数学集训一队每周习题(8)参考答案

合集下载

2019年全国高中数学联赛试题及解答

2019年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。

人教版六下数学专题集训卷_数的认识_

人教版六下数学专题集训卷_数的认识_

人教版六下数学专题集训卷_数的认识_1.填空某网上商城于2022年6月19日凌晨0时10分在其官方微博上公布,从2022年6月1日0时到6月18日24时,累计下单金额高达201543600000元.横线上的数读作,其中“6”在位上;把这个数改写成用“万”作单位的数是万;省略亿位后面的尾数约是亿.2.填空在−0.8,30,−3,0,45,−2022,716,32.78,66这些数中,正数有,负数有,分数有,小数有,自然数有,既不是正数也不是负数.3.填空用3个6和2个0组成一个读两个0的五位数,这个数是.从左边起,第一个“6”在位上,表示;第二个“6”在位上,表示.4.填空58的分数单位是,它有个这样的分数单位,再添上个这样的分数单位就是最小的假分数.5.填空小刚用4米长的铁丝做了5个完全一样的“九连环”,做1个“九连环”需要铁丝( )( )米,1米长的铁丝可以做( )( )个“九连环”.6.填空在一次体育测试中,小强做了28个仰卧起坐,记作+3个;小刚做了32个,应记作个;小力做了23个,应记作个.7.看图填空如下图,直线上A点表示的数是,B点表示的数写成小数是,C点表示的数写成分数是.6.4646⋯是小数,用简便方法记作,保留一位小数约是.9.填空20以内不是偶数的合数有,20以内不是奇数的质数是.10.填空两个质数的积是35,这两个质数的和是.11.填空从2,5,7中任意取两个数字,组成既有因数3又有因数5的数是.12.填空a=3×5×m,b=3×7×m,m是大于0的自然数,如果a和b的最大公因数是6,则m是,a和b的最小公倍数是.13.填空0.25=( )4=8÷=%=折.14.填空一种商品打八折销售,表示现价是原价的%,如果原价是200元,现在便宜了元.15.比大小在○里填上“<”“>”或“=”.8600○8599 350008○35009 −3○−1.20.374○38 78%○0.78 45○162016.填空下图阴影部分用分数表示是,用小数表示是,用百分数表示是.17.填空三个质数的最小公倍数是105,这三个质数分别是、、.如图,在白菜地和辣椒地之间有一个蓄水池,蓄水池的面积占白菜地的 19,占辣椒地的 16,白菜地的面积是辣椒地面积的 ( )( ).19. 填空用 3 个 9 和 3 个 0 组成的六位数中,一个 0 都不读的有 ,只读一个 0 的有 ,读两个 0 的有 .20. 填空(分数的基本性质、最简分数)一个分数,分子与分母的和是 80,这个分数化成最简分数是 23,这个分数原来是 .21. 选择下面的数中,比 −2 小的是 ( )A . −1.5B . 0C . −0.4D . −10022. 选择一款裙子的原价是 50 元/条,儿童节期间以 40 元/条的优惠价出售,便宜了 ( )A . 45B .二成C .三成D .四成23. 