车削表面粗糙度的计算

车削表面粗糙度的计算
车削表面粗糙度的计算

车削表面粗糙度的计算

说说表面粗糙度的计算,以及"镜面效果"-

表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗)

车削表面粗糙度=每转进给的平方*1000/刀尖R乘8

以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例

以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点:

1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然!

3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。

如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,

通常如果进给定了,那切深只会在一个很窄的范围(上

面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论!:lol我大约会按照进给的10倍起定切深,也就是0.5mm,此时0.05*0.05/0.4/8*1000=0.78微米,也就是粗糙度达到0.8了。至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光刃的刀具最大可能将粗糙度降低一半,如果上面车出0.8光洁度的工件用带修光刃的刀片粗糙度就最小可能是0.4

以上是书本摘录的理论知识综合个人经验所书,以下再说说一些我个人感觉的理论,这些书本上我没见过的:

1:车床可以达到的最小粗糙度,首要原因是主轴精度,按照最大粗糙度计算的方法,如果你的车床主轴跳动精度是0.002mm,也就是2微米跳动,那理论上是不可能加工出粗糙度会低于0.002毫米粗糙度(RY2.0)的工件,但这是最大可能值,一般平均下来算50%好了,粗糙度1.0的工件可以加工出!再结合RA的算法一般不会得出超过RY值的50%,变成RA0.5,再计算修光刃的作用降低50%,那最

终主轴跳动0.002的车床极限是可以加工出RA0.2左右的工件!

最后说说“镜面效果”,一般镜面效果在超“精密研磨”定义为RA0.01或者以下的工件,我见过很多次,各大机床展览时各大材料公司就会展示出这些表面研磨到和镜子肉眼看下去没任何区别的金属块,反正你回家把衣柜的镜子擦干净了,对着上面看看是什么样子就知道真正的镜面金属是啥样子了。:lol:lol:lol但这些是基本上磨床都没可能直接加工出——一般靠研,也就是抛光得到的。磨床能直接加工出RA0.1以下的就算镜面了,车床、铣床能直接加工出RA0.5以下也算镜面了,现在论坛上关于镜面切削效果的帖子99%能低于RA1.0已经完全满足他们的镜面需求了

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

各种加工方法能达到的表面粗糙度

ID加工方法表面粗糙度Ra(μm)ID加工方法表面粗糙度Ra(μm) 1自动气割、带锯或圆盘锯割断50~12.526锪倒角(孔的) 3.2~1.6 2切断(车)50~12.527带导向的锪平面 6.3~3.2 3切断(铣)25~12.528镗孔(粗镗)12.5~6.3 4切断(砂轮) 3.2~1.629镗孔(半精镗金属) 6.3~3.2 5车削外圆(粗车)12.5~3.230镗孔(半精镗非金属) 6.3~1.6 6车削外圆(半精车金属) 6.3~3.231镗孔(精密镗或金刚石镗金属)0.8~0.2 7车削外圆(半精车非金属) 3.2~1.632镗孔(精密镗或金刚石镗非金属)0.4~0.2 8车削外圆(精车金属) 3.2~0.833高速镗0.8~0.2 9车削外圆(精车非金属) 1.6~0.434铰孔(半精铰一次铰)钢 6.3~3.2 10车削外圆(精密车或金刚石车金属)0.8~0.235铰孔(半精铰一次铰)黄铜 6.3~1.6 11车削外圆(精密车或金刚石车非金属)0.4~0.136铰孔(半精铰二次铰)铸铁 3.2~0.8 12车削端面(粗车)12.5~6.337铰孔(半精铰二次铰)钢、轻合金 1.6~0.8 13车削端面(半精车金属) 6.3~3.238铰孔(半精铰二次铰)黄铜、青铜0.8~0.4 14车削端面(半精车非金属) 6.3~1.639铰孔(精密铰)钢0.8~0.2 15车削端面(精车金属) 6.3~1.640铰孔(精密铰)轻合金0.8~0.4 16车削端面(精车非金属 6.3~1.641铰孔(精密铰)黄铜、青铜0.2~0.1 17车削端面(精密车金属)0.8~0.442圆柱铣刀铣削(粗)12.5~3.2 18车削端面(精密车非金属)0.8~0.243圆柱铣刀铣削(精) 3.2~0.8 19切槽(一次行程)12.544圆柱铣刀铣削(精密)0.8~0.4 20切槽(二次行程) 6.3~3.245端铣刀铣削(粗)12.5~3.2 21高速车削0.8~0.246端铣刀铣削(精) 3.2~0.4 22钻(≤φ15mm) 6.3~3.247端铣刀铣削(精密)0.8~0.2 23钻(>φ15mm)25~6.348高速铣削(粗) 1.6~0.8 24扩孔、粗(有表皮)12.5~6.349高速铣削(精)0.4~0.2 25扩孔、精 6.3~1.650刨削(粗)12.5~6.3

