高分子化学 第6章 配位聚合

合集下载

配位聚合

配位聚合

7.6 茂金属引发剂

高活性:几乎 100%金属原子可形成活性中心,而Z-N 引发剂只有1~3%形成活性中心。 单一活性中心:茂金属催化剂具有明确的分子结构, 聚合反应在该分子上的一个位臵 ——过渡金属原子发 生,有时称为单活性位臵催化剂。产物的分子量分布 很窄,1.05~1.8。共聚物组成均一。
TiCl4-AlR3或TiCl4-AlR2Cl
在-78oC反应可形成溶于 烃类溶剂的均相引发剂 温度升高,发生不可逆变 化,转化为非均相 TiCl3-AlR3或VCl3-AlR2Cl 反应后仍为非均相, -烯烃的高活性定向引发剂。 低温下只能引发乙 烯聚合 活性提高,可引发 丙烯聚合
7.3 Ziegler-Natta 引发剂
配位聚合
7.1 引言
1938 年,英国 ICI 公司在高温( 180~200 oC )、高压
(150~300 MPa)条件下,以氧为引发剂,合成出了
低密度聚乙烯(LDPE) 1953年,德国化学家 Ziegler发现了乙烯低压(0.2~1.5
MPa)聚合的引发剂,合成出了支链少、密度大、结
根据聚合物的物 理性质进行测定
A975 全同螺旋链段特征吸收,峰面积 聚丙烯全同指数 K A1460 甲基的特征吸收,峰面积
7.3 Ziegler-Natta 引发剂
链增长反应 链增长过程的本质是 (以TiCl3-AlR3引发丙烯聚合为例): 单体对增长链端络合 物的插入反应 过渡金属
δδ+
δδ+
-烯烃聚合物的Tm大致随取代基增大而升高
HDPE
Tm (oC) 120
全同PP
175
聚3-甲基-1-丁烯
300
聚4-甲基-1-戊烯

高分子化学第6章配位聚合

高分子化学第6章配位聚合
2)反应—复杂(TiCl4-AlEt3 a.络合反应-产生引发活性种. b.烷基化反应-形成Ti-C键. c.还原反应-Ti还原成低价态.
四. 茂金属引发剂 由过度金属锆(Zr)或钛(Ti)与两个环戊二烯基或环戊
二烯基取代基及两个氯原子(或甲基)形成的有机金属络合 物和助催化剂甲基铝氧烷组成的 ,称作茂金属催化剂。是环 戊二烯基过渡金属化合物类的简称。
链增长反应可表示如下
δ-
CH CH2
δ+ 过渡金属
Mt
δ-
δ+
CH CH2 Mt
空位
CH CH2 R
¦Ä¦环Ħ状Ä过 CH CH2 渡状态 R
δ-
δ+
CH CH2 CH CH2 Mt
R
R
2. 配位聚合的特点
单体首先在过渡金属上配位形成络合物 证据:乙烯和Pt、Pd生成络合物后仍可分离
制得了4-甲基-1-戊烯-VCl3的络合物
第六章 配位聚合
6.1 引言(Introduction) 6.2 配位聚合
6.3 聚合物的立构规整性(stereoregularity) 6.4 α-烯烃的配位阴离子聚合
6.1 引言(Introduction)
1. 低密度聚乙烯
二十世纪30年代
ICI 公司
乙烯+苯甲醛
高温(180-200℃)
压力(180-200MPa)
2. 引发剂的作用 1) 提供引发聚合的活性种; 2) 提供独特的配位能力(反离子同单体和增长链的配位促使单
体分子按一定的构型进入增长链)起着连续定向模板作用。 控制方式: a. 引发中心控制:反离子与取代基之间的相斥作用-全同结构 b. 增长链端控制:相邻单体取代基间的相斥作用-间同结构

(完整版)高分子化学公式

(完整版)高分子化学公式

第一章绪论(Introduction)(1)分子量的计算公式:M0:重复单元数的分子量M1:结构单元数的分子量(2)数均分子量:N1,N2…N i分别是分子量为M1,M2…M i的聚合物分子的分子数。

x i表示相应的分子所占的数量分数。

(3)重均分子量:m1,m2…mi分别是分子量为M1,M2…M i的聚合物分子的重量Wi表示相应的分子所占的重量分数(4)Z均分子量:(5)粘均分子量:α:高分子稀溶液特性粘度—分子量关系式中的指数,一般在0.5~0.9之间(6)分布指数:分布指数第二章自由基聚合(Free-Radical Polymerization)(1)引发剂分解动力学:引发剂的分解速率:引发剂的浓度引发剂分解一般属于一级反应,因而分解速率为的一次方。

