ABAQUS子程序UMAT里弹塑本构的实现
子程序(UMAT)基本操作过程1

UMAT操作过程操作过程:1、CAE建模、定义边界条件、载荷条件2、定义UMATProperty>General>User material✧Mechanical Constants 中为用户输入到子程序中的参数。
这时只能在General栏中定义参数,如密度等,这时不能再在Mechanical中定义杨氏模量等,此时杨氏模量、泊松比等数就需要在Mechanical Constants中输入到子程序中。
✧定义剪切刚度Model>Edit Keywords 中直接输入到inp文件中。
“*Shell Section”后面添加*Transverse Shear5.31e8,5.31e8,0在定义剪切刚度时一定要注意,一定要按帮助文档中公式计算而得并不是任意取值。
对于正交各项异性壳单元其中t为层合板厚度。
Depvar 中的数字与Mechanical Constants栏中定义的参数数量相等。
3编辑.for后缀的子程序3.1 推导出本构关系建立刚度矩阵时最好是直接指定刚度阵的每一项的方法得到刚度阵。
3.2更新应力下面是各项同性弹性本构关系(刚度阵)及应力更新。
DO K1=1,NTENSDO K2=1,NTENSDDSDDE(K1,K2)=ZEROEND DOEND DODO K1=1,NDIDO K2=1,NDIDDSDDE(K2,K1)=EBULK3END DOEND DODO K1=1,NDIDO K2=1,NDIDDSDDE(K1,K1)=EG2END DOEND DODO K1=NDI+1,NTENSDDSDDE(K1,K1)=EG3END DODO K1=1,NTENSDO K2=1,NTENSSTRESS(K1)=STRESS(K1)+DDSDDE(K1,K2)*DSTRAN(K2)END DOEND DO注意:UMAT子程序中并不是一定要写成增量形式,建立Jacobian矩阵,只要能做到更新应力即可,写成全量形式也可以。
统一弹塑性本构模型在ABAQUS中的开发与应用

2010年4月 Rock and Soil Mechanics Apr. 2010收稿日期:2009-05-27第一作者简介:潘晓明,男,1979年生,博士研究生,主要从事隧道及地下结构方面。
E-mail: pxm155138@文章编号:1000-7598 (2010) 04-1092-07统一弹塑性本构模型在ABAQUS 中的开发与应用潘晓明1, 2 ,孔 娟1, 2, 杨 钊1, 2, 刘 成1, 2(1.同济大学 地下建筑与工程系,上海 200092;2.同济大学 岩土及地下工程教育部重点实验室,上海 200092)摘 要:基于统一弹塑性本构模型的有限元理论格式,根据ABAQUS 的UMAT 格式要求,编制相应的接口程序,将统一弹塑性本构模型引入ABAQUS 中。
采用退化的统一强度模型(0b =时,为Mohr-Coulomb 模型)与ABAQUS 自带的Mohr-Coulomb 模型,对单轴试验和圆形硐室进行弹塑性分析,验证所开发材料子程序的正确性及高效性。
考虑到统一强度模型的一般情况(0b ≠)和屈服面硬化条件,对圆形硐室进行弹塑性计算,得到应力场的变化规律。
所提出的研究思路具有普遍性,为采用ABAQUS 平台进行本构模型的二次开发提供了借鉴和参考。
关 键 词:统一强度理论;屈服面;流动矢量;奇异点;应力拉回算法;ABAQUS 中图分类号:TD 353.6 文献标识码:ASecondary development and application of unified elastoplasticconstitutive model to ABAQUSPAN Xiao-ming 1, 2, KONG Juan 1, 2, YANG Zhao 1, 2, LIU Cheng 1,2(1.Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China;2.Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China)Abstract: Based on finite element theoretical scheme of unified elastoplastic constitutive model, and according to the UMAT interface requirement of ABAQUS, the corresponding UMAT codes are programmed, which will be called by the main analytical module of ABAQUS. Adopting degenerative model of the unified strength (0b =,Mohr-Coulomb model) and the built-in Mohr-Coulomb model of ABAQUS, the uniaxial tests and circular chamber are analyzed to verify the correctness and efficiency of the developed material subroutine. Finally, considering the general situation form of unified elastoplastic constitutive model (0b ≠) and hard condition of yield surface, which are not available in ABAQUS software, circular chamber is simulated and variational discipline of stress field is obtained. The provided basic procedures and programming essentials of the UMAT redefining in ABAQUS are universal and can offer a reference for other developers.Key words: unified strength theory; yield surface; flow vector; singular points; return stress algorithm; ABAQUS1 引 言我国力学专家俞茂宏教授从多滑移单元体力学模型出发,考虑了作用在双剪应力单元体上的所有应力分量对材料屈服或破坏的不同影响,提出了一个能够适用于各种岩土类材料的统一强度理论和统一形式的数学表达式。