选择下面与38相等的小数和百分数是( )A.0.3和83B.0.375和375%C.0.375和37.5%D.3.75和37.5%24.选择下面的说法错误的是( )A.1既不是质数也不是合数B.真分数的倒数一定是假分数C.一个数的倍数一定比这个数大D.正数都大于负数25.选择省略“38▫970”万位后的尾数约是39万,▫内可以填的数有( )个.A.7B.5C.3D.226.选择要使a8是假分数,a10是真分数,那么a最大可以是( )A.7B.8C.9D.1027.填空如果a是一个质数,那么2a+1一定是一个( )A.质数B.合数C.奇数D.偶数28.选择ba(a>3)是一个真分数,下面各分数中最大的一个是( )A.a×3b×3B.a−3bC.a÷3b÷3D.ab÷329.选择一个数的小数点先向左移动3位,再扩大到原来的100倍后是7.88,这个小数原来是( ) A.0.788B.7.88C.0.0788D.78.830.选择幼儿园张阿姨买来一些苹果,兰兰4个4个地数余3个,丽丽5个5个地数余4个,倩倩6个6个地数余5个.张阿姨最少买来了( )个苹果.A.60B.90C.59D.8931.解决问题甲地的海拔高度是30米,乙地的海拔高度是25米,丙地的海拔高度是−65米.哪个地方的海拔最高?哪个地方的海拔最低?两地海拔相差多少米?32.解决问题期中考试后,张老师把121支圆珠笔和83本日记本分别平均奖励给班上获得“五好少年”称号的同学们,结果圆珠笔多出1支,日记本还少1本,获得“五好少年”称号的同学最多有几人?33.解决问题张阿姨和李阿姨到瑜伽馆练瑜伽,张阿姨每4天去一次,李阿姨每5天去一次.假设2022年2月18日这天她们在瑜伽馆相遇,那么她们下次在瑜伽馆相遇的日子是几月几日?34.解决问题有两个大小不同的数,它们的和是34.34,如果把较小数的小数点向右移动两位,就与较大的数相等.这两个数分别是多少?35.解决问题(分数的基本性质、最简分数)一个最简分数,分子与分母的和是62,若分子减去1,分母减去7,所得的新分数化简后是2.原来的分数是多少?736.解决问题学校举行“不忘初心,牢记使命”主题教育活动,学生们正好坐成一个长方形方阵,兰兰在从前往后数的第3排,从后往前数的第6排,从左往右数的第5列,从右往左数的第6列.参加这次活动的学生一共有多少人?37.解决问题一个小数的整数部分是8,小数部分各个数位上的数字之和是15,而且小数部分各个数位上的数字各不相同.这个小数最大是多少?最小是多少?38.解决问题在周长为800米的水池边,每50米插一面彩旗,后来又增加了一些彩旗,就把彩旗的间隔缩短了,起点的彩旗不动,重新插完后发现,一共有4面彩旗没动.问:现在的彩旗间隔是多少米?答案1. 【答案】二千零一十五亿四千三百六十万;十万;20154360;20152. 【答案】30,45,716,32.78,66;−0.8,−3,−2022;45,716;−0.8,32.78;30,0,66;03. 【答案】60606;万;6个万;百;6个百4. 【答案】18;5;35. 【答案】4;5;5;46. 【答案】+7;−27. 【答案】−2;0.5;1358. 