加工表面粗糙度和物理力学性能的影响因素研究

加工表面粗糙度和物理力学性能的影响因素研究 机械零件的破坏,一般总是从表面层开始的。产品的性能,尤其是它的可靠性和耐久性,在很大程度上取决于零件表面层的质量。表面面质量对零件耐磨性、疲劳强度、耐蚀性、配合质量都有严重的影响。机械机械加工表面质量的内容主要包括:表面粗糙度、表面层的物理力学性能和表面波度等。本文主要以影响加工表面粗糙度和加工表面物理力学性能变化的因素进行分析研究。 1 影响表面粗糙度的因素 1.1 切削加工影响表面粗糙度的因素 从几何因素方面分析,刀具相对于工件作进给运动时,在加工表面留下了切削层残留面积,其形状是刀具几何形状的复映。残留面积的大小与进给量、刀尖圆弧半径及刀具的主偏角、副偏角有关。对于宽刃刀具、定尺寸刀具和成形刀具等,其切削刃本身的表面粗糙度对加工表面粗糙度的影响也很大。 从物理因素方面分析,主要是切削过程中刀具刃口钝圆半径及后刀面对工件的挤压、摩擦作用使金属材料发生塑性变形,使表面粗糙度恶化。当低速切削塑性材料(如低碳钢和不锈钢等)时,由刀具对金属的挤压产生了塑性变形,加之刀具迫使切屑与工件分离的撕裂作用,产生积屑瘤和鳞刺,使表面粗糙度值加大。工件材料韧性愈好,金属的塑性变形愈大,加工表面就愈粗糙。当加工脆性材料时,其切屑呈碎粒状,由于切屑的崩碎而在加工表面留下许多麻点,使表

面粗糙。精加工时,因切削深度小,刀刃容易打滑,也影响表面粗糙度。 综上所述,在切削加工中影响表面粗糙度的工艺因素主要有: 1)切削用量 切削速度v在一定的范围内容易产生积屑瘤和鳞刺;减少进给量f可降低残留面积高度。因些合理选择切削用量是降低粗糙度的重要条件。 2)刀具材料和几何参数 实践表明,在切削条件相同时,用硬质合金刀具加工的工作表面粗糙度比用高速钢刀具加工的低。用金钢石车刀加工因不易形成积屑瘤,故可获得粗糙度很低的表面。 刀类圆弧半径rE、主偏角KC和副偏角kcC均影响残留面积的大小。因些适当减小rE、KC和kcC可使表面粗糙度变低。前角C1增大可抑制积屑瘤和鳞刺的生长,帮有利于降低表面粗糙度。 3)切削液 切削液对加工过程起冷却和润滑作用,能降低切削区的温度,减少刀刃与工件的摩擦,从而减少切削过程的塑性变形,抑制积屑瘤和鳞刺的生长,对降低表面粗糙度有很大作用。 1.2 磨削加工影响表面粗糙度的因素 磨削加工表面是由砂轮表面上磨粒的切削运动所刻划和滑擦出的沟痕所形成的表面,单位面积上的刻痕愈多,刻痕的细密越均匀,则表面粗糙度愈低。正像切削加工时表面粗糙度的形成过程一样,磨

表面粗糙度研究

微细车铣铝合金的表面粗糙度实验研究 微细轴类零件的加工一般采用微细车削工艺进行,而车铣加工工艺复合了铣削和车削两种工艺方法,与车削相比,具有切削速度大、切削效率高、加工表面粗糙度和精度好、径向切削力小、切削振动小等优点。它从根本上解决了微细轴类零件车削加工时切削线速度低的问题,可以实现工件低速旋转状态下的高速切削加工,被证明是一种优于车削工艺的微细轴类加工方法。精加工后的表面粗糙度值对零件各项性能,如装配精度、耐磨蚀性、接触刚度影响大,尤其对于自身几何尺寸微小的轴类零件,表面粗糙度更是不容忽视。研究微细车铣加工工艺下各工艺参数对微小型轴类零件表面粗糙度的影响,有较重要的现实意义和实用意义。 本课题对钛合金进行微细正交车铣的表面粗糙度实验研究。钛合金因具有密度小,比强度高、热强度高、抗蚀性好等优良性能,在航空航天医疗化工等领域得到广泛的应用。但钛合金的化学活性大、导热系数低、弹性模量小的这些特性,又使其加工性能较差,表现为加工刚性差、弹性变形大,刀具与工件易发生亲和作用而导致磨损加剧。单位面积切削力大,从而引起崩刀,切削热不易散发,加工冷硬现象严重,因此钛合金因其优异的综合性能而越来越多地被用于制作微小型零件,从而使得对钛合金进行微细切削加工的技术研究越来越迫切。 微细正交车铣的理论表面粗糙度 微细切削加工时正交车铣的主运动的旋转运动,进给运动为工件的旋转运动和铣刀的轴向进给。正交车铣零件的表面则是由铣刀和工件组成的复合运动包络形成的,其截面理论残留高度如下图所示 正交车铣外圆面的理论残留高度的计算模型如图所示。 有图可得到车铣外圆的截面理论残留高度 式中,Rz是工件的已加工表面沿圆周方向相邻两齿切削后的截面理论残留高度。 式即为正交车铣工件截面理论残留高度的计算公式。