ABAQUS子程序UMAT的应用

目录摘要.................................................................... ABSTRACT.................................................................1.绪论..................................................................1.1.课题的研究背景 ..................................................1.2.本文的研究内容和方法 ............................................2.基于ABAQUS软件的二次开发.............................................2.1.ABAQUS介绍......................................................2.2.ABAQUS各模块简介................................................2.3.ABAQUS的二次开发平台............................................2.4.ABAQUS的二次开发语言............................................3.用户材料子程序UMAT...................................................3.1.UMAT开发环境设置................................................3.2.UMAT注意事项....................................................3.3.UMAT接口的原理..................................................3.4.UMAT的使用方法..................................................4.材料非线性问题........................................................4.1.材料的弹塑性本构关系 ............................................4.2.非线性有限元算法理论 ............................................4.3.增量理论常刚度法公式推导 ........................................4.4.增量理论切线刚度法公式推导 ......................................5.UMAT程序设计和编码...................................................5.1.本构关系描述 ....................................................5.2.常刚度法程序设计 ................................................5.3.常刚度法程序编码 ................................................5.4.切线刚度法程序设计 ..............................................5.5.切线刚度法程序编码 ..............................................5.6.程序的调试 ......................................................6.程序验证..............................................................6.1.问题描述 ........................................................6.2.本构关系 ........................................................6.3.ABAQUS自带材料模型计算..........................................6.4.常刚度法的UMAT验证 .............................................6.5.切线刚度法的UMAT验证 ...........................................6.6.两种算法的比较分析 ..............................................7.结论与展望............................................................7.1.结论 ............................................................7.2.展望 ............................................................ 致谢.................................................................... 参考文献................................................................. 附1:ABAQUS自带弹塑性材料验证的INP文件................................. 附2:用于算法验证的INP文件..............................................摘要ABAQUS软件功能强大,特别是能够模拟复杂的非线性问题,它包括了多种材料本构关系及失效准则模型,并具有良好的开放性,提供了若干个用户子程序接口,允许用户以代码的形式来扩展主程序的功能。
非线性本构关系在abaqus中的实现

非线性本构关系在abaqus中的实现
ABAQUS中非线性本构关系的实现可以通过定义一个UMAT子程序,通过计算输入的应力和应变,来实现非线性本构关系。
具体步骤如下:
1. 在ABAQUS中定义一个UMAT子程序,用于计算应力和应变之间的非线性本构关系;
