高分子化学-11(开环聚合)
高分子化学-11(开环聚合)

聚合机理动力学
引发: R-Z + C
增长:
M* +
n
R-Z
M*
Z: 单体的功能基 C: 离子型或分子型引发剂
(RO-, OH-, H+, BF3, H2O)
M-(R-Z)*n-
开环聚合归连锁聚合还是逐步聚合有两方面:
a. 聚合动力学方程 b. 聚合物分子量随时间分布
环醚的开环聚合--- 聚醚的制备
rz离子型或分子型引发剂ro聚合物分子量随时间分布环醚的开环聚合聚醚的制备一般用阳离子引发剂引发clch33?二氯亚甲基丁氧环四氢呋喃二氧五环但三元环醚用阴离子阳离子配位聚合均可
Chapter 7 开环聚合反应 ( Ring opening polymerization )
一、概述-开环聚合的单体及特点
一般用阳离子引发剂引发
CH3
CH2Cl
CH2CH3
O
环氧乙烷
能开环:o
丁氧环
O
环氧乙烷
o
O
环氧氯丙烷
CH2Cl CH2Cl 3,3'-二(氯亚甲基)丁氧环
O
环氧丁烷
o
四氢呋喃
oo
二氧五环
o
不能开环:
o
o
四氢砒喃 二氧六环
环醚的活性次序为:环氧乙烷>丁氧环>四氢呋喃 但三元环醚用阴离子、阳离子、配位聚合均可。
(CH2)5
H2O
+ O
C
NH
HO2C(CH2)5NH2
(2) 氨基酸本身逐步缩聚
COOH H 2 N CO NH H 2O
(3) 氨基上氮向己内酰胺亲核进攻,增长相同。
..
开环聚合

第八章 开环聚合8.1 概述高分子化学中,以环状单体通过开环聚合来合成聚合物,同样具有重要的地位。
在这种聚合过程中,增长链通过不断地打开环状结构,形成高聚物:以环醚为例,环氧乙烷经开环聚合反应,得到一种聚醚,即聚氧化乙烯。
这在工业上已得到应用。
能够进行开环聚合的单体很多,如环状烯烃,以及内酯、内酰胺、环醚、环硅氧烷等环内含有一个或多个杂原子的杂环化合物。
开环聚合既具有某些加成聚合的特征,也具有缩合聚合的特征。
由开环聚合得到的聚合物,重复单元与环状单体开裂时的结构相同,这与加成聚合相似;而聚合物主链中往往含有醚键、酯键、酰胺键等,与缩聚反应得到的聚合物常具有相同的结构,只是无小分子放出。
开环聚合与缩聚反应相比,还具有聚合条件温和、能够自动保持官能团等物质的量等特点,因此开环聚合所得聚合物的平均分子质量,通常要比缩聚物高得多。
有些单体如乳酸,采用缩聚反应无法得到高分子质量的聚合物;而采用乳交酯的开环聚合,就能够获得高分子质量的聚乳酸。
但是,与缩聚反应相比,开环聚合可供选择的单体较少,例如二元酸与二元醇能够通过缩聚获得聚酯;而开环聚合,只有相当于α,ω-羟基酸的环内酯可供选择。
聚酰胺的情况也是如此。
另外,有些环状单体合成困难,因此由开环聚合所得到的聚合物品种受到限制。
开环聚合就机理而言,有些属于逐步聚合,有些属于连锁聚合。
8.1.1 聚合范围及单体可聚性如前所述,环醚、环酯、环酰胺、环硅氧烷等能够进行开环聚合。
此外,环胺、环硫化物、环烯烃、以及N-羧基-α-氨基酸酐等同样也能进行开环聚合。
环状单体能否转变为聚合物,取决于聚合过程中自由能的变化情况,与环状单体和线形聚合物的相对稳定性有关。
Dainton 以环烷烃作为环状单体的母体,研究了环大小与聚合能力的关系。
表6-1列出了环烷烃在假想开环聚合时的自由能变化ΔG lc 0、焓变ΔH lc 0、及熵变ΔS lc 0。
R X [ R X ]n n [ CH 2 CH 2 O ]n n H 2C CH 2O聚合过程中,液态的环烷烃(l )转变为无定型的聚合物(c )。
《高分子化学》教案第7章开环聚合

第六章 开环聚合开环聚合属于链式聚合,单体为环化合物,包括环醚、环缩醛、内酯、内酰胺、环硅氧烷等。
7.1 总论7.1.1 环单体的聚合活性环单体的聚合活性由热力学因素和动力学因素共同决定。
1. 热力学因素即环单体和相应的线形聚合物的相对稳定性,它与环大小、成环原子和环的取代基相关。
1) 环烷烃的稳定性:环烷烃进行开环聚合的热力学可行性顺序为:三元环、四元环>八元环>五元环,七元环>六元环。
2) 环的取代基:取代基的引入使聚合热增加、熵变增加,总体使开环聚合可能性降低。
3) 单环单体和多环单体:多环单体的环张力会有所增加,使开环聚合可能性增加。
如8-氧杂[4,3,0]环壬烷,反式的可开环聚合。
4) 成环原子:对于内酯而言,六元、七元环内酯可聚合,而五元环内酯则不可;环三硅氧烷的聚合活性高于环四硅氧烷。
2. 动力学因素环烷烃没有易受活性种攻击的键,因此动力学上仅环丙烷衍生物可进行开环聚合,并且仅能得到低聚物。
环醚、内酯、内酰胺等环单体,因有亲核或亲电子部位,易开环聚合。
7.1.2 开环聚合机理和特征 1. 聚合机理开环聚合的引发剂为烯烃聚合进行离子型聚合所用的引发剂,引发反应包括初级活性种的形成和单体活性种的形成。
