2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)
2020年普通高等学校招生全国统一考试文科数学全国1卷

1.【ID:4005071】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,则,故选:D.2.【ID:4005072】若,则()A.B.C.D.【答案】C【解析】解:,.故选:C.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4005073】设为正方形的中心,在,,,,中任取点,则取到的点共线的概率为()A.B.C.D.【答案】A【解析】解:,,,,中任取点,共有种,其中共线为,,和,,两种,故取到的点共线的概率为,故选:A.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4005074】已知圆,过点的直线被该圆所截得的弦的长度的最小值为()A.B.C.D.【答案】B【解析】解:由圆的方程可得圆心坐标,半径;设圆心到直线的距离为,则过的直线与圆的相交弦长|AB|=2,当最大时弦长|AB|最小,当直线与所在的直线垂直时最大,这时,所以最小的弦长,故选:B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4005075】设,则()A.B.C.D.【答案】B【解析】解:因为,则,则,则,故选:B.9.【ID:4005076】执行右面的程序框图,则输出的()A.B.C.D.【答案】C【解析】解:,,第一次执行循环体后,,不满足退出循环的条件,;第二次执行循环体后,,不满足退出循环的条件,;第三次执行循环体后,,不满足退出循环的条件,;第四次执行循环体后,,不满足退出循环的条件,;第五次执行循环体后,,不满足退出循环的条件,;第六次执行循环体后,,不满足退出循环的条件,;第七次执行循环体后,,不满足退出循环的条件,;第八次执行循环体后,,不满足退出循环的条件,;第九次执行循环体后,,不满足退出循环的条件,;第十次执行循环体后,,不满足退出循环的条件,;第十一次执行循环体后,,满足退出循环的条件,故输出值为,故选:C.10.【ID:4005077】设是等比数列,且,,则()A.B.C.D.【答案】D【解析】解:是等比数列,且,则,即,,故选:D.11.【ID:4005078】设,是双曲线:的两个焦点,为坐标原点,点在上且,则的面积为()A.B.C.D.【答案】B【解析】解:由题意可得,,,,,,为直角三角形,,,,,,的面积为,故选:B.12.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4005079】设向量,,若,则________.【答案】【解析】解:向量,,若,则,则,故答案为:.15.【ID:4005080】曲线的一条切线的斜率为,则该切线的方程为________.【答案】【解析】解:的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即,故答案为:.16.【ID:4005081】数列满足,前项和为,则________.【答案】【解析】解:由,当为奇数时,有,可得,,累加可得;当为偶数时,,可得,,,.可得..,,即.故答案为:.17. 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,四个等级,加工业务约定:对于级品、级品、级品,厂家每件分别收取加工费元,元,元;对于级品,厂家每件要赔偿原料损失费元.该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为元/件,乙分厂加工成本费为元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了件这种产品,并统计了这些产品的等级,整理如下:(1)【ID:4005082】分别估计甲、乙两分厂加工出来的一件产品为级品的概率.【答案】;【解析】解:由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为级品的概率的估计值为;乙分厂加工出来的一件产品为级品的概率的估计值为.(2)【ID:4005083】分别求甲、乙两分厂加工出来的件产品的平均利润,以平均利润为依据厂家应选哪个分厂承接加工业务?【答案】甲分厂【解析】解:由数据知甲分厂加工出来的件产品利润的频数分布表为因此甲分厂加工出来的件产品的平均利润为.由数据知乙分厂加工出来的件产品利润的频数分布表为因此乙分厂加工出来的件产品的平均利润为.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.18. 的内角,,的对边分别为,,.已知.(1)【ID:4005084】若,,求的面积.【答案】【解析】解:由题设及余弦定理得,解得(含去),,从而.的面积为.(2)【ID:4005085】若,求.【答案】【解析】解:在中,,所以,故.而,所以,故.19. 如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,.(1)【ID:4005086】证明:平面平面.【答案】见解析【解析】证明:由题设可知,.由于是正三角形,故可得,.又,故,.从而,,故平面,所以平面平面.(2)【ID:4005087】设,圆锥的侧面积为,求三棱锥的体积.【答案】【解析】解:设圆锥的底面半径为,母线长为.由题设可得,.解得,.从而.由可得,故.所以三棱锥的体积为.20. 已知函数.(1)【ID:4008459】当时,讨论的单调性.【答案】在上单调递减,在上单调递增.【解析】解:由题意,的定义域为,且.当时,,令,解得.∴当时,,单调递减,当时,,单调递增.在上单调递减,在上单调递增.(2)【ID:4008481】若有两个零点,求的取值范围.【答案】【解析】①当时,恒成立,在上单调递增,不合题意;②当时,令,解得,当时,,单调递减,当时,,单调递增.的极小值也是最小值为.又当时,,当时,.要使有两个零点,只要即可,则,可得.综上,若有两个零点,则的取值范围是.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2020年普通高等学校招生全国统一考试文科数学试题卷I卷(附带答案及详细解析)

绝密★启用前2020年普通高等学校招生全国统一考试文科I卷数学试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后,请将本试卷和答题卡-并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共51分)1.已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A. 15 B. 25 C. 12 D. 45 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 (x i ,y i )(i =1,2,⋯,20) 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y =a +bxB. y =a +bx 2C. y =a +b e xD. y =a +blnx6.已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 47.设函数 f(x)=cos (ωx +π6) 在 [−π,π] 的图像大致如下图,则f(x)的最小正周期为( )A.10π9B.7π6C.4π3D.3π28.设 alog 34=2 ,则 4−a = ( )A. 116 B. 19 C. 18 D. 16 9.执行下面的程序框图,则输出的n=( )A. 17B. 19C. 21D. 23 10.设 {a n } 是等比数列,且 a 1+a 2+a 3=1 , a 2+a 3+a 4=2 ,则 a 6+a 7+a 8= ( )A. 12B. 24C. 30D. 32 11.设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P 在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( )A. 72B. 3C. 52D. 212.已知 A,B,C 为球O 的球面上的三个点,⊙ O 1 为 △ABC 的外接圆,若⊙ O 1 的面积为 4π , AB =BC =AC =OO 1 ,则球O 的表面积为( ) A. 64π B. 48π C. 36π D. 32π 二、填空题:本题共4小题,每小题5分,共20分。
2020年全国高考(新课标II卷)真题 文科数学试卷(+答案+全解全析)

23.已知函数 f(x)=|x-a2|+|x-2a+1|. (1)当 a=2 时,求不等式 f(x)≥4的解集; (2)若 f(x)≥4,求 a 的取值范围.
绝密★启用前
2020 年普通高等学校招生全国统一考试
文科数学
注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框涂黑.如 需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上, 写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项
4 平面 ABC 的距离为( )
3
A. 3
B.
2
C. 1
12.若 2x-2y<3−x-3−y,则( )
A. ln(y-x+1)>0
B. ln(y-x+1)<0
C. ln∣x-y∣>0
二、填空题:本题共 4 小题,每小题 5 分,共 20 分.
