第二讲巧算乘除法

合集下载

小学三年级数学乘法除法 速算与巧算

小学三年级数学乘法除法 速算与巧算

第二讲速算与巧算(二) 一、乘法中的巧算 1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式: 5×2=10 25×4=100 125×8=1000例1计算①123×4×25 ② 125×2×8×25×5×4 解:①式=123×(4×25) =123×100=12300 ②式=(125×8)×(25×4)×(5×2) =1000×100×10=1000000 2.分解因数,凑整先乘。

例 2计算① 24×25 ② 56×125 ③ 125×5×32×5 解:①式=6×(4×25) =6×100=600 ②式=7×8×125=7×(8×125) =7×1000=7000 ③式=125×5×4×8×5=(125×8)×(5×5×4) =1000×100=100000 3.应用乘法分配律。

例3 计算① 175×34+175×66 ②67×12+67×35+67×52+6 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700 (原式中最后一项67可看成 67×1) 例4 计算① 123×101 ② 123×99 解:①式=123×(100+1)=123×100+123 =12300+123=12423 ②式=123×(100-1) =12300-123=12177 4.几种特殊因数的巧算。

小学四年级奥数002乘除法巧算

小学四年级奥数002乘除法巧算
一般有:

如:
或:
例3.计算下面各题。
(1)
(2)
分析:这两题可以运用乘除混合运算带着符号“搬家”的性质。
(1) (2)
在运算中经常出现乘除混合运算及括号等,怎么办,仍有一些性质:
1.一个数除以两个数的积,等于这个数依次除以积的两个因数。
一般公式: 如:
例4.简便计算下面各题。
(1)
(2)
分析:利用以上公式计算,发现(1)被除数÷两个数的积,可以用下面公式计算:
分析:三位数与11相乘的速算方法同样可以概括为“两边拉,中间加”。注意中间是相邻位相加。
练一练:
例7.巧算两位数与101相乘。
竖式:
观察发现“4343、8989”,两位数与101相乘,积是把这个两位数连续写两遍。
练一练:
例8.巧算三位数与1001相乘。
竖式:
发现:三位数与1001相乘,积是把这个三位数连续写两遍。
由此得到:几与999相乘,就用几千减去几?
练习一下:
例5巧算两位数与11相乘。
分析:
观察上面一组数,发现两位数与11相乘,只要把这个两位数打开,个位数字做积的个位,十位数字做积的百位,个位数字与十位数字相加做积的十位,如果满十,就向百位进1。
如:
方法是:两边一拉,中间相加,满十进1。
例6.巧算三位数与11相乘。
56 11 93 101
237 11 562 1001
630 56 8 280 63 9
学习管理师
家长或学生阅读签字
教师课后赏识评 价
老师最欣赏的地方
老师的建议
老师想知道的事情
(1) (2)
2.一个数乘以两个数的商,等于这个数乘以商中的被除数,再除以商中的除数。

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

乘除巧算

乘除巧算

例一:
234×50×2 12×25×4
125×8×9
32×125×8Βιβλιοθήκη 例二: 48×25125×5×32×5
1247×99
678×101
3,乘法的分配律:两个数的和与一个数相乘, 以把这两个数分别与这个相乘,再把所得9的积 加,即(a+b) ×c=a×c+b×c 例: (4+8)×5=8×5+4×5
• 例 :11 ÷3+4÷3 399÷5-99÷5
• (1000+100)÷25
• 9898×9999÷101÷1111
• 123×456÷789÷456×789÷123
• 3,两个数的积除以第三个数,等于用其中的一个 数除以第三个数,再与另一个数相乘。即 • a×b÷c=a÷c×b • 例:3972×69÷1986 9000×34÷45
• 4,两个数的和或差除以一个数,等于这两个数分 别除以这个数,商再相加(相减)。 (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c
速算与巧算(二)乘除法
一,运用乘法运算定律巧算
1,乘法的交换律:两个数相乘交换因数的位置,积不变。即: a×b=b×a 相乘 例:2×5=5×2
2,乘法结合律:三个数,可以把前两个数相乘再乘第三个数, 也可以把后两个数相乘再与第一个数相乘,积不变。即: a×b×c=a×(b×c) 例: 9×5×4=9×(5×4)
例三: 184×17+184×63
496×837-496×637
234×12+234×88
9999×2222+3333×3
• 二,运用四则运算规则巧算: • 1,某数连续除以两个数,等于某数除以这两个数 的积,也等于某数除以第三个数的商,再除以第 二个数。即a÷b÷c=a÷(b×c)=a÷c÷b。 • 反过来也成立