【答案】循环;6.46;6.59. 【答案】9,15;210. 【答案】1211. 【答案】7512. 【答案】2;21013. 【答案】1;32;25;二五14. 【答案】80;4015. 【答案】>;>;<;<;=;=16. 【答案】710;0.7;70%17. 【答案】3;5;718. 【答案】3;219. 【答案】999000,909900;990900,990090,990009,900099,909009,900990,909090;90090920. 【答案】324821. 【答案】D22. 【答案】B23. 【答案】C24. 【答案】C25. 【答案】B26. 【答案】C27. 【答案】C28. 【答案】D29. 【答案】D30. 【答案】C31. 【答案】甲地最高,丙地最低,相差30+65=95(米).提示:根据海拔的意义,海拔30米表示高于海平面30米,海拔25米表示高于海平面25米,海拔−65米,表示低于海平面65米,所以甲地海拔最高,丙地海拔最低,相差30+65=95(米).32. 【答案】121−1=120(支),83+1=84(本).120和84的最大公因数是12,获得“五好少年”称号的同学最多有12人.根据题意,圆珠笔的支数减1,日记本的本数加1后就是“五好少年”人数的倍数,求获得“五好少年”称号的同学最多有几人,求出它们的最大公因数即可.33. 【答案】4和5的最小公倍数是20.2022÷4=505,2022年是闰年,2月有29天.29−18=11(天)20−11=9(天)答:她们下次在瑜伽馆相遇的日子是3月9日.34. 【答案】根据小数点的移动规律可知,较大数是较小数的100倍,两数的和是较小数的(100+1)倍,根据倍的意义.求出较小数,进一步求出较大数即可.较小数:34.34÷(100+1)=0.34,较大数:0.34×100=34.35. 【答案】62−1−7=54,54÷(2+7)=6,分子:2×6+1=13,分母:7×6+7=49,原来的分数:1349【解析】提示:先求出变化后分子与分母的和,然后除以化简后分子与分母的和,求出约掉的公因数,然后反推回去即可.36. 【答案】5+6−1=10(人)3+6−1=8(人)8×10=80(人)【解析】根据兰兰所占的位置求出这个方阵每排的人数和每列的人数,然后根据乘法的意义求出总人数,注意在求每排和每列人数时不要重复计算.37. 【答案】最大:8.96,最小:8.012345要使小数最大,十分位上的数要尽可能大,所以是9,则百分位上最大为6;要使小数最小,十分位上的数要尽可能小,所以是0,后面数位上的数依次是1,2,3,4,5.38. 【答案】800÷50=16(面)50×(16÷4)=200(米)与50的最小公倍数是200,且小于50的数为8和40,所以现在的彩旗间隔是8米或40米.【解析】每50米插一面彩旗,共插800÷50=16(面).重新插完后,有4面没动,而这4面中的每相邻两面相距50×(16÷4)=200(米),因此重新插完后每相邻两面彩旗间的距离与50的最小公倍数是200,并且这个距离一定小于50米,把符合这样条件的数求出来即可.。