3
D.
2
D. ln∣x-y∣<0
13.若 sin x = − 2 ,则 cos 2x = __________. 3
P 为 AM 上一点.过 B1C1 和 P 的平面交 AB 于 E,交 AC 于 F.
(1)证明:AA1//MN,且平面 A1AMN⊥平面 EB1C1F;
π (2)设 O 为△A1B1C1 的中心,若 AO=AB=6,AO//平面 EB1C1F,且∠MPN= 3 ,求四棱锥 B–EB1C1F 的体
2020年高考全国1卷数学(文科)模拟试卷(含答案)

2020年高考全国1卷数学(文科)模拟试卷考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B 2C 2D .22、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则AB =A .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”; ③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .14、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是8、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-…9、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 三棱锥四个面的面积中最大的值是32所有正确的说法 A 、①B 、①②C 、②③D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为 A.2 B.3 C.2 D.511、珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》•2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为( ) A .12B .25C .38D .1312、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
2020年全国卷一文科数学高考试题(word版+详细解析版)

2020年普通高等学校招生全国统一考试全国卷一文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|340}A x x x =--<,{4,1,3,5}B =-,则A B =A .{4,1}-B .{1,5}C .{3,5}D .{1,3}答案:D解析:2{|340}{|14}A x x x x x =--<=-<<,则交集的定义可得,{13},A B =,故选D 2.若312i i z =++,则||z =A .0B .1C .2D .2答案:C解析:因为312i i 12i (i)1i z =++=++-=+,所以22||=112z +=,故选C3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A.14 B.12C.14 D.12 答案:C解析:如图,P ABCD -是正四棱锥,过P 作PO ABCD ⊥平面,O 为垂足,则O 是正方形ABCD 的中心,取BC 的中点E ,则OE BC ⊥,因为PO ABCD ⊥平面,所以BC PO ⊥,又PO OE O =,所以BC POE ⊥平面,因为PE POE ⊂平面,所以PE BC ⊥,设BC a =,PO h =,由勾股定理得PE =1122PBCS BC PE =⋅=212h =,所以221142PE a aPE -=,解得PE =或PE =(舍去),故选CE OPA B C D4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .45答案:A解析:O ,A ,B ,C ,D 中任取3点的取法用集合表示有{,,}O A B ,{,,}O A C ,{,,}O A D ,{,,}O B C ,{,,}O B D ,{,,}O C D ,{,,}A B C ,{,,}A B D ,{,,}A C D ,{,,}B C D ,共有10种取法,其中3点共线的取法有{,,}O A C ,{,,}O B D ,共2种,故取到的3点共线的概率为21105=,故选AODCBA5.某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i ix y i=得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是A.y a bx=+B.2y a bx=+C.e xy a b=+D.lny a b x=+答案:D解析:本题考查回归方程及一次函数、二次函数、指数函数、对数函数的图象,观察散点图可知,散点图用光滑曲线连接起来比较接近对数函数的图象,故选D。
2020年文科数学全国卷高考模拟1【含答案】

2020年文科数学全国卷高考模拟1文科数学本试卷共23小题, 满分150分. 考试用时120分钟.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. (){},|0,,A x y x y x y R =+=∈,(){},|20,,B x y x y x y R =--=∈,则集合A B I =( )A .(1,1)-B .{}{}11x y ==-UC .{}1,1-D .(){}1,1- 2.等差数列{}n a 中,若58215a a a -=+,则5a 等于( )A .3B .4C .5D .6 3.下列函数中,在其定义域内是减函数的是( ) A .1)(2++-=x x x f B . xx f 1)(=C . 13()log f x x = D . ()ln f x x =4.已知函数(1),0()(1),0x x x f x x x x +<⎧=⎨-≥⎩,则函数()f x 的零点个数为( )A 、1B 、2C 、3D 、45.已知0a >,4()4,f x x a x =-+则()f x 为( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 有关6.已知向量(12)a =r ,,(4)b x =r ,,若向量a b //v v,则x =( ) A .2 B . 2- C . 8D .8-7.设数列{}n a 是等差数列,且5,8152=-=a a ,n S 是数列{}n a 的前n 项和,则 ( ) A.109S S < B.109S S = C.1011S S < D.1011S S =8.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则l β⊥10题③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m . 其中,真命题有( )A .0个B .1个C .2个D .3个9.已知离心率为e 的曲线22217-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为( )A .34B 423C .43D 2310.给出计算201614121++++Λ 的值的一个 程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 11.lg ,lg ,lg x y z 成等差数列是2y xz =成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件12.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =( )A .2-B .1C .2- 或1D .2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
2020年北京市高考文科数学试卷(含解析版)

绝密★本科目考试启用前2020 年普通高等学校招生全国统一考试(北京卷)数学本试卷共5 页,150 分,考试时长120 分钟.考试务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40 分)一、选择题10 小题,每小题4 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合A = {-1, 0,1, 2} ,B = {x | 0 <x< 3} ,则A B =().A.{-1, 0,1}B.{0,1}C. {-1,1, 2}D. {1, 2} 【答案】D【解析】【分析】根据交集定义直接得结果.【详解】A I B = {-1, 0,1, 2}I(0, 3) = {1, 2},故选:D.【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.2.在复平面内,复数z 对应的点的坐标是(1, 2) ,则i ⋅z =().D. -2 -iA.1+ 2iB.-2 +iC.1- 2i【答案】B【解析】【分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【详解】由题意得z =1+ 2i ,∴iz =i - 2 .故选:B.【点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.33 35-rrrr +15 53.在( x - 2)5 的展开式中, x 2 的系数为( ).A. -5 【答案】CB. 5C. -10D. 10【解析】 【分析】首先写出展开式的通项公式,然后结合通项公式确定 x 2 的系数即可. 