小学奥数讲义 第二讲-乘除法巧算之提取公因式与组合思想强化篇

小学奥数讲义 第二讲-乘除法巧算之提取公因式与组合思想强化篇

乘除法巧算之提取公因数与组合思想计算中的提取公因数法是近几年来数学解题能力展示、希望杯和小升初中经常考的题目,但是通过分析我们发现在考试中不仅仅是只考提取公因数这样简单的题。

这类题目往往是同和、差、积和商不变的性质进行解题。

常用的提取公因式的方法有三种:⑴直接提取公因数例如:35⨯8-35+3⨯35⑵逐步提取公因数例如:计算:2000⨯1999-1999⨯1998+1998⨯1997-1997⨯1996+1996⨯1995-1995⨯1994⑶利用和、差、积和商不变性质和不变性质:如果一个加数增加(减少)一个数,另一个加数减少(增加)相同的数,它们的和不变;差不变性质:如果被减数增加(减少)一个数,减数也增加(减少)相同的数,则它们的差不变;积不变性质:如果一个因数扩大几倍,另一个因数缩小相同的倍数,它们的积不变;(零除外) 商不变性质:如果除数和被除数同时扩大或缩小相同的倍数,它们的商不变。

(零除外)例如:81⨯15+57⨯5【例1】计算:(2⨯5-9)+(2⨯6-8)+…+(2⨯9-5)【拓展】计算:7816⨯145+314⨯2184+169⨯7816=_________。

【例2】计算:⑴(873⨯477-198)÷(476⨯874+199)⑵512⨯81+11⨯925+537⨯19【拓展】计算:314⨯36+64⨯439【例3】计算:⑴(迎春杯初赛)53⨯57-47⨯43⑵19945⨯79+12⨯158+2449【拓展】计算:197⨯63+4792+409⨯21+9521⨯479 【例4】计算:2008⨯20072006-2006⨯20072008【拓展】计算:2008⨯20072006-2006⨯20072008【例5】计算:333⨯332332333-332⨯333333332=____________。

【拓展】计算:1991⨯199219921992-1992⨯199119911991〖答案〗【例1】 35【拓展】3140000【例2】⑴ 1,⑵ 61850【拓展】 39400【例3】⑴ 1000,⑵ 1580000 【拓展】 4811000【例4】 40140000【拓展】 40140000【例5】 665【拓展】 0。

四年级奥数教程第2讲:巧算乘除法

四年级奥数教程第2讲:巧算乘除法

四年级奥数教程第2讲:巧算乘除法1,乘法交换律:a×b = b×a2,乘法结合律:a×b×c = a×(b×c)3,乘法分配率:(a+b)×c=a×c+b×c由此可推出:a×c+b×c=(a+b)×c(a-b)×c=a×c-b×c4,除法的性质:a÷b÷c=a÷c÷b=a÷(b×c)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。