将上式积分得:进而得到半衰期(引发剂分解至起始浓度一半时所需的时间)对应半衰期时:,由前面的推导有:半衰期(2)自由基聚合微观动力学链引发速率:链增长速率:链终止速率:式中:kd、kp、kt分别为引发、增长及终止速率常数;[M]为体系中单体总浓度;为体系中活性种(自由基)的总浓度;f为引发剂效率。

推导如下:链引发反应由以下两个基元反应组成:式中:为初级自由基;为单体自由基。

若第二步的反应速率远大于第一步反应(一般均满足此假设),有:引入引发剂效率后,得引发速率的计算式如下:一般用单体的消失速率来表示链增长速率,即:链增长反应如下式:引入自由基聚合动力学中的第一个假定:等活性理论,即链自由基的活性与链长基本无关,即各步速率常数相等,kp1=kp2=kp3=…kp x=kp推得:自由基聚合一般以双基终止为主要的终止方式,在不考虑链转移反应的情况下,终止反应方程式如下:偶合终止:歧化终止:终止总速率:式中:Rtc为偶合终止速率;Rtd为歧化终止速率;Rt为总终止速率;ktc、ktd、kt为相应的速率常数。

在以上公式的基础上,引入处理自由基动力学的三个假设,得到以单体消耗速率表示的总聚合速率,其计算公式为:以及单体浓度随时间的变化关系为:若引发剂浓度可视为常数,则上式还原为:以上公式推导如下:自由基浓度较难测定,也很难定量化,因而无实用价值,引入处理自由基动力学的第二个假定——稳态假定,假定体系中自由基浓度在经过一段很短的时间后保持一个恒定值,或者说引发速率和终止速率相等,Ri=Rt即:解出:再引入处理自由基动力学的第三个假定:大分子的聚合度很大,用于引发的单体远少于增长消耗的单体,Ri <<Rp由此,用单体消失速率来表示的聚合总速率就等于链增长速率代入引发速率的表达式得:代入引发剂浓度随时间的变化关系得到:积分得:两边同时变号当引发剂的浓度可看作常数时即:即:此时:可略去高阶无穷小量得:(3)动力学链长及平均聚合度1)不考虑链转移反应自由基聚合过程中双基终止有两种方式,一种为双基偶合终止,另一种为双基歧化终止,二者所占的分率的不同将会引起平均聚合度的改变,但两种终止方式不会改变动力学链长的大小,二者的计算公式为:式中:Rtc为双基偶合终止的反应速率;Rtd为双基歧化终止的反应速率;Rp为链增长速率。

10年高分子复习题

10年高分子复习题

2010高分子化学复习题第一章绪论1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。

4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。

5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF (2) CH2=CH(CH3)2CH3|(3) CH2=C |COO CH3 (4) HO-( CH2)5-COOH7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?(1) -[- CH2- CH-]n-|COO CH3(2) -[- CH2- CH-]n-|OCOCH3(3) -[- CH2- C = CH- CH2-]n-| CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯 (2) 聚丙烯 (3) 聚四氟乙烯 (4) 丁苯橡胶 (5) 顺丁橡胶 (6) 聚丙烯腈 (7) 涤纶 (8) 尼龙6,10 (9) 聚碳酸酯 (10) 聚氨酯9. 写出下列单体形成聚合物的反应式。

指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。

第二章自由基聚合1.举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键和溶剂化对单体聚合热的影响。

高分子化学名词翻译和解释

高分子化学名词翻译和解释

第一章绪论(Introduction)高分子化合物(High Molecular Compound):所谓高分子化合物,系指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

单体(Monomer):合成聚合物所用的-低分子的原料。

如聚氯乙烯的单体为氯乙烯。

重复单元(Repeating Unit):在聚合物的大分子链上重复出现的、组成相同的最小基本单元。

如聚氯乙烯的重复单元为。

单体单元(Monomer Unit):结构单元与原料相比,除了电子结构变化外,其原子种类和各种原子的个数完全相同,这种结构单元又称为单体单元。

结构单元(Structural Unit):单体在大分子链中形成的单元。

聚氯乙烯的结构单元为。

聚合度(DP、Xn)(Degree of Polymerization) :衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以Xn表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以DP表示。

聚合物是由一组不同聚合度和不同结构形态的同系物的混合物所组成,因此聚合度是一统计平均值,一般写成、。

分子量分布(Molecular Weight Distribution, MWD ):由于高聚物一般由不同分子量的同系物组成的混合物,因此它的分子量具有一定的分布,分子量分布一般有分布指数和分子量分布曲线两种表示方法。