【详解】( - 2) 展开式的通项公式为: T= C r( x ) (-2) = (-2)C rx2,令5 - r = 2 可得: r = 1 ,则 x 2 的系数为: (-2)1C 1 = (-2)⨯ 5 = -10 .25故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中 n 和 r 的隐含条件,即 n ,r 均为非负整数,且 n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. 6 +B. 6 + 2C. 12 +D.12 + 2【答案】D5-r x 35【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2 的等边三角形,侧面为三个边长为2 的正方形,则其表面积为:S = 3⨯(2⨯ 2)+ 2⨯⎛1⨯ 2⨯ 2⨯sin 60︒⎫=12 + 2 3 .2 ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.5.已知半径为1 的圆经过点(3, 4) ,则其圆心到原点的距离的最小值为().A. 4B. 5C. 6D. 7【答案】A【解析】【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1 可得答案.【详解】设圆心C (x, y ),则化简得(x - 3)2 +(y - 4)2 =1,=1,所以圆心C 的轨迹是以M (3, 4) 为圆心,1 为半径的圆,(x -3)2 +(y - 4)2所以| OC | +1 ≥| OM | == 5 ,所以| OC |≥ 5 -1 = 4 ,32+ 42当且仅当C 在线段OM 上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.6.已知函数f (x) = 2x-x -1 ,则不等式f (x) > 0 的解集是().(1, +∞) A.(-1,1) B. (-∞, -1)C. (0,1)D. (-∞, 0) ⋃(1, +∞)【答案】D【解析】【分析】作出函数y = 2x和y =x +1 的图象,观察图象可得结果.【详解】因为f (x)= 2x -x -1,所以f (x)> 0 等价于2x>x +1 ,在同一直角坐标系中作出y = 2x和y =x + 1 的图象如图:两函数图象的交点坐标为(0,1),(1, 2) ,不等式2x>x +1 的解为x < 0 或x > 1 .所以不等式f (x)> 0 的解集为:(-∞, 0)⋃(1, +∞).故选:D.【点睛】本题考查了图象法解不等式,属于基础题.7.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q ,则线段FQ 的垂直平分线().A. 经过点OC. 平行于直线OP B. 经过点PD. 垂直于直线OP【答案】B【解析】【分析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到F ,Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ = PF ,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.8.在等差数列{a n}中,a1=-9 ,a3=-1 .记T n=a1a2…a n(n =1, 2,…) ,则数列{T n}().A.有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在最大项和最小项.【详解】由题意可知,等差数列的公差d =a5-a1 =-1+ 9= 2 ,5 -1 5 -1则其通项公式为:a n=a1+(n -1)d=-9 +(n -1)⨯2 = 2n -11 ,注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1 <a7 <,且由T5< 0 可知T i< 0(i ≥ 6, i ∈N ),Ti 由Ti-1 =ai>1(i ≥ 7, i ∈N )可知数列{T n}不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 =1,故数列{T n}中的正项只有有限项:T2 = 63 ,T4 = 63⨯15 = 945 .故数列{T n}中存在最大项,且最大项为T4.故选:B.【点睛】本题主要考查等差数列通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.9.已知α, β∈R ,则“存在k ∈Z 使得α=kπ+ (-1)kβ”是“sin α= sin β”的().A.充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得α=kπ+ (-1)kβ时,若k 为偶数,则sin α= sin (kπ+β)= sin β;若k 为奇数,则sinα= sin (kπ-β)= sin ⎡⎣(k -1)π+π-β⎤⎦= sin (π-β)= sin β;(2)当sin α= sin β时,α=β+ 2mπ或α+β=π+ 2mπ,m ∈Z ,即α=kπ+(-1)k β(k = 2m)或α=kπ+(-1)k β(k = 2m +1),亦即存在k ∈Z 使得α=kπ+ (-1)kβ.所以,“存在k ∈Z 使得α=kπ+ (-1)kβ”是“ sin α= sin β”的充要条件.故选:C.【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.10.2020 年3 月14 日是全球首个国际圆周率日(πD ay).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().⎛30︒ 30︒⎫ ⎛30︒ 30︒⎫A.3n sinn +tan ⎪n B. 6n sin n+tan ⎪n⎝⎭⎝⎭⎛60︒ 60︒⎫ ⎛60︒ 60︒⎫C.3n sinn +tan ⎪n D. 6n sin n+tan⎪n⎝⎭⎝⎭【答案】A【解析】【分析】计算出单位圆内接正6n 边形和外切正6n 边形的周长,利用它们的算术平均数作为2π的近似⎩y 值可得出结果.【详解】单位圆内接正 6n 边形的每条边所对应的圆周角为360︒ = 60︒, 每条边长为 n ⨯ 6 n2 s in 30︒ ,n所以,单位圆的内接正6n 边形的周长为12n sin 30︒ ,n单位圆的外切正6n 边形的每条边长为2 tan30︒ ,其周长为12n tan30︒ ,nn12n sin 30︒ +12n tan 30︒∴2π = n n = 6n ⎛sin 30︒ + tan 30︒ ⎫ , 2 n n ⎪⎝ ⎭则π = 3n ⎛sin30︒+ tan 30︒ ⎫ . n n ⎪ ⎝ ⎭故选:A.【点睛】本题考查圆周率π 的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.第二部分(非选择题 共 110 分)二、填空题共 5 小题,每小题 5 分,共 25 分.11. 函数 f (x ) =1x +1+ ln x 的定义域是 .【答案】(0, +∞)【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.⎧ 【详解】由题意得 x > 0 ,∴ x > 0⎨x +1 ≠ 0 故答案为: (0, +∞)【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12. 已知双曲线C :x 2- = 1,则 C 的右焦点的坐标为 ;C 的焦点到其渐近线的距6 3离是 .26 3 3 3 PD |= 【答案】(1). (3, 0)(2).【解析】【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a = ,b = ,则c = 为(3, 0) , = 3 ,则双曲线C 的右焦点坐标双曲线C 的渐近线方程为 y =±2 x ,即 x ± 2所以,双曲线C 的焦点到其渐近线的距离为2 y = 0 ,= .故答案为: (3, 0) ; .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.13. 已知正方形 ABCD 的边长为2,点 P 满足 AP = 1( AB + AC ) ,则| ;2PB ⋅ PD =.【答案】(1).(2). -1【解析】【分析】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立平面直角坐标系,求得点 P 的坐标,利用平面向量数量积的坐标运算可求得 以及 PB ⋅ PD 的值.【详解】以点 A 为坐标原点, AB 、 AD 所在直线分别为 x 、 y 轴建立如下图所示的平面直角坐标系,3a 2 +b 2 3 12+ 25PD5cos 2 ϕ + (sin ϕ +1)2( )则点 A (0, 0) 、 B (2, 0) 、C (2, 2) 、 D (0, 2) ,AP = 1 AB + AC = 1 (2, 0) + 1(2, 2) = (2,1) ,2 2 2则点 P (2,1) ,∴ PD = (-2,1) , PB = (0, -1) ,因此,故答案为:; -1.= ,PB ⋅ PD = 0 ⨯(-2) +1⨯ (-1) = -1.【点睛】本题考查平面向量的模和数量积的计算,建立平面直角坐标系,求出点 P 的坐标是解答的关键,考查计算能力,属于基础题.14. 若函数 f (x ) = sin(x + ϕ) + cos x 的最大值为 2,则常数ϕ 的一个取值为.