2014届高考数学浙江专版(理)一轮复习小题专项集训8

2014届高考数学浙江专版(理)一轮复习小题专项集训8

小题专项集训(八) 不等式(建议用时:40分钟 分值:75分)1.若b <a <0,则下列结论不正确的是 ( ).A .a 2<b 2B .ab <b 2 C.⎝ ⎛⎭⎪⎫12b <⎝ ⎛⎭⎪⎫12a D.a b +b a >2解析 取a =-1,b =-2,则⎝ ⎛⎭⎪⎫12-2=4>⎝ ⎛⎭⎪⎫12-1=2.答案 C2.“a +c >b +d ”是“a >b 且c >d ”的 ( ).A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析 “a +c >b +d ”/⇒“a >b 且c >d ”,∴“充分性不成立”,“a >b 且c >d ”⇒“a +c >b +d ”. ∴必要性成立. 答案 A3.不等式x +5(x -1)2≥2的解集是( ).A.⎣⎢⎡⎦⎥⎤-3,12 B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 解析 首先x ≠1,在这个条件下根据不等式的性质,原不等式可以化为x +5≥2(x -1)2,即2x 2-5x -3≤0,即(2x +1)(x -3)≤0,解得-12≤x ≤3,故原不等式的解集是⎣⎢⎡⎭⎪⎫-12,1∪(1,3].答案 D4.已知a ≥0,b ≥0,且a +b =2,则 ( ).A .ab ≤12 B .ab ≥12 C .a 2+b 2≥2D .a 2+b 2≤3解析 由a +b =2可得2≥2ab ,即ab ≤1;对于选项C :a 2+b 2≥2,即(a +b )2-2ab ≥2,可得ab ≤1.故选项C 正确. 答案 C5.若变量x ,y 满足约束条件⎩⎨⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值是( ).A .4B .3C .2D .1解析 如图,画出约束条件表示的可行域,当直线z =x -2y 经过x +y =0与x -y -2=0的交点A (1,-1)时,z 取到最大值3,故选B. 答案 B6.不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为 ( ). A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]解析 因为x 2-2x +5=(x -1)2+4的最小值为4,所以要使x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4,故选A. 答案 A7.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是 ( ).A .6B .4 2C .2 6D .8解析 2a +2b ≥22a +b =42,当且仅当2a =2b ,即a =b 时等号成立.故选B. 答案 B8.若a ≥0,b ≥0,且当⎩⎨⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积是( ).A.12B.π4 C .1D.π2解析 由题意可得,当x =0时,by ≤1恒成立,b =0时,by ≤1显然恒成立;b ≠0时,可得y ≤1b 恒成立,解得0<b ≤1,所以0≤b ≤1;同理可得0≤a ≤1.所以点P (a ,b )确定的平面区域是一个边长为1的正方形,故面积为1. 答案 C9.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( ).A .2 000元B .2 200元C .2 400元D .2 800元解析 设需用甲型货车x 辆,乙型货车y 辆,由题目条件可得约束条件为⎩⎨⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,目标函数z =400x +300y ,画图可知,当平移直线400x +300y =0过点(4,2)时,z 取得最小值2 200,故选B.答案 B10.设x ,y 满足约束条件⎩⎨⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则ab 的最大值为( ).A .1 B.12 C.32D .2解析不等式组⎩⎨⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0所表示的可行域如图所示,当平行直线系ax +by =z 过点A (4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值,z 最大值=4a +6b =12,∵4a +6b =12≥24a ×6b ,∴ab ≤32. 答案 C11.若关于x 的不等式m (x -1)>x 2-x 的解集为{x |1<x <2},则实数m 的值为________.解析 由不等式的解集知1,2是方程m (x -1)=x 2-x 的根,将2代入可得m =2. 答案 212.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 解析 因为正实数x ,y 满足2x +y +6=xy ,所以由基本不等式得xy ≥22·xy +6(当且仅当x =3,y =6时等号成立),令xy =t ,得不等式t 2-22t -6≥0,解得t ≤-2(舍去)或t ≥32,故xy 的最小值为18. 答案 1813.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)解析 根据已知条件画出可行域(如下图所示).平移直线3y -2x =0,当经过A 点时,z =2x -3y 取得最大值;当平移到C 点时,z =2x -3y 取得最小值,A 点坐标满足方程组⎩⎨⎧x -y =3,x +y =-1,解得A (1,-2).C 点坐标满足方程组⎩⎨⎧x -y =2,x +y =4,解得C (3,1),代入直线z =2x -3y 中求得z 的最大值为8,最小值为3,所以取值范围为(3,8). 答案 (3,8)14.设常数a >0,若对任意正实数x ,y 不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9恒成立,则a 的最小值为________.解析 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y ≥1+a +2a =(a +1)2,当且仅当y =a x时取等号.所以(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2,于是(a +1)2≥9,所以a ≥4,故a 的最小值为4.答案 415.已知实数x ,y 满足⎩⎨⎧y ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a 的值为________.解析 依题意,在坐标平面内画出不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1. 答案 1。

