铸件粗糙度及粗糙度计算
铸件外观检查一般标准

一.适用范围:1.灰铸铁和球墨铸铁件;2.客户有专门要求的以客户要求为准。
二.细 则:1.表面粗糙度:(1)表面粗糙度的凸凹高度差:壁厚10mm 以下要小于0.3mm;壁厚10mm以上要小于0.5mm。
局部超标可以打磨,打磨后再抛丸。
(2)表面粗糙度越细越好,但里面和外面,平面和垂直面要均匀。
可选用典型产品作为比照样板。
2.错箱和涨箱:(1)铸件分型面最大尺寸100mm以内,错箱要小于1mm;100至600mm错箱要小于2mm;600mm以上错箱要小于3.5mm。
(2)如果产品在本厂加工,而且错箱超差能够通过加工修正的,可以通过加工重新修正,但这些产品要分开管理。
(3)非加工面的涨箱,如果能够通过打磨或简单加工去除的,可以修理,但修理后要再抛丸。
(4)加工面出现的涨箱(指在本厂加工的加工面),只要能够去除并不影响其它尺寸,可以算合格毛坯。
3.飞边毛刺:飞边毛刺打磨残留量在0.5mm以下即可。
4.变形、翘曲:底座、盖板类的变形挠度允许量:自由状态放置在平台上,其最大变形量要保证在总长度的0.5%以下,比如600mm长可以3mm以下。
作成第 1 页/共 2 页批准5.气孔、渣眼、砂眼类:(1)加工面不允许有此类缺陷。
在本厂加工的产品,加工面孔眼不超过加工量,可以通过加工去除。
(2)非加工面的孔眼可以修补(铁基修补胶)、焊补,但必须符合以下范围:深度小于该部壁厚的三分之一、长或宽小于该部壁厚;数量5处以下。
需要电镀、热镀、粉体涂漆、电泳涂漆的不在此列。
6.表面皱纹:皱纹深度小于0.5mm,长度小于四倍壁厚,可以通过打磨方法处理。
7.冷隔、浇不足:冷隔(汤境)浇不足为废品,不能修补。
8.多肉:掉砂多肉通过铲磨不能恢复原形状的为废品。
9.缺肉:掉砂碰伤浇口根部缺肉,参考孔眼类的修补范围。
10.打磨修补:(1)打磨后残留量保证在0.5mm以下,不允许过度打磨。
(2)局部打磨过度的限度:深1mm长度不超过该部壁厚。
铸件粗糙度及粗糙度计算学习资料

铸件粗糙度及粗糙度计算铸件表面粗糙度铸件表面粗糙度是衡量干净、真实的铸件表面质量的重要指标。
铸件铸造表面粗糙度是按不同铸造合金及其铸造方法、用其表面轮廓算术平均偏差Ra 值(单位为μm)进行分级,分级应符合表1~1的规定。
对照GB/T6060.1——1997《表面粗糙度比较样块—铸造表面》的规定进行比较和评比;其评比方法按GB∕T15056——1994《铸造表面粗糙评定方法》进行。
对于重要铸件,当所有铸造表面的粗糙度要求相同时,可在铸件图样或铸造工艺图样的右上角同意标注粗糙度符号。
如果大部分铸造表面度相同时,可将该级粗糙度符号统一标注在图样的右上角,并在符号前加注“其余”两字;余下的部分表面粗糙度,将其符号直接标注在其表面轮廓或尺寸或尺寸延长线上。
铸造表面粗糙度,也可按需方的要求或供需方的协商,将其公称值鉴订在订货合同中。
注:×为采取特殊措施方能达到的铸件铸造表面粗糙度; ※表示可以达到的铸件铸造表面粗糙度。
表1~2粗糙度与光洁度对照(单位:mm)粗糙度的计算表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗)车削表面粗糙度=每转进给的平方 *1000/(刀尖R乘8)以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。
但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点:1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。
精密铸造加工余量计算公式