【答案】 π (2k π + π, k ∈ Z 均可) 22【解析】【分析】根据两角和的正弦公式以及辅助角公式即可求得 f ( x ) =( x +θ ) ,可得 = 2 ,即可解出.【详解】因为 f ( x ) = cos ϕ sin x + (sin ϕ +1)cos x =sin ( x +θ ) ,所以 = 2 ,解得sin ϕ = 1 ,故可取ϕ = π . 2故答案为: π ( 2k π + π, k ∈ Z 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.15. 为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业PD =(-2)2 +125 cos 2 ϕ + (sin ϕ +1)2cos 2 ϕ + (sin ϕ +1)2cos 2ϕ + (sin ϕ +1)2要限期整改、设企业的污水摔放量W 与时间t 的关系为W =f (t) ,用-f (b) -f (a)的大小评b -a价在[a, b] 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1 ,t2 ]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0, t1],[t1, t2],[t2, t3]这三段时间中,在[0, t1]的污水治理能力最强.其中所有正确结论的序号是.【答案】①②③【解析】【分析】根据定义逐一判断,即可得到结果【详解】-f (b) -f (a)表示区间端点连线斜率的负数,b -a在[t1 ,t2 ]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0, t1 ],[t1, t2 ],[t2 , t3 ]这三段时间中,甲企业在[t1 ,t2 ]这段时间内,甲的斜率最小,其相反数最大,即在[t1 ,t2 ]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.三、解答题共6 小题,共85 分,解答应写出文字说明,演算步骤或证明过程.16.如图,在正方体ABCD -A1B1C1D1中,E 为BB1的中点.(I)求证:BC1 // 平面AD1E ;(II)求直线AA1与平面AD1E 所成角的正弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)2 .3【解析】【分析】(I)证明出四边形ABC1D1为平行四边形,可得出BC1 //AD1,然后利用线面平行的判定定理可证得结论;(I I)以点A 为坐标原点,AD 、AB 、AA1 所在直线分别为x 、y 、z 轴建立空间直角坐标系A -xyz ,利用空间向量法可计算出直线AA1与平面AD1E 所成角的正弦值.【详解】(Ⅰ)如下图所示:⎩⎩在正方体 ABCD - A 1B 1C 1D 1 中, AB //A 1B 1 且 AB = A 1B 1 , A 1B 1 //C 1D 1 且 A 1B 1 = C 1D 1 ,∴ AB //C 1D 1 且 AB = C 1D 1 ,所以,四边形 ABC 1D 1 为平行四边形,则 BC 1 //AD 1 ,BC 1 ⊄ 平面 AD 1E , AD 1 ⊂ 平面 AD 1E ,∴ BC 1 // 平面 AD 1E ;(Ⅱ)以点 A 为坐标原点, AD 、 AB 、 AA 1 所在直线分别为 x 、 y 、 z 轴建立如下图所示的空间直角坐标系 A - xyz ,设正方体 ABCD - A 1B 1C 1D 1 的棱长为2 ,则 AD 1 = (2, 0, 2) , AE = (0, 2,1) ,A (0, 0, 0) 、A 1 (0, 0, 2) 、D 1 (2, 0, 2) 、E (0, 2,1),设平面 AD E 的法向量为n = (x , y , z ) ,由⎧n ⋅ AD 1 = 0 ,得⎧2x + 2z = 0 ,1⎨n ⋅ AE = 0 ⎨2 y + z = 0令 z = -2 ,则 x = 2 , y = 1,则n = (2,1, -2).cos < =-2 . 3因此,直线AA 与平面AD E 所成角的正弦值为2 .113【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法计算直线与平面所成角的正弦值,考查计算能力,属于基础题.17.在ABC 中,a +b = 11,再从条件①、条件②这两个条件中选择一个作为己知,求:(Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:c = 7, cos A =-1 ;7条件②:cos A =1, cos B =9.816注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】选择条件①(Ⅰ)8(Ⅱ)sin C =3, S = 6 3 ;2选择条件②(Ⅰ)6(Ⅱ)sin C =7, S =157.4 4【解析】【分析】选择条件①(Ⅰ)根据余弦定理直接求解,(Ⅱ)先根据三角函数同角关系求得sin A ,再根据正弦定理求sin C ,最后根据三角形面积公式求结果;选择条件②(Ⅰ)先根据三角函数同角关系求得sin A, sin B ,再根据正弦定理求结果,(Ⅱ)根据两角和正弦公式求sin C ,再根据三角形面积公式求结果.【详解】选择条件①(Ⅰ) c = 7, cos A =-17a +b =11∴a= 8 +c2- 2bc cos A∴a2= (11-a)2+ 72- 2(11-a) ⋅7 ⋅(-1)7(Ⅱ)cos A =-1,A∈(0,π)∴sin A = =4 3 7 7n, AA >=1n ⋅AA1n ⋅AA1=-43⨯ 2a2=b21- cos2A1- cos 2 B a 由正弦定理得: sin A = c ∴8 sin C 4 3 7= 7 sin C ∴sin C = 3 2S = 1 ba sin C = 1 (11- 8) ⨯8⨯ 3 = 6 2 2 2 选择条件②(Ⅰ) cos A = 1 , cos B = 9,A , B ∈(0,π )∴sin A 8 16 = 3 7, s in B == 5 7 8 16a =b ∴a = 11- a ∴ a = 6 由正弦定理得: sin A sin B 3 7 5 78 16(II ) sin C = sin( A + B ) = sin A cos B + sin B cos A =3 7 ⨯ 9 + 5 7 ⨯ 1 =7S = 1 ba sin C = 1(11- 6) ⨯ 6⨯7 = 15 78 16 16 8 42 2 4 4【点睛】本题考查正弦定理、余弦定理,三角形面积公式,考查基本分析求解能力,属中档题.18. 某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(I ) 分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(II ) 从该校全体男生中随机抽取 2 人,全体女生中随机抽取 1 人,估计这 3 人中恰有 2 人支持方案一的概率;31- cos 2 A 男生女生支持不支持支持不支持 方案一 200 人 400 人 300 人 100 人 方案二 350 人250 人150 人250 人(III)将该校学生支持方案的概率估计值记为p0,假设该校年级有500 名男生和300 名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)1【答案】(Ⅰ)该校男生支持方案一的概率为33 ,该校女生支持方案一的概率为;4(Ⅱ)13,(Ⅲ)p <p 3610【解析】【分析】(I)根据频率估计概率,即得结果;(II)先分类,再根据独立事件概率乘法公式以及分类计数加法公式求结果;(III)先求p0,再根据频率估计概率p1,即得大小.2001【详解】(Ⅰ)该校男生支持方案一的概率为=,200+40033003该校女生支持方案一的概率为=;300+1004(Ⅱ)3 人中恰有2 人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3 人中恰有2 人支持方案一概率为:(1)2 (1-3) +C1(1)(1-1)3=13;(III)p1 <p34233436【点睛】本题考查利用频率估计概率、独立事件概率乘法公式,考查基本分析求解能力,属基础题.19.已知函数f (x) = 12 -x2.(I)求曲线y =f (x) 的斜率等于-2 的切线方程;(II)设曲线y =f (x) 在点(t, f (t)) 处的切线与坐标轴围成的三角形的面积为S (t) ,求S (t)的最小值.【答案】(Ⅰ)2x +y -13 = 0 ,(Ⅱ)32 .【解析】【分析】12)⋅ ,( ) (I ) 根据导数的几何意义可得切点的坐标,然后由点斜式可得结果;(II ) 根据导数的几何意义求出切线方程,再得到切线在坐标轴上的截距,进一步得到三角形的面积,最后利用导数可求得最值.