大多数阳离子开环聚合的链增长是通过单体对增长链末端的环状阳离子的亲核反应来进行的,其中的Z 基团为C-O (环醚)、C-N (环氮化合物)、Si-O (环硅氧烷)、酯键和酰胺键;而阴离子聚合的链增长则是增长链末端的阴离子对单体的亲核反应,Z 基团为RO -(环醚)、COO -(内酯)和Si-O -(环硅氧烷)。
;一般情况下,开环聚合的增长链末端带电荷,进行链增长的单体是中性的。
但是,开环聚合还有另一种链增长方式,即所谓的活化单体机理,增长链末端不带电荷,而单体是离子化的,如己内酰胺的阴离子聚合。
2. 开环聚合的基本特征Z-++Z单体加到增长链上进行高分子链的生长;聚合度随转化率增加缓慢,但是在许多场合下呈线性关系;溶剂对聚合反应影响同烯烃的离子聚合;动力学表达式通常类似于链式聚合,特别是活性聚合;许多开环聚合的单体平衡浓度较高,即临界聚合温度较低。
高分子化学课后习题答案

第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。
答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。
在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。
在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。
在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。
如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。
聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。
聚合度是衡量聚合物分子大小的指标。
以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以nX表示。
2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。
答:合成高分子多半是由许多结构单元重复键接而成的聚合物。
聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。
从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。
根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。
多数场合,聚合物就代表高聚物,不再标明“高”字。
齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。
低聚物的含义更广泛一些。
3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。
选择其常用分子量,计算聚合度。
合物构式(重复单元)氯乙烯-[-CH2CHCl-]- n苯乙烯-[-CH2CH(C6H5)-]n纶-[-OCH2CH2O∙OCC6H4CO-]n龙66(聚酰胺-66)-[-NH(CH2)6NH∙CO(CH2)4CO-]n丁二烯-[-CH2CH=CHCH2 -]n然橡胶-[CH2CH=C(CH3)CH2-]n聚合物分子量/万结构单元分子量/万DP=n 特征塑料聚氯乙烯聚苯乙烯5~1510~3062.5104800~2400960~2900(962~2885)够的聚合度,才能达到一定强度,弱极纤维性,低聚合度就有足够的强度涤纶聚酰胺-66 1.8~2.31.2~1.860+132=192114+112=22694~12053~80橡胶顺-聚丁二烯天然橡胶25~3020~4054684600~5600(4630-5556)2900~5900(2941-5882)极性,高分子量才赋予高弹性和强度4. 举例说明和区别:缩聚、聚加成和逐步聚合,加聚、开环聚合和连锁聚合。
第七章开环聚合(ring-openingpolymerization)

高分子化学第七章
12
四、其它杂环单体
合成多肽阴离子开环聚合
单体:N-羧基-a-氨基酸酐(N-carboxy-a-amino-anhydride, NCA); 引发剂:胺类(伯胺、仲胺和叔胺)
CO HN O
CH CO R
-CO 2
R NHCHCO m
CO RNH2 + HN O
CH CO R
R COOH RNHCOCHNH
A CH2CH2O nCH2CH2O- M+ + ROH
A CH2CH2O nCH2CH2OH + RO- M+
环氧丙烷聚合的单体链转移反应:甲醇钠引发环氧丙烷聚合,
CM为0.013(70 °C)、0.027(93 °C)。
高分子化学第七章
3
2.2 (环氧化物的)阴离子聚合
CH3
O
CH2CHO- Na+ + CH3CH CH2 ktr,M
开环聚合应该 归类于
何种聚合方式 ???
