材P81 1.12 (2)
下一节:灵敏度分析与参数分析
3.4 灵敏度与参数分析
Sensitivity and Parametric Analysis
3.4 灵敏度与参数分析 Sensitivity and Parametric Analysis
Chapter3 对偶理论 Dual Theory
3.3 对偶单纯形法 Dual Simplex Method
max z 7 x1 3x 2

对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]

对偶单纯形法的计算步骤_实用运筹学:案例、方法及应用_[共3页]

41第2章对偶理论与灵敏度分析即y 是对偶问题(D )的一个可行解。

条件式(2-21)称为对偶可行性条件,即最优性条件式(2-20)与对偶可行性条件式(2-21)是等价的,因此,如果一个原始可行基B 是原问题(P )的最优基,则1=B y c B -就是对偶问题(D )的一个可行解,此时对应的目标函数值1B w=yb =c B -,等于原问题(P )的目标函数值,可知1=B y c B -也是对偶问题(D )的最优解。

若原问题(P )的一个基本解1=0B b x ⎛⎞⎜⎟⎝⎠-对应的检验数向量满足条件式(2-20),即 =(,)=0,0B N N B σσσc c B N -1(-)≤则称x 为(P )的一个正则解。

于是可知,原问题(P )的正则解x 与对偶问题(D )的可行解y 是一一对应的,它们由同一个基B 所决定,我们称这一基为正则基。

因此,我们可以设想另一条求解思路,即在迭代过程中,始终保持对偶问题解的可行性,而原问题的解由不可行逐渐向可行性转化,一旦原问题的解也满足了可行性条件,也就达到了最优解。

也即在保持正则解的正则性不变条件下,在迭代过程中,使原问题解的不可行性逐步消失,一旦迭代到可行解时,即达到了最优解。

这正是对偶单纯形法的思路,这个方法并不需要把原问题化为对偶问题,利用原问题与对偶问题的数据相同(只是所处位置不同)这一特点,直接在反映原问题的单纯形表上进行运算。

2.3.2 对偶单纯形法的计算步骤求解如下标准形式线性规划问题:max =z cx s.t.0Ax =bx ⎧⎨⎩≥对偶单纯形法的计算步骤如下:(1)找一个正则基B 和初始正则解(0)x ;将原问题化为关于基B [不妨设12=(,,,)m B P P P ]的典式,列初始对偶单纯形表,如表2-5所示。

表2-5 对偶单纯形表12 1 2 12121c 1x 1'b 1 0 … 0 1+1'm a 1+2'm a … 1'n a 2c 2x 2'b 01 02+1'm a 2+2'm a … 2'n am c m x'm b 0…1 +1'mm a +2'mm a … 'mn a c j -z j0 0 0+1m σ+2m σ…n σ(2)若1=b'B b -≥0,则停止计算,当前的正则解1=x B b -,即为原问题的最优解;否则转下一步。

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)

对标准型 maxz CX s.t AXb X 0,b 0
AB,N
CC B CN
X
X X
B N
A P 1P 2 P m P m 1 P n 设 BP 1 P 2 P m是可
于A是 X b
B
N
XB XN
b
BX BNN Xb
B 可逆
XBB1bB1NN X
且ZCB CNXXNB CBXBCNXN
C B (B 1 b B 1 NN )X C N X N
0 1 -1 -1 0
1 0 1/5 4/5 6/5 0 0 -2/5 -3/5 3/5 .
1、确定出基变量:
设br =min{bi | bi <0}
则取br所在行的基变量 为出基变量
即取X4为出基变量
2、确定入基变量: 原则: 保持检验行系数≤0
C B B 1 b (C N C B B 1 N )X N
.
对问题maxz CX
m Z a C B B x 1 b ( C N C B B 1 N ) X N
s.t AX b X 0
XBB1bB1NN X
取可行基
BP1 P2
XB0,XN0
Pm关于可行基B的典则形式
检验数
令XN 0 得 XBB1b0得基本X 可 1行 B1b解 ,0
3x1 x2 x3
3
s.tx41x1 2x32x2
x4 6 x5 3
x1,x2,x3,x4,x5 0
取 B 基 P 3 ,P 4 ,P 5 基X 本 0 , 0 , 解 3 , 6 , 3
X1 X2 X3 X4 X5 检 -2 -1 0 0 0 Z


X3 -3 -1 1 0 0 -3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档