数列中的存在性问题 经典

合集下载

高考数学二轮复习数列中的存在性问题

高考数学二轮复习数列中的存在性问题

n 答案:(1)an=2n-1;Tn= ; 2n+1 (2)m=2,n=12.
解析:(1)因为{an}是等差数列,由
(a1+a2n-1)(2n-1) 2 an=S2n-1= = 2
1 1 (2n-1)an.又因为 an≠0, 所以 an=2n-1.由 bn= = = anan+1 (2n-1)(2n+1) 1 1 1 1 1 1 1 1 1 ( - ) ,所以 T - ) = n = (1 - + - + … + 2 2n-1 2n+1 2 3 3 5 2n-1 2n+1 n . 2n+1
答案:不存在.
解析:∵p,q,r 成等差数列,∴p+r=2q.假设 ap-1,aq-1,ar -1 成等比数列, 则(ap-1)(ar-1)=(aq-1) , 即(2 -1)(2 -1)=(2 -1) , 化简得 2p+2r=2× 2q.(*)又因为 p,q,r 成等差数列,因为 p≠r,所以 2p +2r>2 2p× 2r=2× 2q,这与(*)式矛盾,故假设不成立.所以 ap-1,aq -1,ar-1 不是等比数列.
1 n m n (2)由(1)知,Tn= .所以 T1=3,Tm= ,Tn= .若 T1, 2n+1 2m+1 2n+1 m m 2 1 n n Tm,Tn 成等比数列,则( ) =3 ( ),即 2 = . 2m+1 2n+1 4m +4m+1 6n+3
2 - 2 m +4m+1 m 3 n 解法 1:由 2 = ,可得n= ,所以- 2 m 4m +4m+1 6n+3 2 2
答案:略.
解法 1 假设存在正整数 p,q,r(p<q<r),ap,aq,ar 成等差数列, 那么 2· 2 =2 +2 ,在等式两边同除以 2 ,得 2
q p r p q+1-p

数列存在性问题的分析与解答教案

数列存在性问题的分析与解答教案

数列存在性问题的分析与解答教案1.问题呈现题目:已知正项数列{}n a 的前n 项和为n S ,且(2)4n n n a a S +=*()n ∈N . (1)求1a 的值及数列{}n a 的通项公式;(2)是否存在非零整数λ,使不等式112111(1)(1)(1)cos 2n n a a a a πλ+--⋅⋅-<L 一切*n ∈N 都成立?若存在,求出λ的值;若不存在,说明理由.2.分析与解答分析:第(1)问根据数列通项()12n n n a S S n -=-≥很容易求出;关键是第(2)问中根据第(1)问的结论2n a n =,可得11cos cos(1)(1)2n n a n ππ++=+=-,则可考虑分离参数λ,令n b =n b 的单调性以确定n b 的最值.最后,需要考虑n 为奇数和偶数进行分类讨论. 解(1)由(2)4n n n a a S +=. 当1n =时,1111(2)4a a a S +==,解得12a =或10a =(舍去). 当2n ≥时, 由111(2)(2)44n n n n n n n a a a a a S S ---++=-=-22112()n n n n a a a a --⇒-=+, ∵0n a >,∴10n n a a -+≠,则12n n a a --=, ∴{}n a 是首项为2,公差为2的等差数列,故2n a n =.(2)由2n a n =,得11cos cos(1)(1)2n n a n ππ++=+=-,设n b =1(1)n n b λ+-<. 1n n b b +===1=>,∵0n b >,∴1n n b b +>,数列{}n b 单调递增.假设存在这样的实数λ,使得不等式1(1)n n b λ+-<对一切*n ∈N 都成立,则① 当n 为奇数时,得min 1()n b b λ<==;② 当n 为偶数时,得min 2()n b b λ-<==λ>.综上,(λ∈,由λ是非零整数,知存在1λ=±满足条件. 3.题后反思 针对这类数列的存在性问题,往往需要进行分类参数并构造数列,判断数列的单调性可用比商法或作差法,题目中出现三角函数往往要考虑其周期性,涉及()1n -往往需要对n 为奇数和偶数进行分类讨论.。

