命题
四种命题及其关系

四种命题及其关系本节课主要讲解了命题的概念及其结构,命题是能够判断真假的陈述句,其中真命题为真实陈述,假命题为虚假陈述。
需要注意的是,不是任何语句都是命题,只有能够判断真假的陈述句才是命题。
命题通常可以改写成“若p,则q”的形式,其中p为命题的条件,q为命题的结论。
类型二:四种命题及其关系本节课还介绍了四种命题及其关系,包括原命题、逆命题、否命题和逆否命题。
其中,逆命题和否命题是互为逆命题的,逆否命题和原命题是互为逆否命题的。
需要注意的是,四种命题之间的真假关系并不总是有必然联系,只有互为逆否命题的两个命题同真同假。
因此,在判断命题真假时需要仔细分析其结构和关系。
本课程介绍了命题的概念和结构,以及四种命题及其关系。
命题是能够判断真假的陈述句,其中真命题为真实陈述,假命题为虚假陈述。
需要注意的是,只有能够判断真假的陈述句才是命题,而命题通常可以改写成“若p,则q”的形式,其中p 为命题的条件,q为命题的结论。
四种命题包括原命题、逆命题、否命题和逆否命题,其中逆命题和否命题是互为逆命题的,逆否命题和原命题是互为逆否命题的。
需要注意的是,四种命题之间的真假关系并不总是有必然联系,只有互为逆否命题的两个命题同真同假。
因此,在判断命题真假时需要仔细分析其结构和关系。
判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题。
1) 末位是5的整数能被5整除。
2) 平行四边形的对角线相等且互相平分。
3) 两直线平行,则斜率相等。
4) 在三角形ABC中,若∠A=∠B,则sinA=sinB。
5) 余弦函数是周期函数吗?举一反三:变式1】判断下列语句是否为命题?若是,判断其真假。
1) x>1;2) 当x=1时,x>1;3) 你是男生吗?4) 求证:π是无理数。
变式2】下列语句中是命题的是()A。
|x+a|B。
{0}∈NC。
元素与集合D。
真子集变式3】判断下列语句是否是命题。
1) 这是一棵大树。
2) sin30°=1/2.3) x+1>0;4) 梯形是平行四边形。
命题的基本概念

命题的基本概念1. 概念的定义命题是逻辑学和数理逻辑中的一个基本概念,指的是能够陈述一个明确的陈述句或者陈述句的复合句。
一个命题要么是真的,要么是假的,不存在其他可能性。
命题可以用来表达事实、判断、推理等。
命题可以用符号来表示,常用的符号有大写字母P、Q、R等表示命题,命题的真值用T(true)表示真命题,用F(false)表示假命题。
2. 重要性命题是逻辑学和数理逻辑的基础,它的重要性体现在以下几个方面:2.1 逻辑推理命题是逻辑推理的基础,逻辑推理是通过对命题的合理组合和推理得出结论的过程。
在逻辑推理中,命题可以作为前提、假设或者结论,通过命题之间的逻辑关系进行推理和证明。
2.2 真值表命题的真值表是一种列举出命题在不同情况下的真值的表格。
通过真值表,可以清晰地展示出命题的真值情况,从而帮助我们理解命题之间的逻辑关系和推理规律。
2.3 谓词逻辑在谓词逻辑中,命题可以作为谓词的参数,通过对命题的量化和连接得出更复杂的命题。
谓词逻辑是现代逻辑的基础,广泛应用于数学、计算机科学等领域。
2.4 知识表示命题可以用来表示知识,通过对命题的组合和推理,可以构建出复杂的知识表示体系。
知识表示是人工智能、专家系统等领域的重要研究内容。
3. 应用命题的应用非常广泛,涉及到多个学科和领域,以下介绍几个常见的应用:3.1 数学推理在数学中,命题是数学推理的基础。
通过对命题的逻辑关系进行推理,可以得到数学定理和证明。
3.2 计算机科学在计算机科学中,命题逻辑是形式化方法的基础,用于描述和分析算法和程序的正确性。
命题逻辑在计算机科学中有着广泛的应用,包括程序验证、模型检测、人工智能等领域。
3.3 自然语言处理在自然语言处理中,命题可以用来表示句子的含义和逻辑关系,通过对命题的推理和计算,可以进行机器翻译、信息检索、问答系统等任务。
3.4 人工智能在人工智能领域,命题逻辑是知识表示和推理的基础。
通过对命题的组合和推理,可以构建出复杂的知识表示体系,用于解决问题和推理。
高中数学命题的基本概念

高中数学命题的基本概念一、命题的基本概念命题:可以判断真假的陈述句叫做命题。
也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件。
真命题:判断为真的语句叫做真命题。
假命题:判断为假的语句叫做假命题。
命题的否定:就是对命题的结论加以否定。
原命题逆命题否命题逆否命题若,则若,则若,则若,则另一个命题的结论和条件,那么我们就把这样的两个命题叫做互逆命题。
一般地,对于是互逆命题的两个命题,其中一个命题叫做原命题,另一个命题叫做原命题的逆命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的的条件和结论的否定,那么我们把这样的两个命题叫做互否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论和条件的否定,那么我们把这样的两个命题叫做互为逆否命题。
其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题。
四种命题的相互关系图三、充分条件和必要条件的概念1、若,我们就说是的充分条件,是的必要条件。
2、一般地,如果既有,又有,就记作。
此时,我们说是的充分必要条件,简称充要条件。
