三大微分中值定理及其推广形式和应用

合集下载

微积分三大定理

微积分三大定理

微积分三大定理
微积分是数学中的重要分支,它研究的是函数的变化与求和。

微积分的发展离不开三大定理,它们分别是导数的基本定理、中值定理和积分的基本定理。

这三个定理是微积分的核心,为我们解决各种实际问题提供了重要的工具和方法。

导数的基本定理是微积分中最基本的定理之一。

它告诉我们如何求函数的导数。

导数是描述函数在某一点上的变化率的概念,它决定了函数的增减性和曲线的斜率。

导数的基本定理使我们能够通过求导来研究函数的性质,例如函数的最值、凹凸性等。

它是微积分中理论和实际应用的基础。

中值定理是导数的一个重要应用。

它的核心思想是函数在某个区间内的平均变化率等于某个点上的瞬时变化率。

中值定理为我们提供了一种刻画函数变化的方法,它能够帮助我们找到函数在某个区间内的极值点和临界点。

中值定理的应用广泛,不仅在数学中有重要地位,还在物理、经济等领域中有着深远的影响。

积分的基本定理是微积分的重要组成部分。

它告诉我们如何求函数的积分。

积分是求解曲线下面的面积或计算曲线的总变化量的工具。

积分的基本定理使我们能够通过求积分来计算函数的面积、体积、质量等物理量,它在科学研究和工程实践中起着重要的作用。

微积分三大定理的发展与应用,不仅丰富了数学理论,也推动了科
学技术的进步。

它们为我们解决实际问题提供了强有力的工具和方法,使我们能够更好地理解和描述自然界的现象。

无论是在自然科学、社会科学还是工程技术领域,微积分的应用都是不可或缺的。

通过学习和应用微积分三大定理,我们能够更好地理解和解决复杂的实际问题,为人类的发展和进步做出贡献。

微分中值定理的推广及应用

微分中值定理的推广及应用

微分中值定理的推广及应用微分中值定理是微积分中的重要定理之一,它在分析函数在区间内的平均速度和瞬时速率之间的关系上展示了重要的性质。

在本文中,我们将探讨微分中值定理的推广及其在实际问题中的应用。

首先,我们回顾一下微分中值定理的基本形式。

设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,那么存在一个点c ∈ (a, b),使得f'(c) = (f(b) - f(a))/(b - a)。

这个定理说明了在[a, b]上函数的瞬时变化率在某一点上与其平均变化率相等。

在进一步研究中,我们可以将微分中值定理推广到更一般的情形。

例如,当函数f(x)在闭区间[a, b]上多次可导时,我们可以得到多次求导的结果。

具体而言,对于任意非负整数n,存在点c ∈ (a, b),使得f^(n)(c) = (f(b) - f(a))/(b - a)^(n),其中f^(n)(c)表示f(x)的n阶导数。

推广定理的证明是基于数学归纳法的。

首先,对于n=1的情况,即一阶导数,我们可以直接应用微分中值定理的基本形式进行证明。

接下来,假设对于k=1,2,...,n-1,定理成立。

我们将其应用于f'(x),得到存在一个点d ∈ (a, b),使得f''(d) = (f'(b) - f'(a))/(b - a)。

然后,我们可以使用拉格朗日中值定理来得到f''(d) = f^(2)(c)。

结合两个等式,我们可以得到f^(2)(c) = (f'(b) - f'(a))/(b - a)。

通过类似的推理,我们可以证明对于更高阶导数的情况也成立。

了解了微分中值定理的推广形式后,我们将进一步探讨其在实际问题中的应用。

微分中值定理常常被用于研究函数在某一区间的极值点及函数图像的凸凹性。

首先,我们考虑函数的极值点。

根据微分中值定理,如果函数在某一区间[a, b]上可导,那么在(a, b)内存在一个点c,使得f'(c) = 0。

微分中值定理的推广及应用

微分中值定理的推广及应用

微分中值定理的推广及应用微分中值定理是数学分析中一个重要的定理,它是关于微分学中函数的变化性的定理。

这个定理在数学家们探索函数几何性质时,尤其是推广应用中起到了重要的作用。

本文旨在介绍微分中值定理的推广及应用。

2分中值定理微分中值定理是在变分学中最为经典的定理之一。

它往往用来说明函数的连续性、变化率及函数的驻点有关。

它的正式定义如下:定义:设f(x)为连续函数,在区间[a,b]上,若存在一点θ∈(a,b),使得f′(θ)与[f(a)-f(b)]/[a-b]相等,则称θ为函数f(x)在区间[a,b]上的中值点,令f′(θ)=[f(a)-f(b)]/[a-b],则称为微分中值定理。