精密铸造加工余量计算公式精密铸造加工余量是指在精密铸造加工过程中为了保证零件尺寸精度和表面质量而留下的一定尺寸的加工余量。
精密铸造加工余量的计算是非常重要的,它直接影响着零件的加工精度和表面质量。
在精密铸造加工中,通常会根据不同的零件要求和加工工艺,采用不同的余量计算公式。
一般来说,精密铸造加工余量的计算公式包括三个方面,缩小余量、加工余量和表面余量。
下面将分别介绍这三个方面的计算公式。
1. 缩小余量的计算公式。
缩小余量是指在模具设计和制造过程中为了弥补熔模收缩、铸件收缩和热变形而设置的一定尺寸的余量。
通常情况下,缩小余量的计算公式为:缩小余量 = 零件尺寸 + 熔模收缩 + 铸件收缩 + 热变形模具尺寸。
其中,熔模收缩是指在金属冷却过程中由于凝固收缩而导致的模具尺寸缩小;铸件收缩是指在金属冷却过程中由于凝固收缩而导致的铸件尺寸缩小;热变形是指在金属冷却过程中由于温度变化而导致的尺寸变化。
通过以上公式计算得到的缩小余量,可以保证在铸造过程中得到满足要求的零件尺寸。
2. 加工余量的计算公式。
加工余量是指在精密铸造加工过程中为了保证零件尺寸精度而设置的一定尺寸的余量。
通常情况下,加工余量的计算公式为:加工余量 = 零件尺寸允许偏差。
其中,允许偏差是指在零件尺寸允许范围内所允许的最大偏差。
通过以上公式计算得到的加工余量,可以保证在加工过程中得到满足要求的零件尺寸精度。
3. 表面余量的计算公式。
表面余量是指在精密铸造加工过程中为了保证零件表面质量而设置的一定尺寸的余量。
通常情况下,表面余量的计算公式为:表面余量 = 表面粗糙度 + 表面处理余量。
其中,表面粗糙度是指零件表面的粗糙度值;表面处理余量是指为了进行表面处理而设置的余量。
通过以上公式计算得到的表面余量,可以保证在加工过程中得到满足要求的零件表面质量。
在精密铸造加工中,根据不同的零件要求和加工工艺,可以根据以上公式计算得到合适的余量。
同时,为了保证零件尺寸精度和表面质量,还需要在实际加工过程中根据具体情况进行适当的调整和修正。
铸件抛丸后的表面粗糙度值

铸件抛丸后的表面粗糙度值铸件抛丸后的表面粗糙度值一直是工程领域中一个重要的技术指标。
铸件经过抛丸处理后,可以有效地去除铸造缺陷和残留应力,改善表面质量。
本文将介绍铸件抛丸后表面粗糙度值的评价标准及其影响因素。
一、表面粗糙度值的评价标准表面粗糙度值是衡量铸件抛丸后表面质量的主要指标。
通常使用的评价标准有Ra、Rz、Rmax等。
1. Ra值是表面粗糙度的平均值,指表面轮廓线与其平均线之间的平均垂直距离。
常见的测量方法是使用粗糙度仪对铸件表面进行扫描,得出Ra值。
Ra值越小,表面质量越好。
2. Rz值是表面粗糙度的十点平均距离,指表面轮廓线上最高点与最低点之间的垂直距离。
测量方法与Ra值相似,只是计算方法不同。
3. Rmax值是表面粗糙度的最大高低度,即表面轮廓线上峰值与谷值之间的垂直距离。
以上三种评价标准综合考虑了表面粗糙度的不同特征,可以更全面地描述铸件抛丸后的表面质量。
二、影响铸件抛丸后表面粗糙度值的因素铸件抛丸后的表面粗糙度值受多种因素的影响,主要包括抛丸介质、抛丸时间、抛丸强度和抛丸角度等。
1. 抛丸介质:抛丸介质的选择直接影响了表面质量和粗糙度值。
常见的抛丸介质有钢丸、铝丸和玻璃珠等。
不同的抛丸介质在与铸件表面碰撞的过程中,对表面的冲击力和切削力不同,因此会产生不同的粗糙度效果。
2. 抛丸时间:抛丸时间是指铸件在抛丸机中暴露在抛丸介质下的时间。
抛丸时间的长短直接影响了表面的处理效果和粗糙度值。
通常情况下,抛丸时间越长,铸件表面质量越好,但是过长的抛丸时间也会导致能耗和设备磨损的增加。
3. 抛丸强度:抛丸强度是指抛丸机中的抛丸力量。