3、一般地,若p⇒q,但q ≠>p,则称p是q的充分但不必要条件;若p≠>q,但q ⇒ p,则称p是q的必要但不充分条件;若p≠>q,且q ≠>p,则称p是q的既不充分也不必要条件。
四、重要结论1、互为逆否命题的两个命题真值相同:原命题与它的逆否命题等价;否命题与逆命题等价。
2、对于充分条件、必要条件的判定,我们需要将命题转化为集合,充分利用集合的关系进行判定,可以更加直观形象。
3、命题的否定和否命题是两个不同的概念。
典型例题知识点一:命题的基本概念以及四种命题的相互关系例1、判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。
四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
命题的定义及四种命题

(2)偶函数的图象关于y轴对称;
(3)垂直于同一个平面的两个平面平行。
(1)若三角形是等腰三角形,则三角形两边上的中线相等。 这是真命题。
(2)若函数是偶函数,则函数的图象关于y轴对称,这是真 命题。 (3)若两个平面垂直于同一平面,则这两个平面互相平行。 这是假命题。
(4)若平面上两条直线不相交,则这两条直线平行.
(是,真)
(5) (2)2 2 (是,假)
(6)x>15. (不是命题)
练习 判断下列语句是否是命题 .
(1)求证 3 是无理数。
(2) x2 2x 1 0.
(3)你是高二学生吗? (4)并非所有的人都喜欢苹果。 (5)一个正整数不是质数就是合数。
(6)若 x R,则 x2 4x 7 0.
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”形式的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的形式。 p
q
通常,我们把这种形式的命题中的p叫做命 题的条件,q叫做命题的结论。
“若p则q”形式的命题是命题的一种形式 而不是唯一的形式,也可写成“如果p,那么q” “只要p,就有q”等形式。
“若p则q”形式的命题的书写
对于一些条件与结论不明显的命题,一般 采取先添补一些命题中省略的词句, 确定 条件与结论。
如命题:“垂直于同一条直线的两个平面 平行”。
写成“若p则q”的形式为: 若两个平面垂直于同一条直线,则这
两个平面平行。
例2 指出下列命题中的条件p和结论q:
1) 若整数a能被2整除,则a是偶数; 2) 菱形的对角线互相垂直且平分。
命题的通俗解释

命题的通俗解释摘要:1.命题的定义2.命题的分类3.命题的通俗解释4.命题的逻辑关系5.命题的重要性正文:1.命题的定义命题是逻辑学中的一个基本概念,它是一种对事情的陈述或判断。
在数学、物理、化学等学科中,命题常常用来描述一个事实或者表达一个观点。
简单来说,命题就是一个陈述句,它可以是真或假,可以通过推理和证明来确定其真假性。
2.命题的分类根据命题的内容和形式,我们可以将命题分为两类:肯定命题和否定命题。
肯定命题是对某件事情的肯定判断,例如“太阳从东方升起”;否定命题则是对某件事情的否定判断,例如“月亮不是地球的卫星”。
3.命题的通俗解释要理解命题的通俗解释,我们可以从日常生活中的例子入手。
比如,我们可以用命题来描述一个人的身高、体重、年龄等属性。
假设有一个人叫张三,我们可以用命题来表达关于张三的信息,如“张三身高170 厘米”、“张三体重60 公斤”等。
这些命题都是对张三属性的陈述,我们可以通过观察和测量来验证这些命题的真假。
4.命题的逻辑关系在逻辑学中,命题之间存在一定的逻辑关系。
主要包括以下几种关系:且(∧)、或(∨)、非()、蕴含(→)等。
这些逻辑关系可以帮助我们更好地理解和分析命题,判断它们之间的逻辑联系。
5.命题的重要性命题在人类认识世界的过程中具有重要意义。
通过命题,我们可以表达观点、陈述事实、进行推理和论证。
在科学研究中,命题是构建理论体系的基础,它们帮助我们揭示自然规律、探索未知领域。
此外,在日常生活和交流中,命题也起着关键作用,它们帮助我们表达思想、传递信息、解决争端等。
总之,命题是一种对事情的陈述或判断,它在逻辑学、科学研究以及日常生活中具有重要意义。
命题的定义是什么

命题的定义是什么命题是指陈述性句子,它可以被判断为真或假,又称为陈述句或陈述句子。
命题是逻辑推理和数学证明中的基本单位,而命题逻辑是研究命题之间关系和推理规则的学科。
命题的定义对于理解逻辑学以及其他相关学科的基本原理和方法具有重要意义。
本文将从命题的概念、命题的特征以及命题的应用三个方面进行论述。
一、命题的概念命题指的是陈述性句子,它可以被判断为真或假。
命题句子是能够表达一个完整思想的陈述句子,它可以用来描述一个事实、主张某种观点或者提出一个问题。
例如,“今天天气晴朗。
”和“1+1=2。
”都是命题,因为它们可以明确地被判断为真。
命题可以是简单命题,也可以是复合命题。
简单命题是不能再被分解的命题,它是命题逻辑中的最基本单位。
复合命题则是由一个或多个简单命题通过逻辑词(如“与”、“或”、“非”、“蕴含”等)组合而成。
例如,“如果明天下雨,我就呆在家里。
”这个句子就是一个复合命题,由两个简单命题“明天下雨”和“我呆在家里”通过“如果...,就...”连接而成。
二、命题的特征命题具有以下几个特征:1. 真值性:命题可以被判断为真或假,不存在中立的情况。
一个句子要成为命题,必须要有明确的真值。
例如,“现在是上午10点。
”这个句子是一个命题,因为它可以被判断为真或假。
2. 完全性:命题应该包含足够的信息,能够表达一个完整的思想。