表面粗糙度及其标注方法

表面粗糙度及其标注方法 零件图除了图形、尺寸这外,还必须有制造零件应达到的一些质量要求,一般称为技术要求。技术要求的内容通常有:表面粗糙度、尺寸公差、形状和位置公差、材料及其热处理、表面处理等。下面先介绍表面粗糙度及其注法。 一、表面粗糙度的概念 无论采用哪种加工方法所获得的零件表面,都不是绝对平整和光滑的,放在显微镜(或放大镜)下观察,都不得可以看到微观的峰谷不平痕迹,如图1所示。表面上这种微观不平滑情况,一般是受刀具与零件间的运动、摩擦,机床的振动及零件的塑性变形等各种因素的影响而形成的。表面上所具有的这种较小间距和峰谷所组成的微观几何形状特征,称为表面粗糙度。 图1 表面粗糙度概念 表面粗糙度是评定零件表面质量的一项技术指标,它对零件的配合性质、耐磨性、抗腐象征性、接触刚度、抗疲劳强度、密封性质和外观等都不得有影响。因此,图样上要根据零件的功能要求,对零件的表面粗糙度做出相应的规定。评定表面粗糙度的主要参数是轮廓算术平均偏差Ra,它是指在取样长度L范围内,补测轮廓线上各点至基准线的距离yi(如图2)的算术平均值,它是指在取样长度L范围内,被测轮廓线上各点至基准线的距离yi (如图12)的算术平均值,可用下表示:-----------或近似表示为:----------- 轮廓算术平均偏差可用电动轮廓仪测量,运算过程由仪器自动完成。根据GB/T1031—1995F规定(另外还有GB/T3525——2000以可同时查阅),Ra数值愈小,零件表面愈趋平整光滑;Ra的数值,零件表面愈粗糙。 图2 轮廓算术平均编差

图3 轮廓算术平均编差值 二、表面粗糙度的选用 表面粗糙度参数值的选用,应该既要满足零件表面的功能要求,又要考虑经济合理性。具体选用时,可参照已有的类似零件图,用类比法确定。在满足零件功能要求前提下,应尽量选用较大的表面粗糙度参数值,以降低加工成本。一般地说,零件的工作表面、配合表面、密封表面、运动速度高和单位压力大的摩擦表面等,对表面平整光滑程度要求高,参数值应取小些。非工作表面、非配合表面、尺寸精度低的表面,参数值应参数Ra值与加工方法的关系及其应用实例,可供选用时参考。 图4 表面粗糙度获得方法 三、表面粗糙度的注法(GB—T131——1993) (一)表面粗糙度代(符)号 表面粗糙度代号由表面粗糙度符号和在其周围标注的表面粗糙度数值及有关规定符号所组成。 (1)表面粗糙度符号及其画法,如图5所示。表面粗糙度符号的尺寸大小,按图6规定对应选取。

车削表面粗糙度的计算

车削表面粗糙度的计算 说说表面粗糙度的计算,以及"镜面效果"- 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,

切削加工表面完整性研究现状解析

网络教育学院 本科生毕业论文(设计) 题目:切削加工表面完整性研究现状 学习中心: 层次:专科起点本科 专业:机械设计制造及其自动化 年级:年季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 机械加工得到的零件表面完整性特征可分为三类:(1)表面形貌特征:表面缺陷、表面纹理和表面粗糙度等;(2)表面机械性能:残余应力和显微硬度等;(3)金相组织变化:加工变质层、白层、夹杂物等。本文围绕切削加工后零件表面完整性三类特征指标,系统论述了各自的研究发展历程,重点对表面粗糙度、残余应力、显微硬度、白层及变质层进行了归纳,概括了各自的研究方案、技术手段及研究成果。 关键词:切削加工;表面完整性;研究现状

目录 内容摘要 ........................................................................................................................... I 前言 .. (1) 1 切削加工表面完整性研究的发展 (2) 1.1 表面完整性的提出及发展 (2) 1.2 表面完整性研究意义 (2) 2 表面粗糙度研究 (3) 3 残余应力研究 (4) 3.1 残余应力的生成机理研究 (4) 3.2 残余应力影响因素的实验研究 (4) 4 加工硬化研究 (5) 4.1加工硬化的影响因素研究 (5) 4.2 材料特性对工件加工硬化的影响 (5) 4.3 显微硬度沿工件深度方向的分布规律研究 (5) 5 切削加工白层研究 (6) 5.1 白层的形成机制 (6) 5.2 白层的影响因素研究 (6) 5.2.1 切削参数对白层的影响 (6) 5.2.2 工件材料特性对白层的影响 (7) 6 变质层研究 (8) 6.1 变质层的组织特点 (8) 6.2 切削参数对变质层的影响 (8) 参考文献 (9)