【详解】(Ⅰ)因为 f (x ) = 12 - x 2 ,所以 f '( x ) = -2x , 设切点为( x 0 ,12 - x 0 ) ,则-2x 0 = -2 ,即 x 0 = 1 ,所以切点为(1,11) ,由点斜式可得切线方程 : y -11 = -2 ( x -1) ,即2x + y - 13 = 0 . (Ⅱ)显然t ≠ 0 ,因为 y = f (x ) 在点(t ,12 - t 2 ) 处的切线方程为: y - (12 - t 2 )= -2t ( x - t ) ,令 x = 0 ,得 y = t 2 +12 ,令 y = 0 t 2 +12 ,得x = ,2t所以S (t ) = 1⨯(t 2 + t 2 +12 22 | t |不妨设t > 0 (t < 0 时,结果一样) ,t 4 + 24t 2 + 1441 则 S t == (t 3+ 24t + 144) , 4t4 t所以 S '(t ) = 1(3t 2 + 24 - 144 3(t 4 + 8t 2 - 48)) = 4t 2 4t 23(t 2 - 4)(t 2 + 12)3(t - 2)(t + 2)(t 2 + 12)==,4t 24t 2由 S '(t ) > 0 ,得t > 2 ,由 S '(t ) < 0 ,得0 < t < 2 ,所以 S (t ) 在(0, 2) 上递减,在(2, +∞) 上递增, 所以t = 2 时, S (t ) 取得极小值, 也是最小值为 S (2) =16 ⨯16 = 32 .8【点睛】本题考查了利用导数的几何意义求切线方程,考查了利用导数求函数的最值,属于中档题.20. 已知椭圆C :x 2+y 2= 过点 A (-2, -1) ,且a = 2b .a 2b21y + ⎨ 2 y y2 (I ) 求椭圆 C 的方程:(II ) 过点 B (-4, 0) 的直线 l 交椭圆 C 于点 M , N ,直线 MA , NA 分别交直线 x = -4 于点P , Q .求| PB |的值.| BQ |【答案】(Ⅰ) x 2+ = 1;(Ⅱ)1.82【解析】【分析】(Ⅰ)由题意得到关于 a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线 MA ,NA 的方程确定点 P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得 y P + y Q = 0 ,从而可得两线段长度的比值.【详解】(1)设椭圆方程为: x 2 y = 1(a > b > 0),由题意可得:⎧ 4 + 1 = 1a b⎧a 2 = 8 ⎪ a2⎪⎩b 2 a = 2b ,解得: ⎨ , ⎩b = 2故椭圆方程为: x 2+ = 1.82(2)设 M (x 1, y 1 ) , N ( x 2 , y 2 ) ,直线 MN 的方程为: y = k ( x + 4) ,与椭圆方程 x 2 + = 1联立可得: x 2 + 4k 2 ( x + 4)2 = 8 ,8 2即:(4k 2 +1) x 2 + 32k 2 x + (64k 2 - 8) = 0 ,-32k 2 则: x 1 + x 2 =4k 2+1, x 1x 2 =64k 2 - 8 .4k 2+1直线 MA 的方程为: y +1 =y 1 +1( x + 2) ,x 1 + 2令 x = -4 可得: y = -2⨯ y 1 +1 -1 = -2⨯ k ( x 1 + 4) +1 - x 1 + 2 = -(2k +1)( x 1 + 4) , P x + 2 x + 2 x + 2 x + 21 1 1 12 2 22 2= ⨯= ,a n n a同理可得: y = -(2k +1)( x 2 + 4) . x 2 + 2很明显 y P y Q < 0 ,且:=,注意到:y + y = -(2k +1)⎛ x 1 + 4 + x 2 + 4 ⎫ = -(2k +1)⨯ ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) , P Qx + 2 x + 2 ⎪ ( x + 2)( x + 2) ⎝ 1 2 ⎭ 1 2而: ( x 1 + 4)( x 2 + 2) + ( x 2 + 4)( x 1 + 2) = 2 ⎡⎣x 1x 2 + 3( x 1 + x 2 ) + 8⎤⎦= ⎡ 64k 2 - 8 ⎛ -32k 2 ⎫ ⎤ 2 ⎢ 4k 2 +1+ 3⨯ 4k 2 +1 ⎪ + 8⎥⎣⎝ ⎭ ⎦ (64k 2 - 8) + 3⨯(-32k 2 ) + 8(4k 2 +1)2 0 4k 2+1故 y P + y Q = 0, y P = - y Q .从而= = 1 .【点睛】解决直线与椭圆的综合问题时,要注意:(1) 注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2) 强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21. 已知{a n } 是无穷数列.给出两个性质:2①对于{a }中任意两项a i , a j (i > j ) ,在{a } 中都存在一项a ,使 i= a ;n n mm ja 2②对于{a n }中任意项a n (n …3) ,在{a n } 中都存在两项a k , a l (k > l ) .使得a n(I) 若a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;= k .a l(II) 若a = 2n -1(n = 1, 2, ) ,判断数列{a }是否同时满足性质①和性质②,说明理由; (III) 若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n } 为等比数列.【答案】(Ⅰ)详见解析;(Ⅱ)详解解析;(Ⅲ)证明详见解析.【解析】PBPQy Py Q PB PQ y Py QQa 2 a a ma 【分析】(I) 根据定义验证,即可判断;(II) 根据定义逐一验证,即可判断;a 2 (III) 解法一:首先,证明数列中的项数同号,然后证明a 3 = 2,最后,用数学归纳法证明数a 1列为等比数列即可.解法二:首先假设数列中的项数均为正数,然后证得a 1, a 2 , a 3 成等比数列,之后证得a 1, a 2 , a 3, a 4 成等比数列,同理即可证得数列为等比数列,从而命题得证.a 29 【详解】(Ⅰ)Q a = 2, a = 3, 3 = ∉ Z ∴{a } 不具有性质①; 2 3 n2a 2 a 2(Ⅱ) Q ∀i , j ∈ N *, i > j , i = 2(2i - j )-1, 2i - j ∈ N * ∴ i = a∴{a }具有性质①; a j a ja 22i - j nQ ∀n ∈ N *, n ≥ 3, ∃k = n -1,l = n - 2, k = 2(2k -l )-1 = 2n -1 = a ,∴{a } 具有性质②;n nl(Ⅲ)【解法一】首先,证明数列中的项数同号,不妨设恒为正数:显然a n ≠ 0 (n ∉ N *),假设数列中存在负项,设N 0 = max {n | a n < 0} ,第一种情况:若 N 0 = 1,即a 0 < 0 < a 1 < a 2 < a 3 <,由①可知:存在m 1 ,满足a a 2 = 2 < 0 ,存在m 2 ,满足aa 2 = 3 < 0 , m 1 m 21 1a 2 a 2由 N 0 = 1可知 2= 3 ,从而a 2 = a 3 ,与数列的单调性矛盾,假设不成立. a 1 a 1a 2第二种情况:若 N ≥ 2 ,由①知存在实数m ,满足a = N 0< 0 ,由 N 的定义可知:m ≤ N ,0 012 2另一方面, a m = N 0> N 0 = aa a N 0 ,由数列 单调性可知: m > N 0 ,1N 0这与 N 0 的定义矛盾,假设不成立.同理可证得数列中的项数恒为负数.aaa 1a 1 1 1a 综上可得,数列中的项数同号.a 2 其次,证明a 3 = 2:a 1利用性质②:取n = 3 ,此时a 32= k (k > l ) , a l由数列的单调性可知a k > a l > 0 ,而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1最后,用数学归纳法证明数列为等比数列:假设数列{a n }的前k (k ≥ 3) 项成等比数列,不妨设a s= a q s -1(1 ≤ s ≤ k ) ,其中a 1 > 0, q > 1,( a 1 < 0, 0 < q < 1 情况类似)由①可得:存在整数m ,满足 a a2= k = a q k > a,且a = a q k ≥ a(*)a k -1a 2 am 1 k +1由②得:存在 s > t ,满足: a = s = a ⋅ s > a ,由数列的单调性可知: t < s ≤ k +1, k +1 a s a ss -1t t22s -t - - 由 a = a q (1 ≤ s ≤ k ) 可得: a = s= a q 1 > a = a q k 1 (**)s 1 k +1 1 k 1t 由(**)和(*)式可得: a q k ≥ a q 2s -t -1 > a q k -1,结合数列的单调性有: k ≥ 2s - t -1 > k -1, 注意到 s , t , k 均为整数,故k = 2s - t -1, 代入(**)式,从而a= a q k .k +11总上可得,数列{a }的通项公式为: a = a q n -1 .nn1即数列{a n }为等比数列.【解法二】假设数列中的项数均为正数:m1 kaa 1 4 1 4 1 4 1 4 1 首先利用性质②:取n = 3 ,此时 a 3由数列的单调性可知a k > a l > 0 ,2= k (k > l ) , a l而 a 3 = a k ⋅ a ka l> a k ,故 k < 3 ,2 此时必有k = 2, l = 1 ,即a3 = 2,a 1即 a , a , a 成等比数列,不妨设a = a q , a = a q 2(q > 1) ,1232 13 1a 2 a 2q 4然后利用性质①:取i = 3, j = 2 ,则a = 3 = 1 = a q 3 , a 2 a 1q即数列中必然存在一项的值为a q 3 ,下面我们来证明a = a q 3,否则,由数列的单调性可知 a < a q 3 ,在性质②中,取n = 4 ,则a a 2 = k = a a k > a,从而k < 4 ,4 a k a kl l与前面类似的可知则存在{k , l } ⊆ {1, 2, 3}(k > l ) ,满足a 4a 2a 2= k ,a l若 k = 3, l = 2 ,则: a = k = a q 3,与假设矛盾;1la 2 若 k = 3, l = 1,则: a = k = a q 4 > a q 3 ,与假设矛盾; 1 1la 2若 k = 2, l = 1 ,则: a = k = a q 2= a ,与数列的单调性矛盾;1 3l即不存在满足题意的正整数 k , l ,可见a < a q 3 不成立,从而a = a q 3,同理可得:a = a q 4 , a = a q 5 , ,从而数列{a } 为等比数列,5161n同理,当数列中的项数均为负数时亦可证得数列为等比数列.由推理过程易知数列中的项要么恒正要么恒负,不会同时出现正数和负数.从而题中的结论得证,数列{a n } 为等比数列.m 14a 4 a 4a【点睛】本题主要考查数列的综合运用,等比数列的证明,数列性质的应用,数学归纳法与推理方法、不等式的性质的综合运用等知识,意在考查学生的转化能力和推理能力.。