一个命题应该提供足够的信息,使读者能够明白该命题所要表达的含义。
例如,“我很喜欢这本书。
”这个句子不是一个命题,因为它没有提供足够的信息。
3. 独立性:命题应该具有自洽性,不受其他陈述的影响。
一个命题的真值不受其他语境的影响,只与其自身的陈述有关。
例如,“地球是平的。
”这个句子是一个错误的命题,因为它与现实情况不符。
4. 可澄清性:命题应该是具体明确的陈述句子,能够清晰地表达含义。
一个命题应该具有明确的语义,不能存在歧义或模棱两可的问题。
例如,“今天有点冷。
”这个句子不是一个命题,因为“有点冷”这个表达具有模棱两可的含义。
第2节 命题及其关系、充分条件与必要条件

第2节命题及其关系、充分条件与必要条件考纲要求 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;2.理解充分条件、必要条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题时,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒pp是q的必要不充分条件p⇒q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇒q且q⇒p1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.区别A是B的充分不必要条件(A⇒B且B⇒A),与A的充分不必要条件是B(B⇒A且A⇒B)两者的不同.3.充要关系与集合的子集之间的关系,设A ={x |p (x )},B ={x |q (x )}, (1)若A ⊆B ,则p 是q 的充分条件,q 是p 的必要条件.(2)若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件. (3)若A =B ,则p 是q 的充要条件.4.p 是q 的充分不必要条件,等价于綈q 是綈p 的充分不必要条件.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)“x 2+2x -3<0”是命题.( )(2)当q 是p 的必要条件时,p 是q 的充分条件.( )(3)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( ) 答案 (1)× (2)√ (3)√ (4)√解析 (1)错误.该语句不能判断真假,故该说法是错误的.2.设a ,b ∈R 且ab ≠0,则ab >1是a >1b 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 若“ab >1”,当a =-2,b =-1时,不能得到“a >1b ”,若“a >1b ”,例如当a =1,b =-1时,不能得到“ab >1”,故“ab >1”是“a >1b ”的既不充分也不必要条件.3.命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4答案 C解析 命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.4.(2020·长春模拟)已知命题α:如果x <3,那么x <5,命题β:如果x ≥3,那么x ≥5,则命题α是命题β的( ) A.否命题 B.逆命题 C.逆否命题 D.否定形式答案 A解析 两个命题之间只是条件、结论都作出否定,故为否命题关系. 5.(2020·天津卷)设a ∈R ,则“a >1”是“a 2>a ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 A解析 由a 2>a ,得a 2-a >0, 解得a >1或a <0,∴“a >1”是“a 2>a ”的充分不必要条件.6.(2021·合肥七校联考)已知集合A ={x |13<3x <27,x ∈R },B ={x |-1<x <m +1,m ∈R },若x ∈B成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________. 答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |13<3x <27,x ∈R ={x |-1<x <3}.∵x ∈B 成立的一个充分不必要条件是x ∈A , 所以A B ,所以m +1>3,即m >2.考点一 命题及其关系1.(2020·太原质检)命题“若a >b ,则a +c >b +c ”的否命题是( )A.若a +c ≤b +c ,则a ≤bB.若a ≤b ,则a +c ≤b +cC.若a +c >b +c ,则a >bD.若a >b ,则a +c ≤b +c答案 B解析 将条件和结论都进行否定,即命题“若a >b ,则a +c >b +c ”的否命题是“若a ≤b ,则a +c ≤b +c ”.2.(2021·成都七中检测)给出下列命题: ①“若xy =1,则lg x +lg y =0”的逆命题; ②“若a ·b =a ·c ,则a ⊥(b -c )”的否命题;③“若b ≤0,则方程x 2-2bx +b 2+b =0有实根”的逆否命题; ④“等边三角形的三个内角均为60°”的逆命题. 