例1:计算:(1)25×5×64×125 (2)56×165÷7÷11 解(1)25×5×64×125=25×5×2×4×8×125=(25×4)×(5×2)×(8×125)=100×10×1000=1000000;(2)56×165÷7÷11=(56÷7)×(165÷11)=8×15=120例2:计算:(1)4000÷125÷8(2)9999×2222+3333×3334解(1)4000÷125÷:8=4000÷(125×8)=4000:1000=4;(2)999×2222+333X3334=33×3×2222+333×3334=33×(666+3334)=3333×10000=3330000随堂练习2:计算:(1)60 000÷125÷2÷5÷8(2)99 999×7+11 111×37(1)原式=60000÷(125×2×5×8)=60000÷(125×8X2×5)=60000÷(1000×10)=60000÷10000=6.原式=1111×9×7+11111×37=11111×(63+37)=11111×100=1111100例3:计算:218×730+7820×73=2180X73+7820×73=(2180+7820)×73=10000×73=730000;解法二218×730+7820×73=218×730+782×730=(218+782)×730=1000×730=730000随堂练习3:计算:(1)375×480-2750×48原式=375×480-275×480=(375-275)×480=100×480=48000例4:不用计算结果,请你指出下面哪道题得数大:452×458 453×457解452×458=452×(457+1)=452×457+452453×457=(452+1)×457=452×457+457显然,452×458<453×457随堂练习4:不用计算结果,请你指出下面哪道题得数大A=54 321×12 345 B=54 322×12 344 A=54321X(12344+1)=54321×12344+54321;B=(54321+1)×12344=54321X12344+12344.8显然,A>B例5:求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)分析观察发现,算式中每个括号里的除数都是下一个括号里的到1被除数,根据运算性质a÷:(b÷c)=a÷b×c,计算时可以消去3,4,5解原式=1÷2×3÷3×4÷:=4×5÷5×6=1÷2×6=3.提高练习一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数,如:32×101=3232;一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数,如:125×1001=125125下列计算题中,不能运用这两条规律进行巧算的是( )(A)573×101(B)252×1001(C)101×78(D)872×7×11×13简算下列各题:5445÷55原式=(5500-55)÷55=15500÷55-55÷55=100-1=99.25×77+55×14+15×77=(25+15)×77+55×14=40×77+55×14=40×7×11+14×5×11=(40×7+14×5)×11=(280+70)×11=350×11=3850981+5×9810+49×981=981+50×981+49×981=(1+50+49)×981=100×981=98100.10333×2222÷6666=3333×2×1111÷6666=(3333×2÷:6666)×1111=11111440×976÷488=1440×(976÷488)=1440×2=2880.2014×2016-2013×2017=(2013+1)×2016-2013×(2016+1)=2013×2016+2016一2013×2016-2013=2016-2013=3例4 计算。

四年级奥数教程(二)巧算乘除法

四年级奥数教程(二)巧算乘除法

课题巧算乘除法四则运算中巧算的方法很多,它主要是根据已学过的知识,通过一些运算定律、性质和一些技巧性方法,达到计算正确而快捷的目的。

实际进行乘、除法以及乘除法混合运算式可利用到以下性质进行巧算:①乘法交换律:a×b = b×a②乘法结合律: a×b×c = a×(b×c)③乘法分配律: (a + b)×c = a×c + b×c由此可推出:a×b + a×c = a×(b + c)(a - b) ×c = a×c - b×ca×b - a×c = a×(b - c)④除法的性质: a÷b÷c = a÷b÷c = a÷(b×c)a÷(b÷c)= a÷b×c利用乘法、除法的这些性质,先凑整得10、100、1000……使计算更简便.教学目标1、熟练掌握乘除法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。

教学重难点重点:乘法运算律,特殊的由原有规律推出的定律难点:把乘除运算律延用到乘除法混合运算中,尤其在含有括号或多项的题目中。

教学过程一、复习引入1、利用乘法运算律,填空:15×10 = 16×______25×7×4 = ______×______×7(60×25)×______ = 60×(______×8)125×(8×______) = (125×______)×143×4×8×5 = (3×4)×(______×______)2、下面哪些运算运用了乘法分配律?117×3 + 117×7 = 117×(3 + 7)24×(5 + 12) = 24×174×a + a×5 = (4 + 5)×a36×(4×6) = 36×6×43、用乘法分配律计算下面各题103×12 20×55 24×205= = == = == = =有了上面的复习,我们把四年级课本上有关乘法的运算律都进行了一个回顾与掌握,今天我们将就如何在巧算中用上这些规律进行讲解。