数列中的存在性问题 经典

数列中的存在性问题 经典

专题:数列中的存在性问题一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。

例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n nb b +-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵n S =235n n+,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴n a =62n +,又∵164n n b b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c n a b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。

如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。

微专题51数列中的存在性问题

微专题51数列中的存在性问题

微专题51 数列中的存在性问题例题:已知a n=2n,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等差数列?并说明理由.变式1已知a n=2n,是否存在三个互不相等正整数p,q,r,且p,q,r成等差数列,使得a p-1,a q-1,a r-1成等比数列?并说明理由.变式2已知a n=n+2,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等比数列?并说明理由.串讲1已知数列是各项均不为0的等差数列,S n为其前n项和,且满足a n2=S2n-1,令b n=1a n·a n+1,数列{b n}的前n项和{b n}为T n.(1)求数列{a n}的通项公式及数列{b n}的前n项和T n;(2)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,求出所有的m,n的值,若不存在,请说明理由.串讲2已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ; (2)若a 1=2,b n=2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.(2018·无锡期末)已知数列{a n }满足⎝ ⎛⎭⎪⎫1-1a 1⎝ ⎛⎭⎪⎫1-1a 2…⎝ ⎛⎭⎪⎫1-1a n =1a n,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若a p ,30,S q 成等差数列,a p ,18,S q 成等比数列,求正整数p ,q 的值; (3)是否存在k ∈N *,使得a k a k +1+16为数列{a n }中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.(2018·扬州期末)已知各项都是正数的数列{a n }的前n 项和为S n ,且2S n =a n 2+a n ,数列{b n }满足b 1=12,2b n +1=b n +b n a n.(1)求数列{a n },{b n }的通项公式; (2)设数列{c n }满足c n =b n +2S n,求和c 1+c 2+…+c n ;(3)是否存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,请说明理由.答案:(1)a n =n ,b n =n2n ;(2)12-1(n +1)2n +1;(3)存在,p =1,q =3,r =4.或p =2m +1-m -1,q =2m +1-m ,r =2m +1.解析:(1)2S n =a n 2+a n ①,2S n +1=a n +12+a n +1②,②-①得2a n +1=a n +12-a n 2+a n +1-a n ,即(a n +1+a n )(a n +1-a n -1)=0.1分 因为{a n }是正数数列,所以a n +1-a n -1=0,即a n +1-a n =1,所以{a n }是等差数列,其中公差为1,2分在2S n =a n2+an 中,令n =1,得a 1=1,所以a n =n ,由2b n +1=b n +b n a n 得b n +1n +1=12·b n n,所以数列⎩⎨⎧⎭⎬⎫b n n是等比数列,其中首项为12,公比为12,所以b n n =⎝ ⎛⎭⎪⎫12n ,即b n =n2n .(注:也可累乘求{b n }的通项.)3分(2)c n =b n +2S n=n +2(n 2+n )2n +1,裂项得c n =1n ·2n -1(n +1)2n +1,所以c 1+c 2+…+c n =12-1(n +1)2n +1.3分(3)假设存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列,则b p +b r =2b q ,即p2p +r 2r =2q 2q, 因为b n +1-b n =n +12n +1-n2n =1-n 2n +1,所以数列{b n }从第二项起单调递减,当p =1时,12+r 2r =2q2q , 若q =2,则r2r =12,此时无解;7分若q =3,则r2r =14,因为{b n }从第二项起递减,故r =4,所以p =1,q =3,r =4符合要求,若q ≥4,则b 1b q ≥b 1b 4≥2,即b 1≥2b q ,不符合要求,此时无解;9分当p ≥2时,一定有q -p =1,否则若q -p ≥2,则b pb q ≥b pb p +2=4p p +2=41+2p≥2,即b p≥2b q ,矛盾,11分所以q -p =1,此时r 2r =12p ,令r -p =m +1,则r =2m +1,所以p =2m +1-m -1,q=2m +1-m ,13分综上得,存在p =1,q =3,r =4或p =2m +1-m -1,q =2m +1-m ,r =2m +1满足要求.14分。