数学集训一队每周习题(6)

数学集训一队每周习题(6)

数学集训一队每周习题(6)本周的练习,出现了有规律的加法计数。

如:6个2相加的和为多少?在课堂讲解每份数和份数的意义后,要求同学们用乘法算式表示。

掌握:一个数里有几个几;平均分,能够用拆数法。

(除法,不要求列算式)锯木头,剪绳子思维引导:锯木头,剪绳子时,剪或锯的次数,与绳子(木头)的段数,有必然的联系。

在已知段数求次数时:次数=段数-1在已知次数求段数时:段数=次数+11.乐乐做手工,把一根绳子剪3次变成段,剪5次变成段。

如果要剪成3段需要剪次,剪成7段需要剪次。

2.乐乐要做一个七色圆形纸花瓶,瓶身每色之间用双面胶粘贴。

他要用条双面胶。

3.乐乐把一张纸同方向对折2次,从正中间剪开。

那么,纸被剪成段。

星期二锯木头总费用和总时间思维引导:锯木头的费用和时间只跟锯的次数相关系。

要先求次数,再用每次的费用(时间)×次数=总费用(总时间)。

4.乐乐做手工,想把一根玻璃棒平均分割成4段,每分割一次需要2分钟。

那么,分割成4段一共需要多少分钟?解:答:分成4段一共需要分钟。

5.一根木头锯成5段,每锯一次需要付5元钱。

一共要付费多少元钱?解:答:一共要付费元钱。

锯木头单次费用和单次时间思维引导:求单次费用或单次时间:要先求次数,再用“总费用÷次数=单次费用”或“总时间÷次数=单次时间”来解决问题。

6.爸爸去玻璃店,将一根玻璃棒分割成4段,共付了6元钱。

每分割一次要付多少元钱?解:答:每分割一次要付元钱。

7.陈叔叔把4根铁管焊接成一根长管用时12分钟,李叔叔把6根铁管焊接成一根长管用时15分钟。

李叔叔和陈叔叔比焊接速度,谁的速度快?本题引导:在比较时,要一对一地实行比较,分别求出李叔叔和陈叔叔焊一次所用的时间。

因为是单次时间的比较,所以单次时间越短的越快。

答:李叔叔和陈叔叔比,的速度快。

星期三楼梯问题思维引导:在楼梯问题中要注意,所在层数和走的层数是两个不同的概念。

所在层数=较低层数+走的层数=较高层数-走的层数8.乐乐家住在4楼,每上一层楼梯要走20级台阶。

第八届“启智杯”数学思维能力竞赛集训(一)代数--观察与归纳(含答案)

第八届“启智杯”数学思维能力竞赛集训(一)代数--观察与归纳(含答案)

第八届“启智杯”数学思维能力竞赛集训(一)代数---观察与归纳【备注】一、考察的思维品质考察数学思维的广阔性、深刻性、灵活性、独创性与批判性。

二、考察的思维能力1.发散性思维能力:直觉思维——数学直觉和数学灵感;形象思维——数学表象和数学想象。

2.收敛性思维能力:逻辑思维——形式逻辑、数理逻辑、辩证逻辑。

3、从个别事例开始,先观察、研究这类问题的几个简单的、特殊的情况的共同特征,通过逆推、比较、分析,从中发现一般规律,找到解决问题的途径和方法,叫做归纳思维同步练习1.找规律填数(1)30、36、31、40、32、44、()、()(2)2, 6, 4, 12, 10, 30, 28,(),()【参考答案】(1)30、36、31、40、32、44、(33 )、(48 )(2)2, 6, 4, 12, 10, 30, 28,(84 ),(82 )乘3减22.根据规律填数。

43×101=4343 29×101=292951×101=()86×()=8686()×101=7272 ()×()=9494【参考答案】51×101=(5151 )86×(101 )=8686(72 )×101=7272 (94 )×(101 )=94943.根据规律填数。

67×67=4489667×667=4448896667×6667=()66......67× 66......67=44......488 (89)【参考答案】101个4,100个84.观察下面的几个算式,找出规律:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……利用上面的规律,请你迅速算出:1+2+3+……+99+100+99+……+3+2+1=________.【参考答案】1002=100005. 一串分数按规律排列:11,12,21,13,22,31,14,23,32,41,15,24,33,42,51……,那么,第100个分数是多少? 2011是排列中的第 个分数。

2014年全国高中数学联赛试题及解答

2014年全国高中数学联赛试题及解答

全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.全国高中数学联赛试题及解答加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。