O
O
R
CH3CH CH2 CH2 CH2 O
R
O
O
O
O
OO
O
高分子化学第七章
2
二、环醚(杂氧原为子什)么环醚中只有
环氧化物才能进行
2.1 环醚单体
阴离子聚合?
3, 4, 5元环醚(); 6元环如四氢吡喃、1,4-二氧六环();1,3,5-三
氧六环( )
聚合过程(活化单体链增长机理)
引发剂和单体反应生成活化单体; 活化单体与内酰胺反应形成N-酰基化内酰胺,进一步还原出活化单体; 活化单体不断与增长链末端的内酰胺单元反应; 聚合存在诱导期:以使N-酰基化内酰胺浓度达到足够大;
潘祖仁《高分子化学》课后习题及详解(开环聚合)【圣才出品】

第8章开环聚合(一)思考题1.举出不能开环聚合的3种六元环。
为什么三氧六环却能开环聚合?答:(1)三、四元环容易开环聚合,五、六元环能否开环与环中的杂原子有关,不能开环聚合的六元环如(2)三氧六环能够开环聚合是由于六元环的键角与上述六元环不同,容易开环聚合。
2.环烷烃开环倾向大致为:三、四元环>八元环>七、五元环,分析其主要原因。
答:环烷烃的开环倾向可以用聚合自由焓来衡量,自由焓越大,开环聚合倾向越大,不同环烷烃的聚合自由焓如表8-1所示,因此环烷烃开环倾向大致为三、四元环>八元环>七、五元环。
表8-13.下列单体选用哪一引发体系进行聚合?写出综合聚合反应式。
表8-2单体答:(1)环氧乙烷用CH3ONa作为引发剂,阴离子聚合反应式如下(2)丁氧环用BF3+H2O为引发剂,阳离子聚合反应式如下(3)乙烯亚胺用H2SO4、BF3+H2O作为引发剂,阳离子聚合反应如下(4)二甲基二氯硅烷可以水解,预聚成六元环三聚体或八元环四聚体,阳离子聚合反应式如下(5)三聚甲醛用H2SO4、BF3+H2O作为引发剂,阳离子聚合反应如下4.以辛基酚为起始剂,甲醇钾为引发剂,环氧乙烷进行开环聚合,简述其聚合机理。
辛基酚用量对聚合速率、聚合度、聚合度分布有何影响?答:(1)开环聚合机理引发:烷氧阴离子进攻环氧乙烷中的碳原子,形成单加成物。
交换:环氧乙烷单加成物ROCH2CH2O-与C8H17C6H4-交换。
增长:C8H17C6H4O-进攻环氧乙烷中的碳原子,开环聚合成线形聚合物。
(2)当起始剂RXH全部换成RX以后,才同步增长,产物分子量分布窄,反映出快引发、慢增长的活性阴离子聚合特征。
辛基酚用量越大,聚合速率、聚合度越大,聚合度分布越宽。
5.以甲醇钾为引发剂聚合得到的聚环氧乙烷分子量可以高达3万~4万,但在同样条件下,聚环氧丙烷的分子量却只有3000~4000,为什么?说明两者聚合机理有何不同。
答:(1)聚环氧丙烷分子量低是由于环氧丙烷分子中甲基上的氢原子容易被夺取而转移,转移后形成的单体活性种很快转变成活性较低的烯丙醇-钠离子对,致使分子量降低。
开环聚合

R
CH2CH2O
n
O Na + ROH
-
+
R
CH2CH2O
n
+ RO-Na+ OH