2. 在ABAQUS中定义材料模型,指定使用的UMAT子程序;
3. 在ABAQUS中定义材料参数,并将其传递给UMAT子程序
4. 在UMAT子程序中,根据输入的应力和材料参数,计算应变;
5. 将计算的应变传递给ABAQUS,ABAQUS根据计算的应变计算应力;
6. 将应力传递给UMAT子程序,重复步骤4和5,直到应力和应变收敛为止。
ABAQUS材料用户子程序UMAT学习报告

具有友好的用户 界面和易用的操 作流程,方便用 户进行学习和使 用
UMAT子程序简介
UMAT子程序是 ABAQUS材料用户 自定义模块,允许 用户根据实际需求 编写材料本构模型。
UMAT子程序采用C 语言编写,用户需要 具备一定的编程基础。
UMAT子程序可以实 现多种材料本构模型 ,如弹性、塑性、蠕 变等。
UMAT子程序实现细节
编程语言和接口
A B A Q U S 材 料 用 户 子 程 序 U M AT 使 用Fortran语言编写
U M AT 子 程 序 中 可 以 定 义 材 料 属 性 、 本构关系等
添加标题
添加标题
添加标题
添加标题
U M AT 子 程 序 通 过 A B A Q U S 提 供 的 接口与主程序进行交互
不足:使用门槛较高,需要用户具备一定的编程基础
未来展望:期待更多的用户参与开发,不断完善子程序功能
总结:UMAT子程序为用户提供了强大的材料模型描述能力,但使用过程中需要注意其局 限性
在ABAQUS中的未来发展方向
开发更高效的材料模型 集成人工智能和机器学习技术 增强与CAD软件的集成 扩展对多物理场模拟的支持
适用于金属材料
适用于复合材料
适用于橡胶材料
适用于陶瓷材料
参数的合理选择
参数选择需符合实际物理模型 参数选择需考虑材料特性 参数选择需经过实验验证 参数选择需注意收敛性和稳定性
收敛性和稳定性问题
收 敛 性 : U M AT 子 程 序 在 迭 代 过 程 中应满足收敛条件,否则可能导致 计算失败或结果不准确。
边界条件和初始条件
边界条件:描述模型在边界上的行为,如位移、速度等 初始条件:描述模型在初始时刻的状态,如温度、压力等
ABAQUS子程序UMAT里弹塑本构的实现

前言有限元法是工程中广泛使用的一种数值计算方法。
它是力学、计算方法和计算机技术相结合的产物。
在工程应用中,有限元法比其它数值分析方法更流行的一个重要原因在于:相对与其它数值分析方法,有限元法对边界的模拟更灵活,近似程度更高。
所以,伴随着有限元理论以及计算机技术的发展,大有限元软件的应用证变得越来越普及。
ABAQUS软件一直以非线性有限元分析软件而闻名,这也是它和ANSYS,Nastran等软件的区别所在。
非线性有限元分析的用处越来越大,因为在所用材料非常复杂很多情况下,用线性分析来近似已不再有效。
比方说,一个复合材料就不能用传统的线性分析软件包进行分析。
任何与时间有关联,有较大位移量的情况都不能用线性分析法来处理。
多年前,虽然非线性分析能更适合、更准确的处理问题,但是由于当时计算设备的能力不够强大、非线性分析软件包线性分析功能不够健全,所以通常采用线性处理的方法。
这种情况已经得到了极大的改善,计算设备的能力变得更加强大、类似ABAQUS这样的产品功能日臻完善,应用日益广泛。
非线性有限元分析在各个制造行业得到了广泛应用,有不少大型用户。
航空航天业一直是非线性有限元分析的大客户,一个重要原因是大量使用复合材料。
新一代波音 787客机将全部采用复合材料。
只有像 ABAQUS这样的软件,才能分析包括多个子系统的产品耐久性能。
在汽车业,用线性有限元分析来做四轮耐久性分析不可能得到足够准确的结果。
分析汽车的整体和各个子系统的性能要求(如悬挂系统等)需要进行非线性分析。
在土木工程业, ABAQUS能处理包括混凝土静动力开裂分析以及沥青混凝土方面的静动力分析,还能处理高度复杂非线性材料的损伤和断裂问题,这对于大型桥梁结构,高层建筑的结构分析非常有效。
瞬态、大变形、高级材料的碰撞问题必须用非线性有限元分析来计算。
线性分析在这种情况下是不适用的。
以往有一些专门的软件来分析碰撞问题,但现在ABAQUS在通用有限元软件包就能解决这些问题。
ABAQUS子程序UMAT的应用

目录摘要 (I)ABSTRACT (II)1.绪论 (1)1.1.课题的研究背景 (1)1.2.本文的研究内容和方法 (2)2.基于ABAQUS软件的二次开发 (3)2.1.ABAQUS介绍 (3)2.2.ABAQUS各模块简介 (3)2.3.ABAQUS的二次开发平台 (5)2.4.ABAQUS的二次开发语言 (6)3.用户材料子程序UMAT (8)3.1.UMAT开发环境设置 (8)3.2.UMAT注意事项 (9)3.3.UMAT接口的原理 (10)3.4.UMAT的使用方法 (12)4.材料非线性问题 (14)4.1.材料的弹塑性本构关系 (14)4.2.非线性有限元算法理论 (17)4.3.增量理论常刚度法公式推导 (20)4.4.增量理论切线刚度法公式推导 (21)5.UMAT程序设计和编码 (25)5.1.本构关系描述 (25)5.2.常刚度法程序设计 (27)5.3.常刚度法程序编码 (29)5.4.切线刚度法程序设计 (32)5.5.切线刚度法程序编码 (36)5.6.程序的调试 (39)6.程序验证 (40)16.1.问题描述 (41)6.2.本构关系 (42)6.3.ABAQUS自带材料模型计算 (42)6.4.常刚度法的UMAT验证 (44)6.5.切线刚度法的UMAT验证 (46)6.6.两种算法的比较分析 (48)7.结论与展望 (52)7.1.结论 (52)7.2.展望 (52)致谢 (54)参考文献 (55)附1:ABAQUS自带弹塑性材料验证的INP文件 (56)附2:用于算法验证的INP文件 (62)摘要ABAQUS软件功能强大,特别是能够模拟复杂的非线性问题,它包括了多种材料本构关系及失效准则模型,并具有良好的开放性,提供了若干个用户子程序接口,允许用户以代码的形式来扩展主程序的功能。
本文主要研究了ABAQUS用户子程序UMAT的开发方法,采用FORTRAN语言编制了各向同性硬化材料模型的接口程序,研究该类材料的弹塑性本构关系极其实现方法。
(完整word版)Abaqus弹塑性分析简单实例

(完整word版)Abaqus弹塑性分析简单实例
Abaqus弹塑性分析简单实例
ABAQUS默认的塑性材料特性应用金属材料的经典塑性理论,采用MISES屈服面来定义各向屈服。
金属材料的弹塑性行为可以简述如下:在小应变时,材料性质基本为线弹性,弹性模量E为常数;应力超过屈服应力后,刚度会显著下降,此时材料的应变包括塑性应变和弹性应变两部分;在卸载后,弹性应变消失,而塑性应变是不可恢复的;如果再次加载,材料的屈服应力会提高,即所谓的加工硬化。