浙教版八年级数学上《2.5逆命题和逆定理》同步集训含答案

浙教版八年级数学上《2.5逆命题和逆定理》同步集训含答案

2.5逆命题和逆定理1. 已知命题“如果a+b=0,那么a,b互为相反数”,写出它的逆命题:如果a,b互为相反数,那么a+b=0.2.“等边三角形有两个角都等于60°”的逆命题为有两个角是60°的三角形是等边三角形.这个逆命题是真命题(填“真”或“假”).3.给出下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③角平分线上的点到角的两边距离相等;④不是对顶角的角不相等.其中原命题与逆命题均为真命题的有(A)A. 1个B. 2个C. 3个D. 4个4. 给出下列结论:①到角两边距离相等的点,在这个角的平分线上;②角的平分线与三角形的角平分线都是射线;③任何一个命题都有逆命题;④假命题的逆命题一定是假命题.其中正确的有(B) A.1个B.2个C.3个D.4个5. 下列四个命题中,逆命题正确的是(D)A.两个数的差为正数,则这两个数都为正数B.如果a2+b2=0,那么a=0C.如果一个三角形为锐角三角形,那么这个三角形三个角中必存在大于60°的角D.如果两个角有一条公共边,并且这两个角的和是180°,那么这两个角互为邻补角6.下列命题中,逆命题正确的是(B)A.若a=b,则|a|=|b|B.两直线平行,同位角相等C.全等三角形的对应角相等D. 直角都相等7.下列定理中,无逆定理的是(B)A.两直线平行,内错角相等B.对顶角相等C.全等三角形的三条边对应相等D.在同一个三角形中,等边对等角8.写出下列命题的逆命题,并判断真假.(1)如果一个三角形是等边三角形,那么它的三个内角都相等;(2)如果a=5,那么a(a-5)=0.(3)如果ab=0,那么a=0,b=0.【解】(1)如果一个三角形的三个内角都相等,那么这个三角形是等边三角形.是真命题.(2)如果a(a-5)=0,那么a=5.是假命题.(3)如果a=0,b=0,那么ab=0.是真命题.9.下列定理中,哪些有逆定理?如果有逆定理,请写出它的逆定理.(1)两边及其夹角对应相等的两个三角形全等;(2)三角形的外角和等于360°;(3)等腰三角形顶角的平分线与底边上的高线互相重合.【解】(1)有逆定理.如果两个三角形全等,那么这两个三角形的两边及其夹角对应相等.(2)无逆定理.(3)有逆定理.若一个三角形的一个角的平分线与这个角所对边上的高线互相重合,则这个三角形是等腰三角形.10.对于以下说法:①如果一个命题是真命题,那么它的逆命题不一定是真命题;②每个定理都有逆定理;③基本事实是通过推理判断为正确的命题;④“同位角相等”是定理.其中正确的说法有(A)A. 1个B. 2个C. 3个D. 4个【解】命题“对顶角相等”的逆命题是相等的角是对顶角.从这个例子可看出①对②错.定理是通过推理判断为正确的命题,故③错.“同位角相等”是假命题,定理都是真命题,故④错.11. 材料:如果两个命题中,一个命题的条件和结论分别是另一个命题的条件和结论的否定,则称这两个命题互为否命题.逆命题的否命题称为逆否命题.有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则1-q有平方根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号有(C)A.①②③B.③④C.①③D.①④【解】①逆命题是:若x,y互为相反数,则x+y=0.它是真命题.②否命题是:若两个三角形不是全等三角形,则这两个三角形的面积不相等.它是假命题.③逆命题是:若1-q有平方根,则q≤1.它是真命题.④逆否命题是:三个内角不相等的三角形是等边三角形.它是假命题.12.举反例说明定理“全等三角形的面积相等”没有逆定理.(第12题解)【解】逆命题:如果两个三角形面积相等,那么这两个三角形全等.反例:如解图所示,l1∥l2,△ABC和△BCD同底等高,∴△ABC的面积等于△BCD的面积,但△ABC和△BCD不全等.故此定理没有逆定理.13.已知下列命题:①若a≤0,则|a|=-a;②若ma2>na2,则m>n;③对顶角相等.其中原命题与逆命题均为真命题的个数是(B)A. 0B. 1C. 2D. 3【解】①命题“若a≤0,则|a|=-a”是真命题,逆命题为“若|a|=-a,则a≤0”,是真命题;②命题“若ma2>na2,则m>n”是真命题,逆命题为“若m>n,则ma2>na2”,是假命题;③命题“对顶角相等”是真命题,逆命题为“相等的角是对顶角”,是假命题.所以原命题与逆命题均为真命题的个数是1.。