交换反应生成的醇盐可继续引发聚合反应。 交换反应生成的醇盐可继续引发聚合反应。从形 式上看,交换反应与链转移反应相似, 式上看,交换反应与链转移反应相似,但与链转移 反应不同, 反应不同,交换反应生成的端羟基聚合物并不是 的聚合物,而只是休眠种, “死”的聚合物,而只是休眠种,可和增长链之间 发生类似的交换反应再引发聚合反应: 发生类似的交换反应再引发聚合反应:
③ 聚合反应条件
反应类型 开环聚合 因素 活化能 高 低 加成反应
反应分子数 单分子
双分子
升高聚合反应温度有利于提高开环反应速率; 升高聚合反应温度有利于提高开环反应速率;降 低聚合体系中的单体浓度有利于开环聚合反应的 进行。 进行。
第四节 阳离子开环聚合
1、四氢呋喃的阳离子开环聚合 、
在所有的温度下, 在所有的温度下,四氢呋喃的聚合都是平衡反 聚合通过氧正离子进行。以质子酸为引发剂, 应。聚合通过氧正离子进行。以质子酸为引发剂, 聚合过程如下: 聚合过程如下:
4、开环聚合反应机理 、
开环聚合反应机理较为复杂。大多数环状单体开 开环聚合反应机理较为复杂。 环聚合机理与离子聚合机理类似,根据单体种类、 环聚合机理与离子聚合机理类似,根据单体种类、 引发剂种类及增长活性中心电荷的不同, 引发剂种类及增长活性中心电荷的不同,可分为阴 离子开环聚合、阳离子开环聚合及配位聚合。 离子开环聚合、阳离子开环聚合及配位聚合。除分 析聚合反应的动力学特性外, 析聚合反应的动力学特性外,还通过实验测定出的 产物聚合度与反应时间的变化关系来确定开环聚合 反应机理。 反应机理。
第8章 开环聚合

(ring opening polymerization)
开环聚合是指具有环状结构的单体经引发聚合,将环打 开形成高分子化合物的一类聚合反应。
一、开环聚合的特征 开环聚合既不同于连锁聚合,也不同于逐步聚合,其 特征为: ⒈ 聚合过程中只发生环的破裂,基团或者杂原子由 分子内连接变为分子间连接,并没有新的化学键和新 的基团产生。 ⒉ 与连锁聚合相比较 连锁聚合的推动力是化学键键型的改变,虽然大 多数环状单体是按离子型聚合机理进行的,但开环聚 合的推动力是单体的环张力,这一点与连锁聚合不同。 开环聚合所得的聚合物其结构单元的化学组成与 单体的化学组成完全相同合反应相比较 开环聚合虽然也是制备杂链聚合物的一种方法, 但聚合过程中并无小分子缩出。 开环聚合的推动力是单体的环张力,聚合条件比 较温和,而逐步聚合的推动力是官能团性质的改变, 聚合条件比较苛刻.所以,用缩聚难以合成的聚合物, 用开环聚合较易合成。
二. 环状单体的聚合活性
——能否开环及聚合能力的大小
环状单体的聚合活性取决于主要是热力学因素,即环状 单体和线型结构聚合物的相对稳定性。
环状单体热力学稳定性次序: 3,4《5,7~11〈12以上,6 对于杂环化合物,如环醚、环酯、环酰胺等,由于 杂原子提供了引发剂亲核或亲电进攻的位置,所以在 动力学上它们比环烷烃更有利于开环聚合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
R
..