资料.车削表面粗糙度算法(数字)

表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子. 今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削 参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方 *1000/刀尖R乘8 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于 0.15*0.15/0.4/8*1000=粗糙度 7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛) ——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论! :lol我大约会按照进给的10倍起定切深,也就是0.5mm,此时0.05*0.05/0.4/8*1000=0.78微米,也就是粗糙度达到0.8了。 至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光刃的刀具最大可能将粗糙度降低一半,如果上面车出0.8光洁度的工件用带修光刃的刀片粗糙度就最小可能是0.4 以上是书本摘录的理论知识综合个人经验所书,以下再说说一些我个人感觉的理论,这些书本上我没见过的:

如何降低加工表面粗糙度

南京工业职业技术学院数控加工与维修专业专科毕业论 文 论文题目:如何降低加工表面粗糙度 学生姓名:尹玉鑫 学号: 29 指导教师:元军伟 专业:数控加工与维修 年级:三年级 教学点:江苏省交通技师学院 2011年6月28日

摘要 机械加工工件时加工精度与机床的精度及包括刀具、夹具、工件在内的整个系统有直接的关系,影响机械加工精度的因素很多,如机床制造零件的误差和安装误差以及加工过程中的有关操作,需要掌握机械加工中各种工艺对加工零件表面质量影响的规律,以便运用这些规律来控制零件加工的表面粗糙度,最终改善零件的表面质量、提高产品使用性能、减少机械设备的损坏、降低生产成本、提高经济效益。本文探讨了机械加工影响零件表面粗糙度的因素及改善措施。 关键词:加工表面粗糙度;机械加工质量因素;改善加工的措施

ABSTRACT When machining pieces,processing precision and machine tool precision have direct relationship with the whole system,including cutting tool,clamping tool and pieces,the impact factors of machine are various,such as machine processing pieces inaccuracy,installing inaccuracy and other operation in process,which requires the master of the rule of all kinds of process to surface quality of machining pieces in machining in order to control processing roughness of surface roughness of pieces process,improving quality of surface of pieces and feature of products,decreasing equipments damage,lowing producing cost and improving economic profits.The paper discussed impact factors and modifying measures of machining to surface roughness. KEY WORDS:Processing surface roughness,Factors of machining,Measure of improving process.

车削粗糙度计算公式

车削粗糙度计算公式 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/刀尖R乘8(每转进给的平方/刀尖半径X125) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例 以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给

2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用R0.8以上的刀尖,而硬铝合金不要用R0.4以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择 上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给0.15,R尖R0.4,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于0.15*0.15/0.4/8*1000=粗糙度7.0(单位微米)。 如果有要求光洁度要到0.8的话,切削参数变化如下:刀具不变依旧上面0.4的刀片,切削参数进给0.05,切深要视乎刀具的断削槽而定,通常如果进给

数控车床常用计算公式

数控车床常用计算公式 直径Φ 倒角量a 角度θ 正切函数tanθ 正弦函数sinθ 余弦函数cosθ 圆弧半径R 乘以号x 除以号÷先运算()内结果,再运算【】,再运算全式 一、外圆倒斜角计算 公式例子:Φ30直径外端倒角1、5x60°程式:GoX32Z2 1,倒角起点直径X=Φ-2xaxtanθ°X=30-2x1、5x1、732=24、804G1X24、804Z0F0、2 2,倒角起点长度Z=0其中tan60°由数学用表查出G1X30Z-1、5F0、15 3,倒角收点直径X=Φ;G1Z-50 4,倒角收点长度Z=-a。。。。。。 二、内圆倒斜角计算 公式例子:Φ20孔径外端倒角2x60°程式:GoX18Z2

1,倒角起点直径X=Φ+2xaxtanθ°x=20+2x2x1、732=26、928G1x26、928Z0F0、2 2,倒角起点长度Z=0G1X20Z-2F0、15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-a。。。。。。 三、外圆倒圆角计算 公式例子:Φ35直径外端圆角R3程式:GoX36Z2 1,倒角起点直径X=Φ-2*RX=35-2x3=29G1X29Z0F0、2 2,倒角起点长度Z=0G3X35Z-3R3F0、15 3,倒角收点直径X=Φ;G1Z-30 4,倒角收点长度Z=-R。。。。。。 四、内圆倒圆角计算 公式例子;Φ20孔径外端圆角R2程式:G0X18Z2 1,倒角起点直径X=Φ+2*RX=20+2x2=24G1X24Z0F0、2 2,倒角起点长度Z=0G2X20Z-2R2F0、1 3,倒角收点直径X=Φ;G1Z-25 4,倒角收点长度Z=-R。。。。。。 五、G90、G92数控指令R锥度值的计算: 例子:大端Φ35小端Φ32锥体长20牙长16mm让刀3mm加工 1、计算图上锥度比例值:(32-35)/20=-0、15程式;G0X37Z3 (起始端直径-收点端直径)÷锥体长度G92X33、8Z-16R-1、425F2