抛丸强度的大小直接影响了抛丸后的表面质量和粗糙度值。
强度过大会导致表面磨损过度,而强度过小则无法达到预期的抛丸效果。
4. 抛丸角度:抛丸角度是指抛丸介质与铸件表面相对运动的角度。
角度的选择决定了抛丸冲击力的方向和大小。
合适的抛丸角度能够均匀地冲击铸件表面,提高抛丸效果和表面质量。
铸件 粗糙度 标准

铸件粗糙度标准
一、铸造方法
铸件的粗糙度取决于所使用的铸造方法。
不同的铸造方法,如砂型铸造、金属型铸造、压力铸造等,会产生不同的表面粗糙度。
砂型铸造通常会获得较高的粗糙度,而金属型铸造和压力铸造则能获得较低的粗糙度。
二、表面处理
铸件表面处理是影响粗糙度的另一个重要因素。
热处理、喷丸处理、磨削等表面处理方法都会对粗糙度产生影响。
例如,喷丸处理可以改善铸件表面粗糙度,而磨削则能显著降低粗糙度。
三、粗糙度参数
粗糙度参数是衡量铸件表面粗糙度的标准。
常用的粗糙度参数包括Ra (算术平均偏差)、Rz(轮廓的最大高度)和Ry(波纹度的最大高度)等。
铸造工程师需要根据产品要求选择合适的粗糙度参数。
四、测量方法
铸件粗糙度的测量方法包括接触测量和非接触测量。
接触测量如触针测量,非接触测量如激光扫描和计算机视觉法等。
选择合适的测量方法有助于准确评估铸件表面粗糙度。
五、铸造工艺
铸造工艺对铸件粗糙度有显著影响。
浇注温度、冷却速度、模具表面处理等工艺因素都会影响铸件表面粗糙度。
优化铸造工艺可以提高铸件表面质量,降低粗糙度。
六、材料因素
铸件材料也会影响其表面粗糙度。
例如,高熔点材料往往会产生较低的粗糙度,因为其流动性较差。
相反,低熔点材料会产生较高的粗糙度,因为其流动性较好。
七、尺寸因素
铸件尺寸的大小也会对其表面粗糙度产生影响。
一般来说,大尺寸铸件的表面粗糙度较低,而小尺寸铸件的表面粗糙度较高。
这主要是因为大尺寸铸件在冷却过程中会产生更均匀的温度分布,从而降低表面粗糙度。
表面粗糙度的标注

1.轴套类零件这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。
为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。
在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。
由此注出图中所示的Ф14 、Ф11(见A-A断面)等。
这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。
而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。
如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。
2.盘盖类零件这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。
在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。
如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。
在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。
3.叉架类零件这类零件一般有拨叉、连杆、支座等零件。
由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。
对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。
踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。