+O
R R
SN2
A3- ,3‘-二(氯甲叉)丁氧环
R
OCH2-CR2CH2-OCH2-CR2CH2-+O R
A-
(R=-CH2Cl)
CH2Cl
H+
H-[O-CH2-C-CH2]n-OH
CH2Cl
(4)THF的开环聚合反应
引发剂:超强酸,Lewis酸,碳正离子,金属有机引发剂
[Zn(C2H5)2, Al(C2H5)3] 超强酸: FSO3H, F3CSO3H
2-丁基-7-亚甲基-1,4,6三氧螺[4,4]壬烷
CH3 +
CH2-CH-OH
O
Na+
_
CH2
CH
CH2
CH2=CH-CH2O- Na+
(3)氯化聚醚---工程塑料
活性较高,阳离子聚合,Lewis酸(BF3,AlCl3,SnCl4) 催化,低温,微量水起催化作用。
一般认为,在环醚的正离子聚合反应中增长反应是通过叔
氧鎓离子来进行的。
OCH2-CR2CH2-+O
共聚:与环氧乙烷、二氧五环等共聚,在共聚物中引入 稳定性好的-OCH2CH2-基团。 …(CH2O)n-CH2CH2O-CH2O-CH2OH
三、环酰胺的开环聚合
环酰胺(内酰胺)的聚合反应可用碱、酸和水来引发。
n CO-NH-(CH2)m-
1. 水解聚合反应
[NH-(CH2)mCO]n
(1) 己内酰胺水解成氨基酸
为了缩短诱导期,提高聚合反应速率,通常加入酰氯,
酸酐,异氰酸酯,使环酰胺形成N-酰化环酰胺。
O O
NH RCOCl
O
NCR
+ HCl
O O
N-CR
+
O N Na
O
Na
N-CO(CH2)5N-CO-R
O
NH
氢转移反应
O
N-CO(CH2)5NH-CO-R
+
O N Na
四、内酯的开环聚合-聚酯的制备
O
C
O
O Si
CH3 CH3
CH3 CH3
CH3
CH3
(CH3)3Si-O-Si(CH3)3
-[-Si-O-]n-1-Si-O- K+
CH3 CH3
CH3 CH3 RO-[-Si-O-]3-Si-O- K+
CH3 CH3
CH3
CH3
-[-Si-O-]n-1-Si-O-Si(CH3)3
CH3 CH3 +(CH3)3Si-O-K+
子量的聚合物。 2. 反应易形成平衡、可逆,不完全,剩有部分环状单体不
能聚合。
开环聚合的类型
1. 聚合物的重复单元与单体的组成相同; 2. 开环消去反应:消去CO2、SO2等小分子; 3. 开环异构化聚合:聚合物的重复单元与单体的结
构不同。
开环聚合的单体聚合活性
开环聚合的活性: 热力学+ 动力学
10.5
-5.9
7
21.4
15.9
16.3
8
34.8
3.3
34.3
除六元环外,环烷烃聚合反应都是热力学有利的。
易开环的程度: 3,4> 8 > 5,7
3, 4元环
H1c
5.6元环
S1c
>7, 8元环 , H1c S1c
决定 角张力 重叠构象张力 跨环张力
有O,N进行离子型聚合,不进行自由基聚合。
?O
N
阳离子聚合、阴离子聚合、配位聚合
H
O
阳离子聚合
S
阴离子聚合
O
O
如有两个在杂原子: C-NH C-O
聚合机理动力学
引发: R-Z + C
增长:
M* +
n
R-Z
M*
Z: 单体的功能基 C: 离子型或分子型引发剂
(RO-, OH-, H+, BF3, H2O)
M-(R-Z)*n-
开环聚合归连锁聚合还是逐步聚合有两方面:
六、利用开环聚合制备聚碳酸酯
比采用逐步聚合方法制备的优点: 1. 分子量较高,可达100,000-300,000.
而逐步聚合, 聚合物分子量40,000-60,000. 2. 副反应少.