在abaqus中,等效塑性应变PEEQ大于0表明材料发生了屈服。
在工程结构中,等效塑性应变一般不应超过材料的破坏应变。
对于金属成形等大变形问题,应根据生产工艺要求来确定许可的等效塑性应变量。
需要注意的是在比例加载时,大多数材料的PEMAG和PEEQ相等。
这两个量的区别在于,PEMAG描述的是变形过程中某一时刻的塑性应变,与加载历史无关,而PEEQ是整个变形过程中塑性应变的累积结果。
下面我们以单向压缩过程的模拟来演示ABAQUS弹塑性仿真设置。
模型如图所示,压头用解析刚体来模拟,试样用SHELL来模拟。
采用轴对称模型。
试样的截面属性设置如下图所示,注意塑性应变必须从0开始。
在压头与试样之间定义无摩擦的接触。
固定对称轴
上的径向位移U1和底边的轴向位移U2。
压头是轴对称刚体,U2边界条件需要施加在压头的参考点上。
设定两个分析步,第一个分析步让压头与试样建立平稳的接触,设置压头下移-5.001mm。
第二个分析步,设定压头下移20mm。
具体如下图所示:
提交分析,结果如下图所示:有限元在线因为专注所以卓越。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
摘 要 .........................................................................................................................................I ABSTRACT ............................................................................................................................ II 1. 绪论 ................................................................................................................................... 1
值计算方法。它是力学、计算方法和计算机 技术相结合的产物。在工程应用中,有限元法比其它数值分析方法更流行的一个重要 原因在于:相对与其它数值分析方法,有限元法对边界的模拟更灵活,近似程度更高。 所以,伴随着有限元理论以及计算机技术的发展,大有限元软件的应用证变得越来越 普及。
这种情况已经得到了极大的改善,计算设备的能力变得更加强大、类似 ABAQUS 这 样的产品功能日臻完善,应用日益广泛。
非线性有限元分析在各个制造行业得到了广泛应用,有不少大型用户。航空航天 业一直是非线性有限元分析的大客户,一个重要原因是大量使用复合材料。新一代波 音 787 客机将全部采用复合材料。只有像 ABAQUS 这样的软件,才能分析包括多个子 系统的产品耐久性能。在汽车业,用线性有限元分析来做四轮耐久性分析不可能得到 足够准确的结果。分析汽车的整体和各个子系统的性能要求(如悬挂系统等)需要进 行非线性分析。在土木工程业, ABAQUS 能处理包括混凝土静动力开裂分析以及沥青混 凝土方面的静动力分析,还能处理高度复杂非线性材料的损伤和断裂问题,这对于大 型桥梁结构,高层建筑的结构分析非常有效。
1
6.1. 问题描述............................................................................................................... 41 6.2. 本构关系............................................................................................................... 42 6.3. ABAQUS 自带材料模型计算 ............................................................................. 42 6.4. 常刚度法的 UMAT 验证 ..................................................................................... 44 6.5. 切线刚度法的 UMAT 验证 ................................................................................. 46 6.6. 两种算法的比较分析........................................................................................... 48 7. 结论与展望 ..................................................................................................................... 52 7.1. 结论....................................................................................................................... 52 7.2. 展望....................................................................................................................... 52 致 谢 ...................................................................................................................................... 54 参考文献 ................................................................................................................................ 55 附 1:ABAQUS 自带弹塑性材料验证的 INP 文件 ........................................................... 56 附 2:用于算法验证的 INP 文件......................................................................................... 62