在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。
尺寸标注方法参见图。
4.箱体类零件一般来说,这类零件的形状、结构比前面三类零件复杂,而且加工位置的变化更多。
铸造件表面缺陷标准

铸造件表面缺陷标准:
铸造件表面缺陷标准因铸造材料、工艺和应用场景而异,以下是一些常见的铸造件表面缺陷及其标准:
1.粘砂:指铸造件表面有砂粒嵌入的情况,可通过控制砂粒大小、形状和粘度等来减少粘砂现象。
2.粗糙度:铸造件表面的粗糙度取决于铸造工艺和材料,一般要求表面光滑、无明显凹凸不平。
具
体标准可根据实际需求和用途确定。
3.气孔:铸造过程中产生的气体在铸件内部或表面形成的小孔洞,可通过控制铸造工艺和材料来减
少气孔。
4.夹渣:铸造过程中夹杂的固体杂质,可通过控制熔炼和浇注过程来减少夹渣。
5.裂纹:铸造件表面或内部的裂纹,通常是由于热处理不当或铸造工艺不合理引起的。
标准要求铸
件无裂纹。
6.变形:铸造件形状与设计要求不一致的现象,可通过控制铸造工艺和后处理来减小变形。
7.缩孔:铸造过程中因金属冷却收缩而在铸件内部或表面形成的孔洞,可通过控制铸造工艺和材料
来减少缩孔。
零件图的技术要求(新版粗糙度标号)

一 表面粗糙度
1.表面粗糙度的概念
表面粗糙度是指零件的加工表面上具有的较 小间距和峰谷所形成的微观几何形状误差。
2.表面粗糙度的主要评定参数Ra
轮廓算术平均偏差——Ra是评定零件表面粗糙度 最常用的参数,它是在取样长度L范围内,相对于基准 线的轮廓偏差绝对值的算术平均值。
Y
yi
基准线
X
L
Ra=-L1 ∫ 0Ly(x) dx 近似为: Ra=-N1 ∑in=1 yi
零线
0-
G
H
JS J
K
MN
P
RS
UV T
X Y Z ZA ZB
0
ZC
基本尺寸
基本偏差代号:孔、轴各28种
zc
基本尺寸
0
+
-
m n p r s t u v x y z zazb 零线
轴 c
cd
d
e
ef
f
fg g
h
js k j
另一偏差可按下式计算:
0
b 孔 : ES= EI+IT或者EI = ES – IT
答案:ES= +0.033、EI=0 答案: es= -0.020、ei=-0.041
)
)
-0.020 -0.041
+0.033 0
ØØ3300ff77(
ØØ3300HH88(
Ø30表示什么?f 7表示什么代号? f表示什么代号?7表示什么代号?
转查孔表 转查轴表
② 注出基本尺寸及上、下偏差值。 偏差数值的高是基本尺寸数值高的0.6;
基本偏差为一定的轴的公差带, 与不同基本偏差的 孔的公差带形成各种不同配合的制度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸件表面粗糙度
铸件表面粗糙度是衡量干净、真实的铸件表面质量的重要指标。
铸件铸造表面粗糙度是按不同铸造合金及其铸造方法、用其表面轮廓算术平均偏差Ra值(单位为μm)进行分级,分级应符合表1~1的规定。
对照GB/——1997《表面粗糙度比较样块—铸造表面》的规定进行比较和评比;其评比方法按GB∕T15056——1994《铸造表面粗糙评定方法》进行。
对于重要铸件,当所有铸造表面的粗糙度要求相同时,可在铸件图样或铸造工艺图样的右上角同意标注粗糙度符号。
如果大部分铸造表面度相同时,可将该级粗糙度符号统一标注在图样的右上角,并在符号前加注“其余”两字;余下的部分表面粗糙度,将其符号直接标注在其表面轮廓或尺寸或尺寸延长线上。
铸造表面粗糙度,也可按需方的要求或供需方的协商,将其公称值鉴订在订货合同中。
※表示可以达到的铸件铸造表面粗糙度。