集训队第一部分答案

集训队第一部分答案

A
1
3
5ቤተ መጻሕፍቲ ባይዱ
7
B
C
2
4
6
8
【分析与解】 因为由小号房间进入到相邻的大号房间; 所以到大号房间的通路数等于与其相邻的小号房间的通路数;
A\1 1\1 3\1 5\1 7\5
B\1
2\2
4\3
6\4
8\10 C\10
如图所示,由标数法,有共有10 条通路。
【第12题】 在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除 以 2 ;如果输入的是奇数,就把它加上 3 ;对产生的数继续进行同样的运算。这样进行了 3 次, 得出结果是 27 。原来输入的数可能是 ________ 。
【第4题】 某人工作一年的报酬是18000 元和一台全自动洗衣机。他干了 7 个月,得到 9500 元和一台全 自动洗衣机。这台洗衣机价值 ________ 元。
【分析与解】
这个人每个月的报酬是 18000 9500 12 7 1700 元;
这台洗衣机价值1700 12 18000 2400 或1700 7 9500 2400 元。
【分析与解】 如果是奇数,逆推只能乘以 2 ; 如果是偶数,逆推可以乘以 2 ,也能减去 3 ; ① 27 2 54 , 54 2 108 ,108 2 216 ; ② 27 2 54 , 54 2 108 ,108 3 105 ; ③ 27 2 54 , 54 3 51, 51 2 102 ; 原来输入的数可能是 216 ,105 ,102 。
【分析与解】 因为李明每分钟做 3 道题; 所以李明 60 3 20 秒钟做1道题; 所以李明 20 5 100 秒钟做 5 道题; 因为张强每做 5 道题比李明少用 6 秒钟; 所以张强100 6 94 秒钟做 5 道题; 所以张强每道题用时 94 5 18.8 秒; 所以张强做完100 道题需要18.8 100 1880 秒; 所以李明1880 秒钟做1880 20 94 道题; 即张强做完100 道题时,李明已做完 94 道题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014春季数学集训一队每周习题(8)参考答案
星期一
1.100-1 。

(猜一个字)答案:百-一横=白
2.一来就千。

(猜一个数)答案:千-一撇=十
3.泰山中无人,无水。

(猜一个数)答案:三
4.背着喇叭。

(猜一数学符号)答案:<
5.风筝跑了。

(猜一数学名词)答案:线段(线“断”)
6.成绩是多少?(猜一数学名词)答案:分数
星期二
7.在数字中间填上“+”、“-”,使等式成立。

5 1 8 4 9
6 4 5 3
7 9 4 =15 5 1
8 4
9 6 4 5 3 7 9 4 =15
思维引导:等式左边12个数的和为65,保留结果 65-15=50。

把50调整为0,确定减数是25。

5+1+8+4+9-6+4-5-3-7+9-4=15 减数25
5+1+8+4+9-6+4+5-3-7-9+4=15 减数25
8.7只篮子分别放有1只、2只、4只、8只、16只、32只、64只苹果。

现在要从这7只篮子里取出87只苹果,但每只篮子内的苹果要么全部取走,要么不取。

你看该怎么取?
列式:解:64+16+4+2+1=87(只)
9.把100个鸡蛋分装在6个盒子里,要求每个盒子里装的鸡蛋个数都带有数字6。

想想看,应该怎样分?
解:100=60+16+6+6+6+6
星期三
10.数独游戏。

要求:每一行,每一列1~9这九个数各出现一次。

每个小九宫格里(共有9个小九宫格)1~9这九个数各出现一次。

星期四
11.小蚂蚁从A处回B处的家,它要在砖缝中走一条这样的路:每经过一块砖,左右两边砖块的颜色必需相同。

小朋友,请你带小蚂蚁回家吧。

2
5 5 2
6 1 9 3
2 4 6 4
4
1
6 9
9
7 1
3 4 9
8 7 3
2
7 1 3
4 5 4 6
8 6
9 1
3 1 8 3
5 1 2
100 12.请你从人口出发,走到出口。

可以横着走或竖着走。

要求你走过的线路,格子里的数字和为39。

(多解)
13.在下面的圆圈中填上运算符号,使小牛回家的道路畅通,并使得最后的结果等于100。

思维引导:
本题的实质,就是在等式“1 2 38 16 4 19 15 4 12 9 25 3 7 5=100”中填上适当的运算符号,使等式成立。

左边各数之和=160,右边的的得数为100,左边比右边多160-100=60。

把60调整为0,平分为30和30。

确定减数为30。

在给定的数中,寻找“和为30”的若干个数,在这些数的前面填入“-”,剩余的各数前都填“+”。

答案不唯一,举其中一例。

1+2+38+16+4+19+15+4+12+9-25+3+7-5=100 入口 出口
星期五
14.你能按照1、2、3、4、5、6的顺序从入口处进入,从出口处出来吗?(不能斜走)
入口
出口。

相关文档
最新文档