其中真命题的个数是( ) A.1 B.2 C.3 D.4答案 D解析 对于①,“若xy =1,则lg x +lg y =0”的逆命题为“若lg x +lg y =0,则xy =1”,该命题为真命题;对于②,“若a ·b =a ·c ,则a ⊥(b -c )”的否命题为“a ·b ≠a ·c ,则a 不垂直于(b -c )”,由a ·b ≠a ·c 可得a ·(b -c )≠0,据此可得a 不垂直于(b -c ),该命题为真命题;对于③,若b ≤0,则方程x 2-2bx +b 2+b =0的根的判别式Δ=(-2b )2-4(b 2+b )=-4b ≥0,方程有实根,原命题为真命题,则其逆否命题为真命题;对于④,“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.3.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.答案 f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎪⎨⎪⎧0,x =0,1x,0<x ≤2)解析 根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).感悟升华 1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.考点二充分条件与必要条件的判定【例1】(1)(2020·浙江卷)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)B(2)A解析(1)由m,n,l在同一平面内,可能有m,n,l两两平行,所以m,n,l可能没有公共点,所以不能推出m,n,l两两相交.由m,n,l两两相交且m,n,l不经过同一点,可设l∩m=A,l∩n=B,m∩n=C,且A∉n,所以点A和直线n确定平面α,而B,C∈n,所以B,C∈α,所以l,m⊂α,所以m,n,l在同一平面内.故选B.(2)因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p,但綈p⇒綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.感悟升华充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练1】 (1)(2021·昆明诊断)设集合A ={x |(x +1)(x -2)≥0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x +1≥0.则“x ∈A ”是“x ∈B ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件(2)(2020·北京卷)已知α,β∈R ,则“存在k ∈Z 使得α=k π+(-1)k β”是“sin α=sin β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 (1)B (2)C解析 (1)集合A ={x |(x +1)(x -2)≥0}={x |x ≥2,或x ≤-1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -2x +1≥0={x |x ≥2,或x <-1}.∴B A ,∴“x ∈A ”是“x ∈B ”的必要不充分条件.(2)若存在k ∈Z 使得α=k π+(-1)k β,则当k =2n (n ∈Z ),α=2n π+β,有sin α=sin(2n π+β)=sin β;当k =2n +1(n ∈Z ),α=(2n +1)π-β,有sin α=sin[(2n +1)π-β]=sin β. 若sin α=sin β,则α=2k π+β或α=2k π+π-β(k ∈Z ), 即α=k π+(-1)k β(k ∈Z ).故选C. 考点三 充分、必要条件的应用【例2】 (经典母题)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].【迁移1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由. 解 由例题知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10, ∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【迁移2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}. ∵綈p 是綈q 的必要不充分条件, p 是q 的充分不必要条件. ∴p ⇒q 且q ⇒p ,即P S .∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,又因为S 为非空集合, 所以1-m ≤1+m ,解得m ≥0, 综上,实数m 的取值范围是[9,+∞).感悟升华 1.根据充分、必要条件求解参数取值范围需抓住“两”关键 (1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题时要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练2】 设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 ⎣⎡⎦⎤0,12 解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎨⎧⎭⎬⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a+1)]≤0}={x |a ≤x ≤a +1}.