数列中项数问题

数列中项数问题

5
Ćo
Ć
Ć logĆo =o o Ć
Ć logĆo Ć t ,
依题意 ⺁ Ć ,
o o Ć Ć logĆo Ć t ⺁ Ć Ćo

即oĆ t 5Ćo t Ć Ć logĆo Ć ⺁ ,
o t Ć6 Ć 4 Ć logĆo ⺁ 4.
当 logĆo 时,即 o 时, o t Ć6 Ć 4 Ć logĆo 6Ć9
(q2 pr) (2q p r) 2 0 p,q,r N ,

q2 2q

pr 0, p r 0,

pr 2
2

pr,( p
r)2

0,
p

r

与 p r 矛盾.
所以数列 {bn } 中任意不同的三项都不可能成等比数列.
即 t Ć Ć ,
4t Ć ,
5 t 4 ĆĆ ,
…………
o t ot Ćot

所以当 o 时,
有 o t Ć Ć Ć ĆĆ
Ćot
otĆ
tĆotĆ tĆ
o t Ć ĆotĆ o t o

所以 o ĆotĆ o t o
.
又 , Ć Ć, 数列 o 的通项公式为: o ĆotĆ
, bn

1 4
( 2 )n1 .(2)见解析 3
【解析】(1)由题意可知, 1
a2 n1

2 3
(1
an2 )

cn 1 an2 ,则
cn1

2 3
cn

c1
1
a12

3 4
,则数列

一轮复习专题数列中的存在性问题

一轮复习专题数列中的存在性问题

专题:数列中的存在性问题学大苏分教研中心 周坤一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。

例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n n b b+-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵nS =235n n +,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴na =62n +,又∵164n nb b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c na b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。