1.1. 课题的研究背景..................................................................................................... 1 1.2. 本文的研究内容和方法......................................................................................... 2 2. 基于 ABAQUS 软件的二次开发..................................................................................... 3 2.1. ABAQUS 介绍 ....................................................................................................... 3 2.2. ABAQUS 各模块简介 ........................................................................................... 3 2.3. ABAQUS 的二次开发平台.................................................................................... 5 2.4. ABAQUS 的二次开发语言.................................................................................... 6 3. 用户材料子程序 UMAT................................................................................................... 8 3.1. UMAT 开发环境设置 ............................................................................................ 8 3.2. UMAT 注意事项 .................................................................................................... 9 3.3. UMAT 接口的原理 ............................................................................................... 10 3.4. UMAT 的使用方法 ............................................................................................... 12 4. 材料非线性问题 ............................................................................................................. 14 4.1. 材料的弹塑性本构关系....................................................................................... 14 4.2. 非线性有限元算法理论....................................................................................... 17 4.3. 增量理论常刚度法公式推导............................................................................... 20 4.4. 增量理论切线刚度法公式推导........................................................................... 21 5. UMAT 程序设计和编码 ................................................................................................. 25 5.1. 本构关系描述....................................................................................................... 25 5.2. 常刚度法程序设计............................................................................................... 27 5.3. 常刚度法程序编码............................................................................................... 29 5.4. 切线刚度法程序设计........................................................................................... 32 5.5. 切线刚度法程序编码........................................................................................... 36 5.6. 程序的调试........................................................................................................... 39 6. 程序验证 ......................................................................................................................... 40