由q 是p 的必要而不充分条件,知A B .所以a ≤12且a +1≥1,因此0≤a ≤12.A 级 基础巩固一、选择题1.(2019·天津卷)设x ∈R ,则“0<x <5”是“|x -1|<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件 答案 B解析 由|x -1|<1可得0<x <2,由“0<x <5”不能推出“0<x <2”,但由“0<x <2”可以推出“0<x <5”. 故“0<x <5”是“|x -1|<1”的必要而不充分条件.2.(2021·百校联考考前冲刺)已知命题p :“任意a >0,且a ≠1,函数y =1+log a (x -1)的图象过点P ”的逆否命题为真,则P 点坐标为( ) A.(2,1) B.(1,1) C.(1,2) D.(2,2)答案 A解析 由逆否命题与原命题同真同假,可知命题p 为真命题,由对数函数性质可知,函数y =1+log a (x -1)的图象过定点(2,1),所以点P 的坐标为(2,1).3.(2019·北京卷)设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 C解析 当b =0时,f (x )=cos x 为偶函数;若f (x )为偶函数,则f (-x )=cos(-x )+b sin(-x )=cos x -b sin x =f (x ),∴-b sin x =b sin x 对x ∈R 恒成立,∴b =0. 故“b =0”是“f (x )为偶函数”的充分必要条件. 4.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A.ac 2>bc 2B.a b >1C.a -c >b -cD.a 2>b 2答案 C解析 对于A ,a >b ,若c =0,则ac 2=bc 2,故A 错误;对于B ,a >b ,若a >0,b <0,则ab <1,故B 错误;对于C ,a >b ,则a -c >b -c ,故C 正确;对于D ,a >b ,若a ,b 均小于0,则a 2<b 2,故D 错误.5.(2020·长沙检测)若l ,m 是两条不同的直线,α是一个平面,且m ⊥α,则“l ⊥m ”是“l ∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析 当直线l ⊂α时,“l ⊥m ” ⇒ “l ∥α”,充分性不成立.若l ∥α,由线面平行的性质,可知在平面α内一定存在一条直线n 与l 平行,又m ⊥α,所以m ⊥n ,则m ⊥l ,可知必要性成立. 所以“l ⊥m ”是“l ∥α”的必要不充分条件. 6.(2020·石家庄模拟)下列说法中正确的是( ) A.若函数f (x )为奇函数,则f (0)=0B.若数列{a n }为常数列,则{a n }既是等差数列也是等比数列C.在△ABC 中,A >B 是sin A >sin B 的充要条件D.命题“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”的逆命题为假命题答案 C解析 A 错误,f (x )=1x 为奇函数,但f (0)无意义;B 错误,a n =0为常数列,但{a n }不是等比数列;C 正确,由于A >B ⇔a >b ⇔sin A >sin B .D 错误,若{a n }递减,则a n +1<a n ⇒a n +a n +12<a n ,n ∈N *,所以逆命题为真命题,D 不正确.7.(2021·贵阳模拟)设函数f (x )=e x 2-3x ,则使f (x )<1成立的一个充分不必要条件是( ) A.0<x <1B.0<x <4C.0<x<3D.3<x<4答案 A解析f(x)<1⇔e x2-3x<1⇔x2-3x<0,解得0<x<3.又“0<x<1”可以推出“0<x<3”,但“0<x<3”不能推出“0<x<1”.故“0<x<1”是“f(x)<1”的充分不必要条件.8.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]答案 A解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.二、填空题9.(2021·河南名校联考)设命题p:x>4;命题q:x2-5x+4≥0,那么p是q的________________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).答案充分不必要解析由x2-5x+4≥0得x≤1或x≥4,可知{x|x>4}是{x|x≤1或x≥4}的真子集,∴p是q 的充分不必要条件.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误;②原命题的逆命题为“若x,y 互为相反数,则x+y=0”,正确;③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.11.直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.答案-1<k<3解析 直线x -y -k =0与圆(x -1)2+y 2=2有两个不同交点等价于|1-0-k |2<2, 解得-1<k <3.12.