各种加工方法对应表面粗糙度值.doc

用普通材料和一般生产过程所能得到的典型粗糙度数值 方法粗糙度数值 Ra(μm) 光洁 25 12.5 6.3 3.2 1.6 0.8 0.4 0.2 0.1 0.05 0.025 度值 50 火焰切割 粗磨 锯 刨和插 钻削 化学铣电火花加工 铣削 拉削 铰孔镗、车削滚筒光整电解磨削滚压抛光 磨削 珩磨 抛光 研磨 超精加工砂型铸造 热滚轧 煅 永久模铸造熔模铸造 挤压 冷轧冷拔 压铸 2 ~ 3 2 ~ 4 2 ~ 5 2 ~7 4 ~ 6 4 ~ 6 5 ~ 6 4 ~7 5 ~7 5 ~7 4 ~8 7 ~9 7 ~9 8 ~9 6 ~10 7 ~10 8 ~10 8 ~11 9 ~11 2 ~ 3 2 ~ 3 3 ~ 5 5 ~ 6 5 ~ 6 5 ~7 5 ~7 注 :粗实线为平均适用 ,虚线为不常适用 . 6 ~7 机械加工表面的特征 粗糙度等级Ra 50(▽1) 25(▽2) 12.5(▽ 3) 6.3( ▽4) 3.2( ▽5) 1.6( ▽6) 0.8( ▽7) 0.4( ▽8) 0.2( ▽9) 0.1(▽ 10) 0.05(▽ 11) 0.025(▽12) 0.0125(▽13) 0.006(▽14) 表面状况 粗 明显可见的刀痕 可见的刀痕 面 微见的刀痕 可见加工痕迹 半 光 微见加工痕迹 面 看不见加工痕迹 光 可辩加工痕迹方向 微辩加工痕迹方向 面 不可辩加工痕迹方向 暗光泽面 最 亮光泽面 光镜状光泽面 面 雾状光泽面 镜面 加工方法举例应用举例 粗 锯断、粗车、粗铣、粗刨、钻不接触表面或不重要的接触 加 工孔及用粗锉刀、粗砂轮加工面。如螺栓孔、机座底面等 半精车、精铣、粗铰、粗拉、精 不产生相对运动的接触面或 相对运动速度不高的接触面。 精 刨、扩孔、粗镗、粗磨、精锉、 加 如键和键槽的工作面机盖与机 工粗刮。 体的结合面 精金刚石车刀的精车、精镗、精相对运动速度较高的接触面, 加磨、精刮、粗研、精铰、精拉削、要求很好密合的接触面。如齿 工 挤压、粗珩轮的工作面轴承的重要表面。 光 抛光、细磨、精研、精珩、超 极重要的摩擦表面。如发动机 加气缸内表面、精密量具的工作 精加工。 工 表面。