表1~2粗糙度与光洁度对照(单位:mm)
粗糙度的计算
表面粗糙度现在越来越受到各行业的重视,论坛里也经常问及如何提高表面粗糙度的帖子.今天讲一下关于车削的表面粗糙度.图片上面有车削表面粗糙度的计算方式,只需要将切削参数代入即可计算出可能最高的"表面粗糙度"(以下发言全部以粗糙度低为细,粗糙度高为粗)
车削表面粗糙度=每转进给的平方*1000/(刀尖R乘8)
以上计算方式是理论上的可能达到最坏的的效果,实际上因刀具品质、机床刚性精度、切削液、切削温度、切削速度、材料硬度等等原因,会将粗糙度提高或者降低的,如果你用上面的计算方式计算出来的粗糙度都不能满足想达到的效果,请先更改切削参数。
但进给一般和切深有着密切的关系,一般进给是切深的10%~20%之间,排削的效果是最好的切削深度,因为屑的宽度和厚度最合比例以上公式的各个参数我下面详细一项项解释一下对粗糙度的影响,如有不正请指点:
1:进给——进给越大粗糙度越大,进给越大加工效率越高,刀具磨损越小,所以进给一般最后定,按照需要的粗糙度最后定出进给
2:刀尖R——刀尖R越大,粗糙度越降低,但切削力会不断增大,对机床的刚性要求更高,对材料自身的刚性也要求越高。
建议一般切削钢件6150以下的车床不要使用以上的刀尖,而硬铝合金不要用以上的刀尖,否则车出的的真圆度、直线度等等形位公差都没办法保证了,就算能降低粗糙度也是枉然!
3:切削时要计算设备功率,至于如何计算切削时所需要的功率(以电机KW 的80%作为极限),下一帖再说。
要注意的时,现在大部分的数控车床都是使用变频电机的,变频电机的特点是转速越高扭力越大,转速越低扭力越小,所以计算功率是请把变频电机的KW除2比较保险。
而转速的高低又与切削时的线速度有密切关系,而传统的普车是用恒定转速/扭力的电机依靠机械变速来达到改变转速的效果,所以任何时候都是“100%最大扭力输出”,这点比变频电机好。
但当然如果你的主轴是由昂贵的恒定扭力伺服电机驱动,那是最完美的选择上面说得有点乱了,现在先举个例计算一下表面粗糙度:车削45号钢,切削速度150米,切深3mm,进给,R尖,这是我很常用的中轻切削参数,基本上不是光洁度要求非常之高的工件一刀不分粗精切削直接车出表面,计算表面粗糙度等于*8*1000=粗糙度(单位微米)。
如果有要求光洁度要到的话,切削参数变化如下:刀具不变依旧上面的刀片,切削参数进给,切深要视乎刀具的断削槽而定,通常如果进给定了,那切深只会在一个很窄的范围(上面不是说过切深和进给很大关系嘛)——当切深在一定范围之内才会有最良好的排屑效果!当然你不介意拿个沟子一边车一边沟屑的话又另当别论!:lol我大约会按照进给的10倍起定切深,也就是,此时*8*1000=微米,也就是粗糙度达到了。
至于粗糙度的表示方法:RY是测量出最大粗糙度,RA是算术计法将整个工件的表面粗糙度平均算,而RZ则是取10点再平均算,一般同一工件用RA计算粗糙度应该是最低的,而RY肯定是最大的,如果用RY的计算公式可以达到比RA要求更低的数字,基本上车出来就可以达到标注的RA要求了。
另外理论上带修光
刃的刀具最大可能将粗糙度降低一半,如果上面车出光洁度的工件用带修光刃的刀片粗糙度就最小可能是
以上是书本摘录的理论知识综合个人经验所书,以下再说说一些我个人感觉的理论,这些书本上我没见过的:
1:车床可以达到的最小粗糙度,首要原因是主轴精度,按照最大粗糙度计算的方法,如果你的车床主轴跳动精度是,也就是2微米跳动,那理论上是不可能加工出粗糙度会低于毫米粗糙度()的工件,但这是最大可能值,一般平均下来算50%好了,粗糙度的工件可以加工出!再结合RA的算法一般不会得出超过RY值的50%,变成,再计算修光刃的作用降低50%,那最终主轴跳动的车床极限是可以加工出左右的工件!。