2020年普通高等学校招生全国统一考试 文科数学(全国 Ⅱ卷)解析版

2020年普通高等学校招生全国统一考试(全国 Ⅱ卷) 文科数学一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂=( ) A .∅ B .{3,2,2,3}-- C .{2,0,2}- D .{2,2}- 答案: D 解析:{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -=( ) A .4- B .4 C .4i - D .4i 答案: A 解析:42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A . 5B . 8C . 10D . 15 答案: C 解析:原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名答案: B 解析:积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是( ) A .2a b + B .2a b + C .2a b - D .2a b - 答案: D 解析:21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D .6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a =( )A . 21n -B . 122n --C . 122n --D . 121n -- 答案: B 解析:设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n n S a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为( )A .2B .3C .4D .5 答案: C 解析:当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A 5BCD 答案: B 解析:依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --=的距离为=;当圆心坐标为(5,5)时,其到直线230x y --=的距离为=,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x ya b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( ) A . 4 B . 8 C . 16 D . 32 答案: B 解析:双曲线2222:1x y C a b-=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==时,等号成立,所以min 4c =,焦距min (2)8c =.10.设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,)+∞单调递增 B .是奇函数,且在(0,)+∞单调递减 C .是偶函数,且在(0,)+∞单调递增 D .是偶函数,且在(0,)+∞单调递减 答案: A 解析:因为331()f x x x =-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x=-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x=-为(0,)+∞增函数,故选A .判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x'=+>,所以()f x 在(0,)+∞上是单调递增的. 11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( ) AB .32C .1 D答案: C 解析:2ABC S AB ∆==,所以3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==.从而O 到平面ABC 的距离1h ==,故选C .12. 若2233x y x y ---<-,则( )A . ln(1)0y x -+>B . ln(1)0y x -+<C . ln ||0x y ->D . ln ||0x y -< 答案: A 解析:11223323232233x y x y x x y y x y x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233x yx y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A . 二、填空题13.若2sin 3x =-,则cos 2x = .答案:19解析:22281cos 212sin 12()1399x x =-=--=-=.14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 答案:25 解析:由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.答案: 8 解析: 方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内. 2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行.4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥. 则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 答案: ①③④ 解析:对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④. 三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)b c -=,证明:ABC ∆是直角三角形. 答案: (1)3π;(2)证明过程见解析.解析:(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c =-,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b =(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为b c -=,由正弦定理得1sin sin 2B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021()80i i x x =-=∑,2021()9000ii yy =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:nx y r =1.414≈答案: (1)12000; (2)0.94; (3)见解析 解析:(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得0.94nx y r ===≈;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b +=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程. 答案: (1)12e =(2)221:11612x y C +=;22:8C y x =解析:(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12.(2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c pd c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F(1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.