车削加工减小表面粗糙度的方法

车削加工减小表面粗糙度的方法 【摘要】机械零件加工的表面质量是指零件加工后的表面粗糙程度,它是判定零件质量优劣的重要依据。 【关键词】切削加工;表面粗糙度;重要依据 0 前言 无论是机械加工后的零件表面,还是用其他方法获得的零件表面,总会存在着有较小间距的峰、谷组成的微量高低不平的痕迹。粗加工表面,用眼睛直接就可以看出加工痕迹;精加工表面,看上去光滑平整,但用放大镜,仍可以看到错综交叉的加工痕迹。表面粗糙度是表述零件表面峰谷高低程度和间距状况的微观几何形状特征的术语。表面粗糙度是指已加工表面微观不平程度的平均值,是一种微观即可形状误差。表面粗糙度等级用轮廓算术平均偏差Ra、微观不平度十点高度Rz或轮廓最大高度数值Ry的大小表示。按国家标准规定,优先采用轮廓算术平均偏差的大小Ra来表示。 我们在生产中要找到影响表面粗糙度的主要因素,并提出解决的方案。经切削加工形成的以加工表面粗糙度,一般可看成理论粗糙度和实际粗糙度叠加而成。要减小表面粗糙度可以从以下几个方面入手: 1 理论粗糙度 这是刀具几何形状和切削运动引起的表面不平度。生产中,如果条件比较理想,加工后表面实际粗糙度接近于理想粗糙度。在工件上表现出来的就是已加工表面上像螺纹一样的残留面积(刀具主副刀刃在已加工表面留下的一些痕迹未被切除的面积成为残留面积)。通常是按照残留面积的高度来度量其粗糙程度的。影响残留面积高度的有下面几个因素: 1.1 减小主偏角Kr和副偏角Kr′的数值 减小主偏角,加工表面粗糙度值会减小;减小副偏角Kr′,会增大切削刃与已加工表面的接触长度,能减小表面粗糙度的数值,但过小的副偏角会引起振动。 1.2 增大刀尖圆弧半径r 刀尖圆弧半径r增大时,使刀尖处的平均主偏角减少,可以减小便面粗糙度值,但会增大背向力和容易产生振动,所以刀尖圆弧半径不能过大,通常高速钢车刀r=0.5~5mm,硬质合金车刀r=0.5~2mm。具体表现为如下图,用尖刀加工时,残留的最大高度为:Ry=f/(cotKr+cot Kr′)相应的轮廓算术平均偏差为Ra=Ry/4。用圆头加工时,残留层的最大高度为Ry=f2/8r,相应的轮廓算术平均偏差为Ra=Ry/4。那么在相同的条件下Kr=75°,Kr′=10°,f=0.2mm/r,用尖头车刀和用圆头车刀车削外圆,分别求出残留层的高度。解得尖头车刀Ra=0.0337mm,而圆头车刀Ra=0.005mm。显而易见增大刀尖圆弧半径能减小表面粗糙度值。 1.3 减少进给量 进给量f是影响表面粗糙度最显著的一个因素,进给量越少,残留面积高度越小。并且,此时鳞次、积屑瘤和振动不易产生,表面质量越高。 2 实际粗糙度 实际粗糙度是指切削过程中出现的非正常原因造成的表面不平度。包括积屑瘤、亮斑、拉毛、加工振动等。减小实际粗糙度值,可从采取以下措施: 2.1 避免工件产生积屑瘤 有些教材上又叫毛刺。用中等切削速度切削钢料或其他塑性金属时,切屑与

表面粗糙度理论与标准的发展

1.表面粗糙度理论与标准的发展 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪20~30年代,世界上很多工业国家广泛采用三角符号(▽)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。 首先是美国在1940年发布了ASA B46.1国家标准,之后又经过

几次修订,成为现行标准ANSI/ASME B46.1-1988《表面结构表面粗糙度、表面波纹度和加工纹理》,该标准采用中线制,并将R a作为主参数;接着前苏联在1945年发布了ΓOCT2789-1945《表面光洁度、表面微观几何形状、分级和表示法》国家标准,而后经过了3次修订成为ΓOCT2789-1973《表面粗糙度参数和特征》,该标准也采用中线制,并规定了包括轮廓均方根偏差(即现在的R q)在内的6个评定参数及其相应的参数值。另外,其它工业发达国家的标准大多是在50年代制定的,如联邦德国在1952年2月发布了DIN4760和DIN4762有关表面粗糙度的评定参数和术语等方面的标准等。 以上各国的国家标准中都采用了中线制作为表面粗糙度参数的计算制,具体参数千差万别,但其定义的主要参数依然是R a(或R q),这也是国际间交流使用最广泛的一个参数。 2.2 表面粗糙度标准中的基本参数定义 随着工业的发展和对外开放与技术合作的需要,我国对表面粗糙度的研究和标准化愈来愈被科技和工业界所重视,为迅速改变国内表面粗糙度方面的术语和概念不统一的局面,并达到与国际统一的作用,我国等效采用国际标准化组织(ISO)有关的国际标准制订了GB3505-1983《表面粗糙度术语表面及其参数》。GB3505专门对有关表面粗糙度的表面及其参数等术语作了规定,其中有三个部分共27个参数术语: a.与微观不平度高度特性有关的表面粗糙度参数术语。其中定

铸件粗糙度及粗糙度计算

铸件表面粗糙度 铸件表面粗糙度是衡量干净、真实的铸件表面质量的重要指标。铸件铸造表面粗糙度是按不同铸造合金及其铸造方法、用其表面轮廓算术平均偏差Ra值(单位为μm)进行分级,分级应符合表1~1的规定。对照GB/——1997《表面粗糙度比较样块—铸造表面》的规定进行比较和评比;其评比方法按GB∕T15056——1994《铸造表面粗糙评定方法》进行。 对于重要铸件,当所有铸造表面的粗糙度要求相同时,可在铸件图样或铸造工艺图样的右上角同意标注粗糙度符号。如果大部分铸造表面度相同时,可将该级粗糙度符号统一标注在图样的右上角,并在符号前加注“其余”两字;余下的部分表面粗糙度,将其符号直接标注在其表面轮廓或尺寸或尺寸延长线上。 铸造表面粗糙度,也可按需方的要求或供需方的协商,将其公称值鉴订在订货合同中。 ※表示可以达到的铸件铸造表面粗糙度。