七、环状胺的开环聚合
引发剂
N
(CH2CH2NH) n
H
进行阳离子开环聚合,聚合物有支链,水溶性高分子, 聚乙烯亚胺(PEI)。
(2)环氧丙烷的开环聚合--- PPO的制备
阳离子、阴离子聚合,配位聚合。
不对称环氧化物,有两个亲核开环反应部位
CH3
O
11
CH2-CH-O- K+
CH3 CH CH2
2
1
CH3
22
-
CH-CH2O
K+
阴离子聚合:聚合物分子量较低(存在向单体的链转移)
CH3
O
CH2-CH-O- Na+ + CH3 CH CH2 Ktr,M
引发剂:OH-, RO-, 金属氢化物,金属有机化合物。
O
+_
CH2 CH2 + M A
_+
A-CH2CH2O M
O
_
A-CH2CH2O
M+
+
CH2
CH2
_+
A-(CH2CH2O)-CH2CH2O M
_+
A-(CH2CH2O)n-CH2CH2O M 有活性聚合物的特点
副反应为在醇存在下,增长链和醇之间会发生交换反应, 相当于链转移反应。
(CH2)5
H2O
+ O
C
NH
HO2C(CH2)5NH2
(2) 氨基酸本身逐步缩聚
COOH H 2 N CO NH H 2O
(3) 氨基上氮向己内酰胺亲核进攻,增长相同。
..
(CH2)5
NH2 + O C
NH
NHCO(CH2)5NH2
从机理上考虑:氨基酸以-OOC(CH2)5NH3+形式存在
(BF3OH)-
+
HOCH2CH2 O (BF3OH)-
得到分子量较小的聚合物和副产物二氧六环等, 工业上价值不大。
环醚聚合副产物:环齐聚物
..
+
OCH2-CH2 OCH2-CH2AO-
OCH2-CH2
+
O
O
A-
O
+
OCH2-CH2AO-
+O O
环齐聚物是通过尾咬、扩环反应生成的。
b. 环氧乙烷阴离子开环聚合反应
+
CH2
HO A- CH2
and HOCH2CH2-O+ A- CH2
THF
THF
HOCH2CH2-O+ A-
+
H(OCH2CH2)2
O A-
propagation
反应性环醚叫引发促进剂
加入的少量的环氧乙烷等环氧化合物,提高聚合反应引发 速率,但不改变链增长速率常数,使活性中心浓度增高。
(5)环缩醛的开环聚合 ---三聚甲醛的聚合
O
O
O
n
90oC
(CH2)5CO
n
>250oC
PCL在室温为橡胶态。超低玻璃化温度Tg=-62ºC, 低 熔点Tm=57ºC. PCL兼具可生物降解性与药物透过性, 主要用作控释载体。
五、交酯的开环聚合
六元环交酯:R=H, 乙交酯, glycotide, GA, 由乙醇酸环 化二聚得到。 R= CH3, 丙交酯, lactide, LA, 由乳酸环化二聚得到。 PLA, PGA为重要的生物可降解高分子。PLA已广泛用于 手术缝合线。
polyoxymethylene
a. POM的制备 各种环缩醛很易发生阳离子聚合反应
H2C
O O
CH2 CH2 O
-(CH2O)n-
H2C
O O
CH2 BF3.H2O
CH2 O
H2C
O O
CH2 +
CH2
O A-
H
+
_
HOCH2OCH2OCH2 A
H2C
O O
CH2 CH2 O
+ CH2 OCH2OCH2OCH2A-O CH2
O
(CH2)m
O-(CH2)mCO n
O O
O
O
O
O
多为阴离子(碱催化)或配位(AlEt3 或ZnEt2等) 开环聚合机理。
内酯的开环聚合-阴离子聚合
引发剂:OH-, RO-, 金属氢化物,金属有机化合物。
O
引发:
CH3O - + C
CH3O-CO-R-O -
O
R
O
增长::
CH3O
CO-R-O
C
CO-R-O n
+
M
NH
O C
(CH2)5
- + + HB NM
O
O
O
C (CH2)5
-+
NM
+
NH
O
C
C
slow
+
(CH2)5 (CH2)5 N CO(CH2)5NHM
O (1)
C
+
C
fast
(CH2)5 N CO(CH2)5NHM + (CH2)5 NH
O
O
C
C
(CH2)5