3广微分中值定理在原始定义的基础上,可以推广出一系列类似的定理。

3.1阶中值定理高阶中值定理是一种推广微分中值定理,它引入了高阶导数,通过某些极值点解出高阶导数等于函数在该点处的前后变化值的差值。

定义:设f(x)具有N阶可导的连续函数,在区间[a,b]上,若存在一点θ∈(a,b),使得f^(N)(θ)与[f^(N-1)(b)-f^(N-1)(a)]/[b-a]相等,则称θ为函数f(x)在区间[a,b]上的N阶中值点,令f^(N)(θ)=[f^(N-1)(b)-f^(N-1)(a)]/[b-a],则称为高阶中值定理。

3.2展中值定理拓展中值定理是一种推广微分中值定理,它与高阶中值定理的不同之处在于,它把对一个连续函数的某一段求导之后得到的极值点,当做求函数本身的极值点,从而拓展出新的中值定理。

定义:设f(x)是一个连续函数,且f′(x)在区间[a,b]上连续可导,若存在一点θ∈(a,b),使得f′(θ)与[f′(b)-f′(a)]/[b-a]相等,则称θ为函数f(x)在区间[a,b]上的拓展中值点,令f′(θ)=[f′(b)-f′(a)]/[b-a],则称为拓展中值定理。

4用微分中值定理及其推广的定理在微积分应用中起到了重要作用,常用于函数的极值求解、区间求值等方面。

微分中的中值定理及其应用

微分中的中值定理及其应用

微分中的中值定理及其应用微分中的中值定理是微积分中的基本定理之一,它在数学和物理学中具有重要的应用。

本文将介绍微分中的中值定理及其应用,并展示其在实际问题中的解决方法。

一、中值定理的概念与原理中值定理是微分学中的重要理论,它涉及到函数在某个区间上的平均变化率与瞬时变化率之间的联系。

其中最常见的三种形式为:罗尔定理、拉格朗日中值定理和柯西中值定理。

1. 罗尔定理罗尔定理是中值定理的基础,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且满足f(a) = f(b),则在开区间(a, b)上至少存在一点c,使得f'(c) = 0。

罗尔定理可通过对函数在该区间的最大值和最小值进行讨论得出,它主要用于证明函数在某一区间上恒为常数的情况。

2. 拉格朗日中值定理拉格朗日中值定理是中值定理的一种推广,它的表述为:如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则至少存在一点c,使得f'(c) = (f(b) - f(a))/(b - a)。

拉格朗日中值定理的证明可以通过构造辅助函数g(x) = f(x) - [(f(b) - f(a))/(b - a)]x来完成,它可以将任意两点间的斜率与函数在某一点的导数联系起来。

3. 柯西中值定理柯西中值定理是拉格朗日中值定理的进一步推广,它的表述为:如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,并且g'(x)≠0,则至少存在一点c,使得[f(b) - f(a)]/g(b) - g(a) = f'(c)/g'(c)。

柯西中值定理可以用来研究函数间的关系,它提供了一种描述两个函数在某一区间上的变化率相等的条件。

二、中值定理的应用中值定理不仅仅是一种理论工具,还具有广泛的应用。

下面将介绍中值定理在实际问题中的应用案例。

1. 最速下降线问题最速下降线问题是求解两个给定点之间的最短路径问题。

最新-微分中值定理的证明、推广以及应用 精品

最新-微分中值定理的证明、推广以及应用 精品

微分中值定理的证明、推广以及应用篇一:微分中值定理的证明及应用微分中值定理的证明及应用摘要:文章首先介绍了微分中值定理证明时的一种规律性简明方法,即通过构造辅助函数来达到罗尔定理的条件以便利用罗尔定理来证明其他微分中值定理,并且就用这种方法证明了拉格朗日中值定理和柯西中值定理。

然后分类列举微分中值定理在证明等式、不等式、求极限以及在讨论方程根的存在性方面的应用,而且微分中值定理即罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理在不同的解题应用方面是各有优劣的,又是相互互补渗透的,因此我们在解题时也要学会综合运用它们。