如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。

数列中的存在性问题专题

数列中的存在性问题专题

数列中的存在性问题数列中的存在性问题一般转化为求不定方程正整数解的问题,往往涉及数论、函数、例题:已知a n=2n,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等差数列?并说明理由.变式1已知a n=2n,是否存在三个互不相等正整数p,q,r,且p,q,r成等差数列,使得a p-1,a q-1,a r-1成等比数列?并说明理由.变式2已知a n=n+2,是否存在正整数p,q,r(p<q<r),使得a p,a q,a r成等比数列?并说明理由.串讲1已知数列是各项均不为0的等差数列,S n 为其前n 项和,且满足a n 2=S 2n -1,令b n =1a n ·a n +1,数列{b n }的前n 项和{b n }为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n(1<m<n),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由.串讲2已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n+1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.(2018·无锡期末)已知数列{a n }满足⎝⎛⎭⎫1-1a 1⎝⎛⎭⎫1-1a 2…⎝⎛⎭⎫1-1a n =1a n,n ∈N *,S n 是数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若a p ,30,S q 成等差数列,a p ,18,S q 成等比数列,求正整数p ,q 的值;(3)是否存在k ∈N *,使得a k a k +1+16为数列{a n }中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.(2018·扬州期末)已知各项都是正数的数列{a n }的前n 项和为S n ,且2S n =a n 2+a n ,数列{b n }满足b 1=12,2b n +1=b n +b na n.(1)求数列{a n },{b n }的通项公式;(2)设数列{c n }满足c n =b n +2S n,求和c 1+c 2+…+c n ;(3)是否存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列?若存在,求出所有满足要求的p ,q ,r ,若不存在,请说明理由.答案:(1)a n =n ,b n =n 2n ;(2)12-1(n +1)2n +1;(3)存在,p =1,q =3,r =4.或p =2m +1-m -1,q =2m +1-m ,r =2m +1.解析:(1)2S n =a n 2+a n ①,2S n +1=a n +12+a n +1②,②-①得2a n +1=a n +12-a n 2+a n +1-a n ,即(a n +1+a n )(a n +1-a n -1)=0.1分因为{a n }是正数数列,所以a n +1-a n -1=0,即a n +1-a n =1,所以{a n }是等差数列,其中公差为1,2分在2S n =a n 2+a n 中,令n =1,得a 1=1,所以a n =n ,由2b n +1=b n +b n a n 得b n +1n +1=12·b nn,所以数列⎩⎨⎧⎭⎬⎫b n n是等比数列,其中首项为12,公比为12,所以b n n =⎝⎛⎭⎫12n ,即b n =n2n .(注:也可累乘求{b n }的通项.)3分(2)c n =b n +2S n =n +2(n 2+n )2n +1,裂项得c n =1n ·2n -1(n +1)2n +1,所以c 1+c 2+…+c n =12-1(n +1)2n +1.3分(3)假设存在正整数p ,q ,r (p <q <r ),使得b p ,b q ,b r 成等差数列,则b p +b r =2b q ,即p2p+r 2r =2q 2q , 因为b n +1-b n =n +12n +1-n 2n =1-n 2n +1,所以数列{b n }从第二项起单调递减,当p =1时,12+r2r=2q2q , 若q =2,则r 2r =12,此时无解;7分若q =3,则r 2r =14,因为{b n }从第二项起递减,故r =4,所以p =1,q =3,r =4符合要求,若q ≥4,则b 1b q ≥b 1b 4≥2,即b 1≥2b q ,不符合要求,此时无解;9分 当p ≥2时,一定有q -p =1,否则若q -p ≥2,则b p b q ≥b p b p +2=4p p +2=41+2p ≥2,即b p ≥2b q ,矛盾,11分所以q -p =1,此时r 2r =12p ,令r -p =m +1,则r =2m +1,所以p =2m +1-m -1,q =2m+1-m ,13分综上得,存在p =1,q =3,r =4或p =2m +1-m -1,q =2m +1-m ,r =2m +1满足要求.14分例题答案:略.解法1假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列,那么2·2q =2p +2r,在等式两边同除以2p ,得2q +1-p =1+2r -p,因为p ,q ,r 是正整数,且p<q<r ,所以q +1-p ,r -p 都是正整数,所以2q +1-p ,2r -p 都是偶数,所以2r -p +1是奇数,所以2q +1-p=1+2r -p不可能成立,所以不存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列.解法2假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列,那么2·2q =2p +2r,在等式两边同除以2q,得2=2p -q+2r -q=12q -p+2r -q,所以2-2r -q=12q -p,因为p ,q ,r 是正整数,且p<q<r ,所以2q -p,2r -q都是正整数,所以12q -p 是真分数,所以2-2r -q=12q -p 不可能成立,所以不存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列.解法3假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列,那么2·2q =2p +2r,在等式两边同除以2q得2=2p -q+2r -q=12q -p +2r -q ,所以2-2r -q=12q -p ,因为p ,q ,r 是正整数,且p<q<r ,所以r -q≥1,q -p>0,所以2-2r -q≤0,12q -p>0.