答案: 见解析 解析:(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A NBC ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA 平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,3ON AP ==,过M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH ⊥平面11EB C F ,由23PM =,6AO =,26MN =,得PM MN MH PN ⋅==11111()242EB C F S B C EF NP =+⋅=,由//BC 平面11EB C F ,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.答案:(1)[1,)-+∞; (2)见解析 解析:(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞;(2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--, 令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=,令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减. 四、选做题(2选1)22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 答案: 见解析 解析:(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥;因为222222212:12x t tC y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=. 23.已知函数2()|||21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集; (2)若()4f x ≥,求a 的取值范围.答案: (1)解集为32x ≤或112x ≥;(2)3a ≥或1a ≤-. 解析:(1)当2a =时,()|4||3|f x x x =-+-,即()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥.(2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
;.;.'2020年普通高等学校招生全国统一考试模拟卷(1)文科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =I( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D 【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0M N =I .选D .2.设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4 C .()3,2- D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516D .3132【答案】C【解析】1i =, (1)21,2x x i =-=, (2)()221143,3x x x i =--=-=, (3)()243187,4x x x i =--=-=, (4)()28711615,5x x x i =--=-=,所以输出16150x -=,得1516x =,故选C . 4.已知()cos 2cos 2ααπ⎛⎫+=π-⎪⎝⎭,则tan 4απ⎛⎫-= ⎪⎝⎭( ) A .4- B .4C .13-D .13【答案】C【解析】因为()cos 2cos 2ααπ⎛⎫+=π-⎪⎝⎭,所以sin 2cos tan 2ααα-=-⇒=, 所以1tan 1tan 41tan 3αααπ-⎛⎫-==-⎪+⎝⎭,故选C .5.已知双曲线22221x y a b-=()0,0a b >>的一个焦点为()2,0F -,一条渐近线的斜率为3,则该双曲线的方程为( )A .2213x y -=B .2213y x -= C .2213y x -= D .2213x y -= 【答案】B【解析】令22220x y a b -=,解得b y x a =±,故双曲线的渐近线方程为b y x a =±.由题意得22232 ba c c ab ===+⎧⎪⎪⎨⎪⎪⎩,解得221 3a b ==⎧⎨⎩,∴该双曲线的方程为2213y x -=.选B . 6.某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y 与x 的线性回归方程为ˆ8ˆyx b =+,则ˆb 为( ) x2 4 5 6 8 y2535 6055 75A .5B .15C .12D .20【答案】C【解析】由题意可得:2456855x ++++==,2535605575525y ++++==,;.;.'回归方程过样本中心点,则:ˆ5285b=⨯+,1ˆ2b ∴=.本题选择C 选项. 7.已知()201720162018201721f x xx x =++++L ,下列程序框图设计的是求()0f x 的值,在“ ”中应填的执行语句是( )开始i =1,n =2018结束i ≤2017?是否输入x 0S =2018输出SS =Sx 0S =S+ni =i +1A .2018n i =-B .2017n i =-C .2018n i =+D .2017n i =+【答案】A【解析】不妨设01x =,要计算()120182017201621f =+++++L ,首先201812018S =⨯=,下一个应该加2017,再接着是加2016,故应填2018n i =-.8.设π02x <<,则“2cos x x <”是“cos x x <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <解集为,2m π⎛⎫ ⎪⎝⎭,cos x x <解集为,2n π⎛⎫⎪⎝⎭,因为,2m π⎛⎫ ⎪⎝⎭,2n π⎛⎫⊂ ⎪⎝⎭,因此选A . 9.如图为正方体1111ABCD A B C D -,动点M 从1B 点出发,在正方体表面上沿逆时针方向运动一周后,再回到1B 的运动过程中,点M 与平面11A DC 的距离保持不变,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图象大致是( )A .B .C .D .【答案】C【解析】取线段1B A 中点为N ,计算得:11126232N B A l NA NC ND l l =++=+<+==.同理,当N 为线段AC 或1CB 的中点时,计算得11126232N B l NA NC ND l =++=+<+=,符合C 项的图象特征.故选C . 10.已知双曲线E :22221x y a b-=(0,0)a b >>的右顶点为A ,右焦点为F ,B 为双曲线在第二象限上的一点,B 关于坐标原点O 的对称点为C ,直线CA 与直线BF 的交点M 恰好为线段BF 的中点,则双曲线的离心率为( )A .12B .15C .2D .3【答案】D【解析】不妨设2,b B c a ⎛⎫- ⎪⎝⎭,由此可得(),0A a ,2,b C c a ⎛⎫- ⎪⎝⎭,(),0F c ,20,2b M a ⎛⎫ ⎪⎝⎭,由于A ,C ,M 三点共线,故222b b a a a a c=--,化简得3c a =,故离心率3e =.11.已知点()4,3A 和点()1,2B ,点O 为坐标原点,则()OA tOB t +∈R u u u r u u u r的最小值为( )A .52B .5C .3D .5【答案】D【解析】由题意可得:()4,3OA =u u u r ,()1,2OB =u u u r,则: ()()()()()2224,31,24,3243252025OA tOB t t t t t t t +=+=++=+++=++u u u r u u u r,结合二次函数的性质可得,当2t =-时,min54202255OA tOB+=⨯-⨯+=u u u r u u u r.本题选择D 选项.;.;.'12.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF =,设1C 与2C 的离心率分别为1e ,2e ,则21e e -的取值范围是( )A .1,3⎡⎫+∞⎪⎢⎣⎭B .1,3⎛⎫+∞ ⎪⎝⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】设122F F c =,令1PF t =,由题意可得:22t c a -=,12t c a +=,据此可得:12a a c -=,则:12111e e -=,2121e e e =+, 则:2222122222211111e e e e e e e e e -=-==++⎛⎫+ ⎪⎝⎭,由21e >可得:2101e <<, 结合二次函数的性质可得:()222110,1e e ⎛⎫+∈ ⎪⎝⎭,则:2112e e ->,即21e e -的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.本题选择D 选项.第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分。