关键词:罗尔定理拉格朗日中值定理柯西中值定理辅助函数我们知道微分中值定理是整个微分学的理论基础,并且它在数学分析中也占有重要地位作用,它也是连接函数与导数的纽带与桥梁,而我们知道函数在某一点的导数是一种局部性质。

在实际研究中我们有时需要从函数的整体出发考虑其全局性质,因而正式微分中值定理可以解决这种由局部到全局或者有全局到局部的问题。

笔者在学习中借鉴和总结了微分中值定理证明时的一种规律性简明方法,并且简单地讨论了微分中值定理的各种应用。

1微分中值定理的证明11对中值定理[1]的简单证明分析:拉格朗日中值定理的证明要用到罗尔定理,但是定理所给出的已知条件不能够满足罗尔定理条件中的()?()故此我们需要构造一个新的函数,不妨记为()使它满足罗尔定理的全部条件,为此设?()?()?则()?()?(?)即()??()?(1)由(1)可构造新函数()?()?,有题设可知()在[,]上连续,在(,)内可导,且()?(),因此()满足罗尔定理的全部条件。

所以函数()?()?,即我们要构造的函数。

证明:构造辅助函数()?()?,其中?()?()?根据已知条件和连续函数的性质,我们可以知道()在闭区间[,]上是连续的,在开区间(,)内是可导的,并且还有()?(),所以我们可以根据罗尔定理就可以得到函数()在(,)内至少存在一点?,使得?(?)??(?)??0即?(?)?()?()?,故证得()?()??(?)(?)12对中值定理[1]的简单证明分析:若用定理证明这个定理,需要构造一个辅助函数并且使它满足定理的条件,不妨设?()?()()?(),可变形为()?()?()?()(2)由(2)可构造辅助函数()?()?(),有题设可知()在[,]上连续,(,)内可导且()?(),因而()满足定理的条件,即()?()?()为所要构造的函数。

微分中值定理与导数的应用总结

微分中值定理与导数的应用总结

微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。

拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。

2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。

设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。

柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。

3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。

设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。

罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。

微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。

在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。

二、导数的应用导数作为微积分的重要概念,具有很多实际应用。

微分中值定理的主要作用

微分中值定理的主要作用

微分中值定理的主要作用微分中值定理是高等数学中微分学的主要知识点。

在确定罗尔定理、拉格朗日中值定理、柯西中值定理的基础上,深入分析了不同中值定理的推广形式。

在确定微分中值定理经典证明的前提下,分析以上之间的关系。

找出所有相关的证明形式,并分析1.引言在数学研究中,微分中值定理起着非常重要的作用。

在最近的数学考研中,与微分中值定理相关的命题层出不穷。

因此,对这部分问题的分析不仅能使我们深刻理解和认识微分中值定理的知识,而且对后续问题的解决也至关重要。

微分中值定理一般涵盖罗尔(Roll)定理,拉格朗日(Lagrange)中值定理,柯西(Cauchy)中值定理和泰勒(Taylor)公式。

上述部分彼此不断递进。

分析某个函数整体和部分,和众多函数彼此间的关系。

对了解函数的属性和根的存在性等部分具有关键的价值。

学微分中值定理这部分的时候,我们需要了解为何要学习,以及与其他定理间的关系与使用。

基于教材进行分析,我们逐渐了解到导数微分的关键性,然而并未讲解怎样使用,所以需要强化导数的使用,但是微分中值定理是导数使用的理论前提。

因此此部分知识非常关键。

其是此后分析函数极限,单调,凹凸性的前提。

基于微分中值定理的形成进行分析,此处主要的基础是函数最值问题。

而处理上述问题是使用微分中值定理。

学者们对微分中值定理的分析经历了200多年,主要从费马大定理开始,经历了从特殊到一般,从直观到抽象,从强条件到弱条件的发展时期。

也正是在上述发展时期,学者们开始了解它们的内在联系和根本特征。

微分中值定理是浓缩版的概括,上面的概括和美国数学家克莱默对数学史上任何阶段大众对数学贡献的评价,那些能够统一过去,为未来发展找到出路的概念,应该算是最深的定义了。