所以2-2r -q=12q -p 不可能成立,所以不存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等差数列.变式联想变式1答案:不存在.解析:∵p,q ,r 成等差数列,∴p +r =2q.假设a p -1,a q -1,a r -1成等比数列,则(a p -1)(a r -1)=(a q -1)2,即(2p -1)(2r -1)=(2q -1)2,化简得2p +2r =2×2q.(*)又因为p ,q ,r 成等差数列,因为p≠r,所以2p+2r>22p×2r=2×2q,这与(*)式矛盾,故假设不成立.所以a p -1,a q -1,a r -1不是等比数列.变式2答案:不存在. 解析:假设存在正整数p ,q ,r(p<q<r),a p ,a q ,a r 成等比数列,所以(q +2)2=(p+2)(r +2).所以(q 2-pr)+(2q -p -r)2=0.因为p ,q ,r 都是正整数.所以⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,消去q 化简可得p =r ,这与p<q<r 矛盾.所以不存在正整数p ,q ,r(p<q<r),使得a p ,a q ,a r 成等比数列.说明:在处理多元方程整数解时,主要考虑因素是等式两边的“范围”是否一致,比如:正数与负数,有理数与无理数,整数与分数,奇数与偶数,等得到矛盾,进而判断方程无解;也根据等式一侧范围来限定另一侧范围,进而得到整数方程的解.串讲激活串讲1答案:(1)a n =2n -1;T n =n2n +1; (2)m =2,n =12.解析:(1)因为{a n }是等差数列,由a n 2=S 2n -1=(a 1+a 2n -1)(2n -1)2=(2n -1)a n .又因为a n ≠0,所以a n =2n -1.由b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1),所以T n =12(1-13+13-15+…+12n -1-12n +1)=n2n +1. (2)由(1)知,T n =n 2n +1.所以T 1=13,T m =m 2m +1,T n =n 2n +1.若T 1,T m ,T n 成等比数列,则(m 2m +1)2= 13(n 2n +1),即m 24m 2+4m +1=n 6n +3. 解法1:由m 24m 2+4m +1=n 6n +3,可得3n=-2m 2+4m +1m 2,所以-2m 2+4m +1>0,从而1-62<m<1+62,又m∈N *,且m >1,所以m =2.此时n =12.故当且仅当m =2,n =12,数列{T n }中的T 1,T m ,T n 成等比数列.解法2:因为n 6n +3=16+3n<16,故m 24m 2+4m +1<16,即2m 2-4m -1<0,从而1-62<m <1+62,(以下同解法一).串讲2答案:(1)B n =12n 2+32n ;(2)不存在.解析:(1)因为A n =n 2,所以当n =1时,a 1=1,当n≥2时,a n =n 2-(n -1)2=2n -1,又a 1符合a n ,所以a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n·2+12·n·(n-1)·1=12n 2+32n.(2)由a n +1-a n =2(b n +1-b n )得a n +1-a n =2n +1,所以,当n≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2,当n =1时,上式也成立,所以A n =2n +2-4-2n ,又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n2n-1,假设存在两个互不相等的整数s ,t(1<s<t),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t2t -1成等差数列,即2s 2s -1=121-1+t 2t-1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h(s)=2s-2s -1(s≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0,所以h (s )递增,若s ≥3,则h (s )≥h (3)=1>0,不满足2s<2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t-3t -1=0(t ≥3),当t =3时,显然不符合要求;当t ≥4时,令φ(t )=2t-3t -1(t ≥3,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A tB t成等差数列.新题在线答案:(1)a n =n +1;(2)p =5,q =9;(3)3或14.解析:(1)因为(1-1a 1)(1-1a 2)…(1-1a n )=1a n ,n ∈N *,所以当n =1时,1-1a 1=1a 1,a 1=2,当n ≥2时,由(1-1a 1)(1-1a 2)…(1-1a n )=1a n 和(11-a 1)(1-1a 2)…(1-1a n -1)=1a n -1,两式相除可得,1-1a n =a n -1a n ,即a n -a n -1=1(n ≥2).所以,数列{a n }是首项为2,公差为1的等差数列.于是,a n =n +1.(2)因为a p ,30,S q 成等差数列,a p ,18,S q 成等比数列,所以⎩⎪⎨⎪⎧a p +S q =60,a p S q =182,于是⎩⎪⎨⎪⎧a p =6,S q =54或⎩⎪⎨⎪⎧a p =54,S q =6.当⎩⎪⎨⎪⎧a p =6,S q =54时,⎩⎪⎨⎪⎧p +1=6,(q +3)q2=54,解得⎩⎪⎨⎪⎧p =5,q =9,当⎩⎪⎨⎪⎧a p =54,S q =6时,⎩⎪⎨⎪⎧p +1=54,(q +3)q 2=6,无正整数解,所以p =5,q =9.(3)假设存在满足条件的正整数k ,使得a k a k +1+16=a m (m ∈N *),则(k +1)(k +2)+16=m +1,平方并化简得,(2m +2)2-(2k +3)2=63,则(2m+2k +5)(2m -2k -1)=63,所以⎩⎪⎨⎪⎧2m +2k +5=63,2m -2k -1=1或⎩⎪⎨⎪⎧2m +2k +5=21,2m -2k -1=3 或⎩⎪⎨⎪⎧2m +2k +5=9,2m -2k -1=7,解得m =15,k =14或m =5,k =3,m =3,k =-1(舍去),综上所述,k =3或14.。