表1~2粗糙度与光洁度对照(单位:mm)

粗糙度的计算 表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗) 车削表面粗糙度=每转进给的平方*1000/(刀尖R乘8) 以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点: 1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给 2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。建议一般切削钢件6150以下的车床不要使用以上的刀尖,而硬铝合金不要用以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然! 3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给,R尖,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于*8*1000=粗糙度(单位微米)。 如果有要求光洁度要到的话,切削参数变化如下:刀具不变依旧上面的刀片,切削参数进给,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论!:lol我大约会按照进给的10倍起定切深,也就是,此时*8*1000=微米,也就是粗糙度达到了。 至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。另外理论上带修光

实验三表面粗糙度测量

实验三 表面粗糙度测量 实验3—1 用双管显微镜测量表面粗糙度 一、实验目的 1. 了解用双管显微镜测量表面粗糙度的原理和方法。 2. 加深对粗糙度评定参数轮廓最大高度Rz 的理解。 二、实验内容 用双管显微镜测量表面粗糙度的Rz 值。 三、测量原理及计量器具说明 参看图1,轮廓最大高度Rz 是指在取样长度lr 内,在一个取样长度范围内,最大轮廓峰高Rp 与最大轮廓谷深Rv 之和称之为轮廓最大高度 。 即 Rz = Rp + Rv 图1 图2 双管显微镜能测量80~1μm 的粗糙度,用参数Rz 来评定。 双管显微镜的外形如图2所示。它由底座1、工作台2、观察光管3、投射光管11、支臂7和立柱8等几部分组成。 双管显微镜是利用光切原理来测量表面粗糙度的,如图3所示。被测表面为P 1、P 2阶梯表面,当一平行光束从450方向投射到阶梯表面上时,就被折成S 1和S 2两段。从垂直于 光束的方向上就可在显微镜内看到S 1和S 2两段光带的放大象1 S '和2S '。同样,S 1和S 2之间距离h 也被放大为1S '和2S '之间的距离1h '。通过测量和计算,可求得被测表面的不平度高度 h 。 图4为双管显微镜的光学系统图。由光源1发出的光,经聚光镜2、狭缝3、物镜4以 450方向投射到被测工件表面上。调整仪器使反射光束进入与投射光管垂直的观察光管内,经物镜5成象在目镜分划板上,通过目镜可观察到凹凸不平的光带(图5 b )。光带边缘即工件表面上被照亮了的h 1的放大轮廓象为h 1′,测量亮带边缘的宽度h 1′,可求出被测表面的不平度高度h 1: Z p 2 lr Z v 6 Z v 5 Z p 6 Z p 5 Z p 4 Z p 3 Z v 4 Z v 3 Z p 1 R z 中线 Z v 1 Z v 2

各种加工方法能达到的表面粗糙度分析

各种加工方法能达到的表面粗糙度 ID 加工方法表面粗糙度Ra(μm) 1 自动气割、带锯或圆盘锯割断 50~12.5 2 切断(车) 50~12.5 3 切断(铣) 25~12.5 4 切断(砂轮) 3.2~1.6

5 车削外圆(粗车) 12.5~3.2 6 车削外圆(半精车金属) 6.3~3.2 7 车削外圆(半精车非金属) 3.2~1.6 8 车削外圆(精车金属) 3.2~0.8 9 车削外圆(精车非金属) 1.6~0.4 10 车削外圆(精密车或金刚石车金属)

0.8~0.2 11 车削外圆(精密车或金刚石车非金属)0.4~0.1 12 车削端面(粗车) 12.5~6.3 13 车削端面(半精车金属) 6.3~3.2 14 车削端面(半精车非金属) 6.3~1.6 15 车削端面(精车金属) 6.3~1.6

16 车削端面(精车非金属 6.3~1.6 17 车削端面(精密车金属)0.8~0.4 18 车削端面(精密车非金属)0.8~0.2 19 切槽(一次行程) 12.5 20 切槽(二次行程) 6.3~3.2 21 高速车削

0.8~0.2 22 钻(≤φ15mm)6.3~3.2 23 钻(>φ15mm)25~6.3 24 扩孔、粗(有表皮)12.5~6.3 25 扩孔、精 6.3~1.6 26 锪倒角(孔的) 3.2~1.6

27 带导向的锪平面 6.3~3.2 28 镗孔(粗镗) 12.5~6.3 29 镗孔(半精镗金属) 6.3~3.2 30 镗孔(半精镗非金属) 6.3~1.6 31 镗孔(精密镗或金刚石镗金属)0.8~0.2 32 镗孔(精密镗或金刚石镗非金属)