从广义的角度看,微分中值定理定义如下。

微分中值定理是微分学的主要定理,在数学研究中具备关键位置,是分析函数在某区间内的综合性质的重要方式。

其主要包含众多定理。

此处拉格朗日中值定理是罗尔中值定理的推广,柯西中值定理是罗尔中值定理的推广;反之,拉格朗日中值定理是柯西中值定理的特殊案例,罗尔中值定理是拉格朗日中值定理的特殊案例。

中值定理的应用方法与技巧

中值定理的应用方法与技巧

中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。

微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。

积分中值定理有积分第一中值定理和积分第二中值定理。

积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。

积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。

一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。

由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。

这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。

例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。

证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。

证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。

任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科技论文在线

三大微分中值定理及其推广形式和应用
丁亚红
南京师范大学数学科学学院,南京(210046)
E-mail: dyahong@
摘 要:三大微分中值定理既有区别,又紧密相联。在这三大定理中,Rolle 定理是基础, Lagrange 中值定理是关键。本文介绍了一阶、高阶形式的中值定理及其应用。给出了一阶形 式的微分中值定理的相互证明。在高阶情形中,用高阶 Lagrange 中值定理证明了高阶 Cauchy 中值定理。其应用方面为:判断函数方程根的存在性,求极限,证明不等式,证明单调性。 关键词:中值定理,推广,应用
(1)
g (n) (ξ )
1
1L1
x0
x1 L xn
x02
x12
L
x
2 n
L LLL
x n−1 0
x n−1 1
L
x n−1 n
g(x0 ) g(x1 ) L g(xn )
3.3 用高阶 Lagrange 中值定理证明高阶 Cauchy 中值定理
在一阶形式中,我们可以运用 Lagrange 中值定理证明 Cauchy 中值定理。这里,我们将 运用高阶 Lagrange 中值定理来证明高阶 Cauchy 中值定理。
λi (x j )
= δ ij
=
⎧1,i = ⎩⎨0,i ≠
j; j.
n
∑ 则存在ξ ∈ (a,b), 使得, f (n) (ξ ) = f (xi )λ(in) (ξ ).
i=0
证 作辅助函数
n
F (x) = f (x) − ∑ f (xi )λi (x),
i=0

F (xi ) = 0,i = 0,1,L, n 反复运用罗尔定理,可得,存在 ξ ∈ (a, b), 使得
证 由题设, ∀x ∈ (a,b), g′(x) 存在且 g′(x) ≠ 0 。所以 g(x) 严格单调,不妨设 g(x) 在
[a, b]上严格递增。令 t=g(x),则 t 是[a, b]上的单调连续函数。 记 g(a)=A, g(b)=B,由反函数存在性定理和反函数导数存在定理,存在单调递增且连续的
-3-
中国科技论文在线

n
∑ F (n) (ξ ) = f (n) (ξ ) − f (xi )λi(n) (ξ ) = 0,
i=0

n
∑ f (n) (ξ ) = f (xi )λ(in) (ξ ).
i=0
利用这个引理,我们可以得到下述的高阶 Lagrange 中值定理。
1. 引言
微分中值定理是反映函数与导数之间联系的重要定理,也是微积分学的理论基础,在许 多方面它都有重要的作用,在进行一些公式推导与定理证明中都有很多应用。
函数与其导数是两个不同的函数,而导数只是反映函数在一点的局部特征。如果要了解 函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理就是起这 种作用的。三大微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理,是沟通 导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的工具。以罗尔定 理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础。
因为
∑ f (n) (ξ ) = n
f (xi )
.
∑ g (n) (ξ )
n
i=0 g(xi ) − g(x j )u j (xi )
j=0, j≠i
n
∑ D f
=
f (xi )(−1)n+i+2V [x0, x1,L, xi−1, xi+1, L, xn ]
i=0
∑ Dg
n
g(x j )(−1)n+ j+2V [x0, x1,L, x j−1, x j+1, L, xn ]
x02 L
n≥i> j≥0
x n−1 0
f (x0 )
1L
x1 L x12 L
LL
x n−1 1
L
f (x1 ) L
1
xn xn2 L x n−1
n
f (xn )
3.2 高阶 Cauchy 微分中值定理
高阶 Cauchy 微分中值定理:设 f (x) , g(x) 在[a, b]上连续,在(a, b)内 n 次可导,
j=0
∑ ∑ =
n i=0
g(xi ) +
f (xi )
n j=0,
(−1)
j≠i
j
−i
g
(
x
j
)
V[x0, x1,L, x j V[x0, x1,L, xi
−1 −1
, ,
x j+1, L, xn ] xi+1, L, xn ]
∑ ∑ =
n i=0
g(xi ) +
f (xi )
n j=0,
(−1)
反函数 x = g −1(t) ,t∈[A,B].
-2-
中国科技论文在线