四年级下册数学课件(数学思维)-第2讲 乘除巧算|全国通用 (共19张PPT)

四年级下册数学课件(数学思维)-第2讲 乘除巧算|全国通用 (共19张PPT)

分析:仔细观察可发现:算式中是100以内相 邻的两数乘积的加减混合计算.对于长长算式链,一 般都是根据数据特点和符号规律,重新分组进行重 组,再提取各组公因数,此题就迎刃而解了.
技巧归纳
题型三:逐位分析
100×99-99×98+98×97-97×96+96×95+…+4×3-3×2+2×1= .
注意:这里的2×1单独为一组.
巩固练习
2.7128÷72+5148÷52
【规范解析】原式=(7200-72)÷72+(5200-52)÷52 =(100-1)+(100-1) =200-2 =198
巩固练习
3.(12345+51234+45123+34512+23451)÷3
【规范解析】原式=(1+2+3+4+5)×11111÷3 =15÷3×11111 =55555
【规范解析】原式=(1+2+3+4+5)×11111÷3 叠数AAA…A都可以拆分成A×111…1的形式,99999=3×33333,这样就凑出了一个公因数33333,同时3×22222=66666与33334又可凑整,
这样就算好了。
巧算用好分配率,重码分解有规律,
【规范解析】原式=33333×3×22222+33333×33334 =777777÷11 =3333300000
【规范解析】原式=2016×(2014-2013)2015×(2014-2013) =2016-2015 =1
本节总结
数列求和
同学们,我们一起来复习一下化繁为简的规律.
01
叠数好玩AAA,分拆提取公因数,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二讲巧算乘除法辅导时间姓名
四则运算中巧算的方法很多,利用乘除法的性质时,先凑整得10,100,1000,···会使计算更快捷、更准确
一、复习计算
947+(372—447)—572+1928—(267—72)—33
二、巧算乘除法
例1、计算:
(1)25×5×64×125 (2)56×165÷7÷11
课堂练习1:计算
(1)25×96×125 (2)7777×9999÷1111÷1111
例2、计算
(1)4000÷125÷8 (2)999×222+333×334
课堂练习2:计算
(1)60000÷125÷2÷5÷8 (2)9999×7+1111×37
例3、计算
218×730+7820×73
课堂练习3计算
(1)375×480-2750×48
(2)102×100+101×99—101×100—102×99
例4、不用计算结果,请你指出下面哪道题得数大。

452×458 453×457
例5、求1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)的值
课堂练习4不用计算结果,比较下面两个积的大小
A=54321×12345 B=54322×12344
训练题
一、填空题
(1)4500÷(25×90)=
(2)18000÷125÷18=
(3)42×35+61×35—3×35=
(4)(125×99+125)×16=
二、选择题
(5)下列各式中没有反映出简便运算的是()
(A)19+199+1999+19999=20+200+2000+20000—4;
(B)4500÷54×6=4500÷(54÷6);
(C)8×240×125÷48=1920×125÷48;
(D)10000÷2÷4÷5÷25=10000÷(2×4×5×25)
(6)一个两位数乘以101的积,就等于把这个两位数连写两遍所得的四位数。

一个三位数乘以1001的积,就等于把这个三位数连写两遍所得的六位数。

下列计算题中,不能运用这两条规律进行计算的是()
(A)573×101 ;(B)252×1001
(C)101×78;(D) 872×7×11×13
三、简算下列各题
(7)75×16
(8)981+5×9810+49×981
(9)25×77+55×14+15×77
(10)3333×2222÷6666
(11)8÷7+9÷7+11÷7
(12)5445÷55
(13)1440×976÷488
(14)5÷(7÷11)÷(11÷16)÷(16÷35)
(15)2014×2016—2013×2017。

相关文档
最新文档