多分散性(Polydispersity):聚合物通常由一系列相对分子量不同的大分子同系物组成的混合物,用以表达聚合物的相对分子量大小并不相等的专业术语叫多分散性。

分布指数(Distribution Index) :重均分子量与数均分子量的比值。

即。

用来表征分子量分布的宽度或多分散性。

连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。

烯类单体的加聚反应大部分属于连锁聚合。

高分子化学第四版6-离子聚合

高分子化学第四版6-离子聚合

6.2.6 活性阴离子聚合动力学
阴离子聚合的特征:聚合前引发剂全部转变成
活性中心,各活性中心活性相同,以相同的
速度同时引发单体增长,增长过程中无引发
反应和终止反应,活性中心数保持不变。 活性阴离子聚合是: 快引发、慢增长、无终止和无转移。
⑴. 聚合速率
测定t 时的 残留[M], 可求kp
⑵. 聚合度和聚合度分布
6.3.3 阳离子聚合机理
阳离子聚合机理:
快引发、快增长、易转移、难终止。
1. 链引发
其它络合物离子对: BF3 H 2O H BF3OH SnCl4 RCl R SnCl5

AlCl3 HCl H AlCl4


BF3 C2 H 5 2 O C2 H 5 BF3OC2 H 5
6.2.4 活性阴离子聚合的机理和应用 1. 活性阴离子聚合机理
2. 活性聚合的应用
①合成均一分子量的聚合物
②制备嵌段聚合物
在利用阴离子聚合,先制得一种单体的活的聚合物,然 后加入另一种单体聚合时,并非所有活的聚合物都可 以引发另一种单体聚合,反应能否进行,取决于 M1
和 M2 的相对碱性,即 M1 的给电子能力和 M 2的亲电
2. 链增长
阳离子聚合增长反应的特点:
⑴. 离子与分子间的反应,速度快,活化能低,几乎与引发同时完成;
⑵. 单体按头尾结构插入离子对,对构型有一定控制能力; ⑶. 增长过程中有时伴有分子内重排反应。
例如:3甲基1丁 烯的阳离子聚 合产物。
3. 链转移
离子聚合的增长活性中心带有相同的电荷,不能
4 9 4 9
C H Mn Li K C H Mn Li

潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】

潘祖仁《高分子化学》(第5版)课后习题详解(6-9章)【圣才出品】

第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。

进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。

异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。

进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。

(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。

氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。

2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。

表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。

(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。

(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。

(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。

(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。

阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。

3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。

a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。

高分子化学-配位聚合

高分子化学-配位聚合


乙烯、丙烯在热力学上均具聚合倾向,但在很长一段时间内,却未年用TiCl Al(C组成的体系引发
乙烯聚合,首次在低温低压的温和条件下
K. Ziegler
非均相体系
G. Natta
1954年意大利科学家
引发剂引发丙烯聚合,首次获得
的聚合物
配位聚合
分子中原子或原子团互相连接次序相同、但空
顺式-1,4-聚丁二烯反式-1,4-聚丁二烯
对映体异构、手性异构)
顺式-1,4-聚异戊二烯反式-1,4-聚异戊二烯
实际上很难合成完全规整的高分子链,所以产生分子链
高分辨核磁共振谱是测定立构规整度的最有力手段,目前不仅可以测定三单元组,还可以测定四单元组、五单元组甚至更高单元组的分布情况。

聚氯乙烯的
13C NMR谱图
聚丙烯的等规度:工业上和实验室中测定最常用的方法是
X X X X X
M M M M
M
氢键、静电键合、电子X X X X X
转移相互作用、疏水键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)配位聚合引发剂与单体
①引发剂和单体类型
Ziegler-Natta引发剂
-烯烃 有规立构聚合
二烯烃 有规立构聚合
环烯烃 -烯丙基镍型引发剂:专供丁二烯的顺、反1,4聚合 极性单体 烷基锂引发剂(均相) 有规立构聚合 二烯烃 茂金属引发剂(所有乙烯基单体)
②引发剂的相态和单体的极性
非均相引发剂,立构规整化能力强
δ +CH
Mt CH2 δ -
R
过渡金属阳离 子Mt +对烯烃 双键 碳原子的 亲电进攻
插入反应包括两个同时进行的化学过程。
单体的插入反应有两种可能的途径:

一级插入
δδ+
CH CH2 R
Mt
+
CH CH2 R
δδ+
CH CH2 CH CH2 R R
Mt
不带取代基的一端带负电荷,与过渡金属相连 接,称为一级插入。
全同1,2 、间同1,2、顺式1,4-聚丁二烯和反式 1,4-聚丁二烯。
n CH CH CH 2 CH 2 4 3 2 1
1,2加成 3,4加成
[ CH2 CH ]n CH CH2 (R)
丁二烯的1,2或3,4加成有全同和间同二种立构规整聚合物。
[ CH2 CH2 ]n C C H H
顺式1,4-聚丁二烯-1,3
最初的Ziegler-Natta引发剂由两组分构成。 主引发剂 是周期表中Ⅳ~Ⅷ过渡金属化合物。
1955年意大利的Natta改进了Ziegler引发剂。用TiCl3和烷 基金属化合物组成的配位引发剂使丙烯聚合,结果得到高相 对分子质量、高结晶度、耐热150℃的聚丙烯,并于1957年 实现了工业化。 Natta还用这些引发剂使乙烯聚合,所得到的PE无支链、 结晶度也很高, 这种PE、PP具有高的立构规整度。 Ziegler-Natta引发剂的出现使高分子科学和高分子工 业的发展有了重大突破,从而在高分子科学中开创了一 个新的研究领域----配位聚合。 Ziegler和Natta两位学者也于1963年同时获得诺贝尔 化学奖。
对于 -烯烃聚合物,分子链中与R基连接的 碳原子具有下述结构: H
C* R
由于连接C*两端的分子链不等长,或端基不同, C*应当是手征性碳原子; 但这种手征性碳原子并不显示旋光性,原因是 紧邻C*的原子差别极小,故称为“ 假手性中 心”。
根据手性C*的构型不同,聚合物分为三种结构:
CH3 CH3 HC C H
CH3 HC H HC
CH3 HC CH H
CH3 HC
CH3 HC CH H
H
CH3 HC CH H
CH3
全同和间同立 构聚合物统称 为有规立构聚 合物。 如果每个结构 单元上含有两 个立体异构中 心,则异构现 象就更加复杂
HC CH H
H
全同立构体 Isotactic
HC HC 间同立构体 CH C C C C CH3 H Syndiotactic CH3 H H H H H H CH3 CH3 H CH3 H
-烯烃聚合物的Tm大致随取代基增大而升高。 HDPE 全同PP 聚3-甲基-1-丁烯 聚4-甲基-1-戊烯 Tm 120 175 300 235 ( ℃)
②二烯烃聚合物 如:丁二烯聚合物 1, 2聚合物都具有较高的熔点
全同 Tm = 128℃ 间同 Tm = 156℃
1, 4聚合物
反式1, 4聚合物 Tg = -80℃, Tm = 148℃ 较硬的低弹性材料 顺式1, 4聚合物 Tg = -108℃, Tm = 2 ℃ 是弹性优异的橡胶
1,4 加成聚合:
[ CH2 CH2 ]n C C CH3 H
顺式1,4-聚异戊二烯
CH3 n CH2 CH C CH2 2
4 3 1
1,4加成
[ CH2 H C C CH3 CH2]n
反式1,4-聚异戊二烯
1,4 加成有顺式和反式二种立构规整聚合物。
聚丁二烯
丁二烯配位聚合后理论上只有四种立构规整聚合物。
对于合成橡胶,希望得到高顺式结构。
(3)立构规整度的测定 聚合物的立构规整性用立构规整度表征。 立构规整度:是立构规整聚合物占总聚合物的分数。 ----是评价聚合物性能、引发剂定向聚合能力的一 个重要指标。 结晶 比重 根据聚合物的物 熔点 理性质进行测定 溶解行为 化学键的特征吸收 全同聚丙烯的立构规整度(全同指数、等规度): 常用沸腾正庚烷的萃取剩余物所占百分数表示
除非化学键断裂,两种构型是不能相互转化的。 构象--则是对C一C单键内旋转而产生的分子形态不 同的描述,例如锯齿型分子、无规线团、螺旋链, 折叠链等形态。 构象可通过一系列单键的内旋转而相互转换。