由 f (x) 在[a, b]上连续知,在[A,B]上存在连续的复合函数 y = f (g −1(t)) = h(t) .根据
参数方程求导公式有
dy h′(t) = dy = dx = f ′(x) ,x∈(a, b),
g(x) − ∑ g(x j )u j (x)
λi (x) =
j=0, j≠i n
, i = 0,1,L, n,
(3)
∑ g(xi ) − g(x j )u j (xi )
j=0, j≠i
∏n
u j (x) =
k =0
x xj
− xk − xk
,
j
=
0,1,L, i
− 1, i
+
1,Ln.
(4)
k≠i, j
f (b) − f (a) g(b) − g(a)
又因为
h′(t) t = g(ξ )
=
f ′(x) g ′( x)
x =ξ
=
f ′(ξ ) g′(ξ )
所以
f ′(ξ ) g′(ξ )
=
f (b) − g(b) −
f (a) . g(a)
3. 高阶形式
知道了一阶形式的三大中值定理,接着我们将要把一阶的 Lagrange 中值定理和 Cauchy 中值定理推广至高阶形式,并且用高阶 Lagrange 中值定理来证明高阶 Cauchy 微分中值定理。
2.3.1 利用罗尔定理证明柯西中值定理
和拉格朗日中值定理的证明方法类似,利用罗尔定理来证明柯西中值定理的关键是构造
一个辅助函数,使其满足罗尔定理的条件。
证 作辅助函数
F (x) = f (x) − f (a) − f (b) − f (a) (g(x) − g(a)). g(b) − g(a)
易见 F 在[a, b]上满足罗尔定理条件,故存在ξ ∈ (a,b), 使得
高 阶 Lagrange 中 值 定 理 : 设 f (x) 在 [a, b] 连 续 , 在 ( a, b ) 内 n 次 可 导 ,
a = x0 < x1 < L < xn = b 是[a, b]的一个分割,则存在ξ ∈ (a,b), 使得,
1
x0
C f (n) (ξ ) =
n! (xi − x j )
2. 一阶形式
在一元微积分中,Rolle 定理, Lagrange 中值定理以及更广泛的 Cauchy 中值定理统称为 微分中值定理。微分中值定理是导数应用的理论基础,是微分学的基本定理,它们是连接函 数值与其导数的纽带。这三大定理,既有区别,又紧密相联。我们知道以 Rolle 定理为基础, 通过构造不同形式的辅助函数,可以证明 Lagrange 中值定理和 Cauchy 微分中值定理。而 Cauchy 微分中值定理也可以由 Lagrange 中值定理得到。所以说 Rolle 定理是基础,Lagrange 中值定理是关键。
F ′(ξ ) = f ′(ξ ) − f (b) − f (a) .g′(ξ ) = 0. g(b) − g(a)
因为 g′(ξ ) ≠ 0 (否则由上式 f ′(ξ ) 也为零),所以可把上式改写成
f ′(ξ ) g′(ξ )
=
f (b) − f (a) . g(b) − g(a)
2.3.2 利用拉格朗日中值定理证明柯西中值定理
∑ ∏ i=0
g(xi ) −
n
n
g(xj )
j=0, j≠i
k =0.k ≠i, j
xi xj
− xk − xk
所以得
n
=∑
f (xi )
.
n
∑ i=0 g(xi ) − g(x j )u j (xi )
j=0, j≠i
(i)
f 在闭区间[a, b]上连续;
-1-
中国科技论文在线

(ii) f 在开区间(a, b)内可导;
则在(a, b)内至少存在一点ξ ,使得 f ′(ξ ) = f (b) − f (a) . b−a
证 作辅助函数
F (x) = f (x) − f (a) − f (b) − f (a) (x − a). b−a
j≠i
j
−i
g
(
x
j
)
(−1) n−i (−1)n− j (
(xi xj
− x0 )(xi − x0 )(x j
− −
x1 )L(xi x1 )L(x j
− −
xi−1 )(xi − xi+1 )L(xi − xn ) x j−1 )(x j − x j+1 )L(x j − xn )
n
∑ =
相关文档
最新文档