国际表面粗糙度标准分析

国际表面粗糙度标准分析 表面粗糙度标准的提出和发展与工业生产技术的发展密切相关,它经历了由定性评定到定量评定两个阶段。表面粗糙度对机器零件表面性能的影响从1918年开始首先受到注意,在飞机和飞机发动机设计中,由于要求用最少材料达到最大的强度,人们开始对加工表面的刀痕和刮痕对疲劳强度的影响加以研究。但由于测量困难,当时没有定量数值上的评定要求,只是根据目测感觉来确定。在20世纪 20,30年代,世界上很多工业国家广泛采用三角符号(?)的组合来表示不同精度的加工表面。 为研究表面粗糙度对零件性能的影响和度量表面微观不平度的需要,从20年代末到30年代,德国、美国和英国等国的一些专家设计制作了轮廓记录仪、轮廓仪,同时也产生出了光切式显微镜和干涉显微镜等用光学方法来测量表面微观不平度的仪器,给从数值上定量评定表面粗糙度创造了条件。从30年代起,已对表面粗糙度定量评定参数进行了研究,如美国的Abbott就提出了用距表面轮廓峰顶的深度和支承长度率曲线来表征表面粗糙度。1936年出版了Schmaltz论述表面粗糙度的专著,对表面粗糙度的评定参数和数值的标准化提出了建议。但粗糙度评定参数及其数值的使用,真正成为一个被广泛接受的标准还是从40年代各国相应的国家标准发布以后开始的。 首先是美国在1940年发布了ASA B46.1国家标准,之后又经过几次修订,成为现行标准ANSI/ASME B46.1-1988《表面结构表面粗糙度、表面波纹度和加工纹理》,该标准采用中线制,并将Ra作为主参数;接着前苏联在1945年发布了GOCT2789-1945《表面光洁度、表面微观几何形状、分级和表示法》国家标准,而后经过了3次修订成为GOCT2789-1973《表面粗糙度参数和特征》,该标准也采用中线制,并规定了包括轮廓均方根偏差(即现在的Rq)在内的6个评定参数及其相

加工表面粗糙度的成因及其影响因素分...

摘要 表面粗糙度是指零件表面上具有较小间距和微小峰谷所组成的微观几何形状特征。它主要是由机械加工形成的(表面粗糙度、表面波纹度、表面缺陷、表面几何形状),直接影响机械零件的配合性质,表面的耐磨性、抗腐蚀性、疲劳强度、密封性、导热性及使用寿命。 首先,对表面粗糙度的基础知识进行了简要介绍;其次,着重分析了影响零件表面粗糙度的因素及其影响规律和趋势;在此基础上,探寻改善和提高表面粗糙度的措施和方法;最后,举例说明表面粗糙度的一些选择和测量。关键词: 粗糙度相关分析控制

目录 第一章绪论 (2) 1.1表面粗糙度概述 (2) 1.1.1表面粗糙度概念 (2) 1.1.2表面粗糙度产生原因 (2) 1.2表面粗糙度国内外研究现状 (2) 1.3表面粗糙度研究的目的及意义 (4) 第二章表面粗糙度的影响因素分析 (5) 2.1表面粗糙度的标准 (5) 2.2表面粗糙度的因素 (6) 2.2.1 刀具方面 (6) 2.2.2切削条件 (7) 2.3表面粗糙度的选择原则 (8) 第三章表面粗糙度的成因及其改善措施 (15) 3.1控制目的 (15) 3.2切削加工时表面粗糙度的成因与控制 (15) 3.2.1形成原因 (15) 3.2.2 控制措施 (20) 第四章结论 (24) 谢辞 (25) 第1页

参考文献 (26) 第一章绪论 1.1表面粗糙度概述 1.1.1表面粗糙度概念 表面粗糙度是指零件表面上具有较小间距和微小峰谷所组成的微观几何形状特征。它主要是由机械加工形成的(表面粗糙度、表面波纹度、表面缺陷、表面几何形状),直接影响机械零件的配合性质,表面的耐磨性、抗腐蚀性、疲劳强度、密封性、导热性及使用寿命。因此,表面粗糙度是评定机器和机械零件量的重要指标之一,是机械零件的生产、加工和验收过程中一项必不可少的质量标准。 1.1.2表面粗糙度产生原因 在加工过程中,由于刀具与制件表面之间的摩擦、切削或压制时的塑性变形,以及工艺系统中高频振动等因素的作用,使被加工表面产生微观几何变形。 1.2表面粗糙度国内外研究现状 从近年来国内外发表的有关粗糙度方面的论文来看,数量成指数地增加.这表明表面粗糙度测量和表征技术的研究一直处于上升趋势,一方面是由于商用仪器(如:STM、AFM和光学扫描干涉仪等)的发展以及计算机运算能力、控制技术的提高;另一方面是由于尖端技术、国防工业和精密工程等对零件的表 第2页

相关文档
最新文档