光学异构体 光学异构体(也称对映异构体),是由手 征性碳原子产生。 构型分为R(右)型和S(左)型两种。
CH2
顺式1,4-聚合物
H CH2 CH2 CH3 CH3 H CH2 CH2 CH3 H CH2
聚异戊二烯
反式1,4-聚合物
二烯烃聚合时有 1,2 加成、3,4 加成和 1,4加成。
因此:
规整聚合物。 1,2 加成聚合:
n CH2
4
CH3 CH C CH 2 1
什么是同分异构? 聚合物分子中原子或原子团相互连接的次序不同 而引起的异构叫做同分异构,又称结构异构。 如:结构单元为-[ C2H4O-] n的聚合物可以是 聚乙烯醇、聚环氧乙烷等。
[ CH2 CH ] n OH 聚乙烯醇 [ CH2 CH2 O ]n
聚环氧乙烷 (聚氧化乙烯)
如:聚甲基丙烯酸甲酯和聚丙烯酸乙酯,聚 酰胺中的尼龙-6和尼龙-66等都是性质不 同的同分异构体。
6.2 聚合物的立构规整性
(1) 聚合物的立体异构体 结构异构(同分异构) 化学组成相同,原子和原子团的排列不同。 头-尾和头-头、尾-尾连接的结构异构 两种单体在共聚物分子链上不同排列的序列 异构 立体异构 由于分子中的原子或基团的空间构型不 同而产生。 光学异构 立体异构 几何异构 构象异构
①聚合物的同分异构体
3 2
1,2加成
CH3 (R1) ]n [ CH C 2 1 2 CH CH2 (R2)
3 4
异戊二烯的1,2加成有全同和间同二种立构规 整聚合物。
3,4 加成聚合:
n CH2
4
CH3 3,4加成 CH C CH2
3 2 1
[ CH2 CH ]n 2 C CH 3 1 CH 2
3
4
异戊二烯的 3,4 加成有全同和间同二种立构规 整聚合物。

二级插入
δδ+
CH2 CH R
Mt
+
CH2 CH R
δδ+
CH2 CH CH2 CH R R
Mt
带有取代基一端带负电荷并与反离子相连, 称为二级插入。 两种插入所形成的聚合物的结构完全相同。 但研究发现: 丙烯的全同聚合是一级插入; 丙烯的间同聚合却为二级插入。
(3)几种聚合名称含义的区别
配位聚合、络合聚合 在含意上是一样的,可互用。 一般认为,配位比络合表达的意义更明确。 配位聚合的结果: 可以形成有规立构聚合物 也可以是无规聚合物 定向聚合、有规立构聚合 这两者是同意语,是以产物的结构定义的,都 是指以形成有规立构聚合物为主的聚合过程。 乙丙橡胶的制备采用Z-N催化剂,属配位聚合, 但结构是无规的,不是定向聚合
HC CH H HC C H CH3 HC CH H HC CH H HC 无规立构体 C Atactic CH3 H
聚α-烯烃大分子的立体异构体(平面锯齿型)
H H H H H
H R H R H
H H H
H R H
H
H H R H
H
R H H H
R
H H H R
H
H R H H
H
H H
R
H R
H
链增长反应可表示如下:
δδ+
过渡金属
δδ+
CH CH2
空位
Mt
CH CH2
环状 ¦Ä¦Ä ¦Ä 过渡 状态
Mt CH2
CH CH2 R
CH R
σ-π配合物
δ+
δ-
CH CH2 CH CH2 R R
Mt
链增长过程的本质: 单体对增长链端络合物的插入反应。
(2)配位聚合的特点 ①单体首先在过渡金属上配位形成σ-π 络合物 证据:乙烯和Pt、Pd生成络合物后仍可分离制得4甲基-1-戊烯-VCl3的络合物。 ②反应是阴离子性质 间接证据: -烯烃的聚合速率随双键上烷基的增大而降低。 CH2=CH2 > CH2=CH-CH3 > CH2=CH-CH2-CH3
聚丙烯的全同指数= ( I I P)
沸腾正庚烷萃取剩余物重
未萃取时的聚合物总重
也可用红外光谱的特征吸收谱带测定 IIP=K A975
全同螺旋链段特征吸收,峰面积
A1460 甲基的特征吸收,峰面积
K为仪器常数
二烯烃聚合物的立构规整度用某种立构体的百分 含量表示 全同1, 2: 991、694 cm-1 应用IR、NMR测定 间同1, 2: 990、664 cm-1 聚丁二烯IR吸收谱带 顺式1, 4: 741 cm-1
H H
R
H R
全同立构体
间同立构体 (Fisher投影式)
无规立构体
聚α-烯烃大分子的立体异构体
几何异构体
几何异构体是由聚合物分子链中双键或环形 结构上取代基的构型不同引起的。 如:异戊二烯1,4-聚合产物
CH3 CH2 H CH2 CH2 CH3 H CH2 CH2 CH2 CH3 H
CH2
CH3 C CH CH2 n
一种是由手性中心产生的光学异构体。
相关文档
最新文档