已知不等式|x -m |<1成立的一个充分不必要条件是13<x <12,则m 的取值范围是________. 答案 ⎣⎡⎦⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝⎛⎭⎫13,12(m -1,m +1),故⎩⎨⎧m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43. B 级 能力提升13.(2020·武昌调研)给出下列说法:①命题“若x 2=1,则x ≠1”的否命题是“若x 2=1,则x =1”;②命题“若a >2且b >2,则a +b >4且ab >4”的逆命题为真命题;③命题“若函数f (x )=x 2-ax +1有零点,则a ≥2或a ≤-2”的逆否命题为真命题;④命题“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x >0”. 其中正确的序号为( )A.②B.③C.①③D.②④答案 B解析 对于①,由于否命题既否定条件又否定结论,因此命题“若x 2=1,则x ≠1”的否命题是“若x 2≠1,则x =1”,所以①错误;对于②,原命题的逆命题为“若a +b >4且ab >4,则a >2且b >2”,取a =1,b =5,满足a +b >4且ab >4,但不满足a >2且b >2,所以②错误;对于③,若函数f (x )=x 2-ax +1有零点,则Δ=a 2-4≥0,解得a ≥2或a ≤-2,原命题为真命题,由于原命题与其逆否命题同真同假,所以③正确;对于④,命题“∃x 0∈R ,x 20-x 0<0”的否定是“∀x ∈R ,x 2-x ≥0”,所以④错误. 14.已知偶函数y =f (x )在[0,+∞)上单调递增,则对实数a ,b ,“a >|b |”是“f (a )>f (b )”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析 因为y =f (x )是偶函数,所以f (x )=f (|x |).又y =f (x )在[0,+∞)上单调递增,若a >|b |,则f (a )>f (|b |)=f (b ),即充分性成立;若f (a )>f (b ),则等价为f (|a |)>f (|b |),即|a |>|b |,即a >|b |或a <-|b |,即必要性不成立,则“a >|b |”是“f (a )>f (b )”的充分不必要条件. 15.能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________. 答案 a =1,b =-1(答案不唯一,只需a >0,b <0)解析 若a >b ,则1a <1b 为真命题,则1a -1b =b -a ab<0,∵a >b ,∴b -a <0,则ab >0.故当a >0,b <0时,均能说明“若a >b ,则1a <1b”为假命题. 16.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,得1<m <32,即q :1<m <32. 因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32,解得13≤a ≤38.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“ ”“”
都容易判断,但它们的否定形式是我们困惑的症结所在。
称必要条件(B
≠
⊂A )。
2、非充分非必要条件
当条件A 和条件B 没有任何推现关系时,即A ≠>B ,且B ≠>A ,则称A 是B 的非充分非必要条件。
3、充要条件
条件A 、B ,若A=>B 成立,且A<=B 也成立,即A<=>B ,则称条件A 是B 的充分必要条件,称充要条件,当A 是B 的充要条件时,B 也是A 的充要条件。
【合作探究案】:
探究任务一:命题的概念
例1 有下列命题:①空集没有子集;②空集是任何集合的真子集;③任何集合至少有两个子集;④任何一个集合必有一个真子集;⑤若Φ
≠
⊂
A ,则A ≠Φ,正确命题的个数是( )
A 、1个
B 、2个
C 、3个
D 、0个
例2 下列语句中不能称作命题的是( ) A 、请大家爱护环境 B 、Φ
≠
⊂
A C 、x 2+x+1≥0,(x ∈R) D 、x 2—2x —3≥0
例3写出下列命题的逆命题、否命题、逆否命题,并指出它们是否正确。
(1)四边相等的四边形是正方形
(2)若a 、b 都是奇数,则a+b 是偶数 (3)矩形的对角线长相等
(4)若两个角相等,则这两个角是直角 (5)能被2整除的数是偶数
例4 下列命题是否是等价命题?为什么? A :△ABC 是直角三角形。
B :△ABC 中AB 2=AC 2+BC 2
探究任务二:命题的真假
例5“两个三角形面积相等”的充分条件是( )
A 、两条边对应相等
B 、三条边对应相等
C 、三内角对应相等
D 、两边和一角对应相等
例6给出命题“已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d ”,对其原命题、逆命题、否命题、逆否命题而言,真命题有
A.0个
B.2个
C.3个
D.4个 若a 、b 、c ∈R ,写出命题“若ac <0,则ax 2+bx +c =0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.
例 7指出下列复合命题的形式及其构成.。