13.已知平面向量a 与b 的夹角为3π,且1=b ,223+=a b ,则=a __________.【答案】2【解析】223+=Q a b ,2212∴+=a b ,即224412+⋅+=a a b b ,2241cos604112∴+⨯⨯︒+⨯=a a ,化简得:2280+-=a a ,2∴=a .14.如果1P ,2P ,…,10P 是抛物线C :24y x =上的点,它们的横坐标依次为1x ,2x ,…,10x ,是抛物线C 的焦点,若121010x x x +++=L ,则1210PF P F P F +++=L _________.【答案】20【解析】由抛物线方程24y x =,可得2p =.则12101210105p 20222p p pPF P F P F x x x +++=++++++=+=L L , 故答案为:20.15.若x ,y 满足约束条件2040 2x y x y y -+⎧⎪+-⎨⎪⎩≥≤≥,则1y x +的取值范围为__________. 【答案】2,23⎡⎤⎢⎥⎣⎦【解析】画出不等式组表示的可行域(如图阴影部分所示).1yx +表示可行域内的点(),M x y 与点()1,0P -连线的斜率. 由402x y y +-=⎧⎨=⎩,解得2 2x y =⎧⎨=⎩,故得()2,2B ;由202x y y ++=⎧⎨=⎩,解得0 2x y =⎧⎨=⎩,故得()0,2A .因此可得2PA k =,23PB k =, 结合图形可得1yx +的取值范围为2,23⎡⎤⎢⎥⎣⎦.答案:2,23⎡⎤⎢⎥⎣⎦. 16.在三棱椎P ABC -中,底面ABC 是等边三角形,侧面PAB 是直角三角形,且2PA PB ==,PA AC ⊥,则该三棱椎外接球的表面积为________.【答案】12π【解析】由于PA PB =,CA CB =,PA AC ⊥,则PB CB ⊥,因此取PC 中点O ,则有OP OC OA OB ===,即O 为三棱锥P ABC -外接球球心,又由2PA PB ==,得22AC AB ==,所以()2222223PC =+=,所以()24312S =π⨯=π.三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.已知数列{}n a 满足2n n S a n =-()*n ∈N . (1)证明:{}1n a +是等比数列; (2)求13521...n a a a a +++++()*n ∈N .;.;.'【答案】(1)证明见解析;(2)232353n n +--.【解析】(1)由1121S a =-得:11a =,···········1分 因为()()()11221n n n n S S a n a n ---=----()2n ≥,所以121n n a a -=+,···········3分 从而由()1121n n a a -+=+得1121n n a a -+=+()2n ≥,···········5分 所以{}1n a +是以2为首项,2为公比的等比数列.···········6分(2)由(1)得21nn a =-,···········8分所以()()321135212221n n a a a a n +++++⋅⋅⋅+=++⋅⋅⋅+-+()()1214114n n +-=-+-232353n n +--=.···········12分18.“双十二”是继“双十一”之后的又一个网购狂欢节,为了刺激“双十二”的消费,某电子商务公司决定对“双十一”的网购者发放电子优惠券.为此,公司从“双十一”的网购消费者中用随机抽样的方法抽取了100人,将其购物金额(单位:万元)按照[)0.1,0.2,[)0.2,0.3,L ,[]0.9,1分组,得到如下频率分布直方图:根据调查,该电子商务公司制定了发放电子优惠券的办法如下:(1)求购物者获得电子优惠券金额的平均数;(2)从这100名购物金额不少于0.8万元的人中任取2人,求这两人的购物金额在0.8~0.9万元的概率.【答案】(1)64(元);(2)1021. 【解析】(1)购物者获得50元优惠券的概率为:()1.52 2.50.10.6++⨯=,····1分 购物者获得100元优惠券的概率为:()1.50.50.10.2+⨯=,···········2分 购物者获得200元优惠券的概率为:()0.50.20.10.07+⨯=,···········3分∴获得优惠券金额的平均数为:500.61000.22000.0764⨯+⨯+⨯=(元).····6分 (2)这100名购物者购物金额不少于0.8万元的共有7人,不妨记为A ,B ,C ,D ,E ,F ,G ,其中购物金额在0.8~0.9万元有5人(为A ,B ,C ,D ,E ),利用画树状图或列表的办法易知从购物金额不少于0.8万元7人中选2人,有21种可能;这两人来自于购物金额在0.8~0.9万元的5人,共有10种可能,所以,相应的概率为1021.···········12分 19.如图,在直三棱柱111ABC A B C -中,,D E 分别是棱,BC AB 的中点,点F 在1CC 棱上,且AB AC =,13AA =,2BC CF ==.(1)求证:1C E ∥平面ADF ;(2)当2AB =时,求三棱锥1A DEF -的体积.【答案】(1)见解析;(2)312.【解析】(1)连接CE 交AD 于点P ,连接PF , 由D ,E 分别是棱BC ,AB 中点,故点P 为ABC ∆的重心,···········2分 ∴在1CC E △中,有123CP CF CE CC ==, ∴1PF EC ∥,··········4分 又1EC ⊄平面ADF ,∴1C E ∥平面ADF ,···········6分;.;.'(2)取1AA 上一点H 使12AH HA =, ∵12CF FC =且直三棱柱111ABC A B C -, ∴HF AC ∥,∵,D E 为中点,∴DE AC ∥,DE HF ∥,HF ∥平面1A DE ,···········8分 ∴1111A DEFF A DE H A DE D A HE V V V V ----===,···········9分而1111122EHA S ∆=⨯⨯=, 点D 到平面11AA B B 的距离等于32,∴11113332212D A HEA DEF V V --=⨯⨯==, ∴三棱锥1A DEF -的体积为3.···········12分20.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点与短轴的一个端点连线构成等边三角形,且椭圆C 的短轴长为23.(1)求椭圆C 的标准方程;(2)是否存在过点()0,2P 的直线l 与椭圆C 相交于不同的两点M ,N ,且满足2OM ON ⋅=u u u u v u u u v(O 为坐标原点)若存在,求出直线l 的方程;若不存在,请说明理由.【答案】(1)22143x y +=;(2)答案见解析. 【解析】(1)由题意得:2222232 b a c a b c ===+⎧⎪⎨⎪⎩,···········2分解得23a b ⎧==⎪⎨⎪⎩,∴椭圆C 的标准方程是22143x y +=···········4分 (2)当直线l 的斜率不存在时,()0,3M ,()0,3N -3OM ON ⋅=-u u u u v u u u v,不符合题意···········5分当直线l 的斜率存在时,设直线l 的方程为2y kx =+,()11,M x y ,()22,N x y由221 432x y y kx +==+⎧⎪⎨⎪⎩消y 整理得:()22341640k x kx +++=, ()()221616340k k ∆=-+>,解得12k <-或12k >,···········6分 1221634kx x k +=-+,122434x x k =+,···········7分 ∴1212OM ON x x y y ⋅=+=u u u u v u u u v()()21212124k x x k x x ++++()222222413216124343434k k k k k k +-=-+=+++,···········9分 ∵2OM ON ⋅=u u u u v u u u v ,∴221612234k k -=+,···········10分解得22k =±,满足0∆>,···········11分 所以存在符合题意的直线,其方程为222y x =±+.···········12分 21.已知函数()2ln f x x ax x =-+,a ∈R . (1)讨论函数()f x 的单调性;(2)已知0a >,若函数()0f x ≤恒成立,试确定a 的取值范围. 【答案】(1)答案见解析;(2)[)1,+∞.【解析】(1)由()2ln f x x ax x =-+,得:()221ax x f x x-++'=,0x >,······1分当0a ≤时,()0f x '>在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递增;·········3分 当0a >时,令()'0f x =,则2210ax x -++=,得1181a x -+=,2181a x ++=,∵12102x x a=-<,∴120x x <<, ∴令()0f x '>得()20,x x ∈,令()0f x '<得()2,x x ∈+∞,∴()f x 在1810,4a a ⎛⎫++ ⎪ ⎪⎝⎭上单调递增,在181,4a a ⎛⎫+++∞ ⎪ ⎪⎝⎭上单调递减.········6分;.;.'(2)由(1)可知,当0a >时,函数()f x 在()20,x 上单调递增,在()2,x +∞上单调递减,∴()()2max f x f x =,即需()20f x ≤,即2222ln 0x ax x -+≤,···········8分又由()20f x '=得22212x ax +=,代入上面的不等式得222ln 1x x +≤,···········9分 由函数()2ln h x x x =+在()0,+∞上单调递增,()11h =,所以201x <≤,·······10分所以a 的取值范围是[)1,a ∈+∞.···········12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。