聚焦数列存在性问题

聚焦数列存在性问题

青 睐.本文将 结合具体实例 谈一谈数列 存在性问题
在 高考中的几 种主要类型及 其求解策略 ,供大家参 考.
1.参数的存在性问题
例 1 ﹙2006 年山东高考题﹚已知数列 {a n} 中,
a1
=
1 2
,点 ( n,2a n+1
a n ) 在直线 y = x 上,其中 n = 1 ,
2 , 3 , .(1)令 bn = a n+1 a n 1 ,求证:数列 {bn}
(3)假设 存在实数 λ,使数列
S n
+ λTn
n
是 等差
数列.
数列 Sn + λTn 是等差数列的充要条件是 n
Sn
+ λTn n
=
xn +
y( x, y ∈R)
,即
S n
+
λTn
=
xn 2
+
yn

n
( ) ∑ 又 Sn = a1 + a2 + + an = 3×2 i + i 2 = i =1
( ) 3×2 1 1 2 n
bn =
3
1
n1
=
3×2 n 1 ,
42
n
n
∑ ∑ Tn = bi = ( ai+1 ai 1) = an+1 a1 n
i =1
i =1
n
( ) 3×2 2 1 2 1 n
( ) ∑ =
3×2 i 1 =
i =1
1 21
( ) = 3 2 n 1 2 1 ,
故 a n+1 = 3×2 n 1 + n 1 , 从而 a n = 3×2 n + n 2 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:数列中的存在性问题一、单存在性变量解题思路:该类问题往往和恒成立问题伴随出现(否则就是一个方程有解问题,即零点问题),可以先假设存在,列出一个等式,通过化简,整理成关于任意性变量(一般为n )的方程,然后n 的系数为0,构造方程,进而解出存在性变量,最后检验。

例1、已知数列{na }的前n 项和为n S =235n n +,在数列{n b }中,1b =8,164n nb b +-=0,问是否存在常数c 使得对任意n ,log n c na b +恒为常数M ,若存在求出常数c 和M ,若不存在说明理由.解析:假设存在常数c 使得对任意n ,log n c na b +恒为常数M ,∵n S =235n n+,∴当n =1时,则1a =1S =8,当n ≥2时,n a =1n n S S --=2235[3(1)5(1)]n n n n +--+-=62n +,当n =1适合, ∴n a =62n +,又∵164n n b b +-=0, ∴1n n b b +=164,∴数列{n b}是首项为8,公比为164的等比数列, ∴nb =118()64n -=962n -,则log n c n a b +=9662log 2n c n -++=62(96)log 2a n n ++-=6(1log 2)29log 2a a n -++,又∵对任意n ,log n c na b +恒为常数M ,∴6(1log 2)a -=0,解得c =2,∴M =29log 2a +=11,∴存在常数c =2使得对任意n ,log n c na b +恒为常数M =11.二、双存在型变量解题思路:先假设存在,根据题目条件,列出一个含有两个变量(一般至少都为正整数)的等式,即转化为一个数论中的双整数问题,然后分离变量。

如果可以分离常数,则利用数论中约数的知识列出所有可能情况,最后进行双检验,即对两个变量均进行条件检验;如果不可以分离常数,则利用分离出的变量所具有的隐含范围(如大于0)消元,进而构造一个不等式,解出另一个变量的范围,再列出求出的被压缩的范围里的所有整数值,分别求出对应的另一个存在性变量,最后进行检验。

例2、【2010南通一模】设等差数列{}n a 的前n 项和为n S ,且5133349a a S +==,. (1)求数列{}n a 的通项公式及前n 项和公式;(2)设数列{}n b 的通项公式为nn n a b a t=+,问: 是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由. 【解】(1)设等差数列{}n a 的公差为d. 由已知得51323439a a a +=⎧⎨=⎩,, ………………2分 即118173a d a d +=⎧⎨+=⎩,,解得112.a d =⎧⎨=⎩,……………………………………………………………4分.故221n n a n S n =-=,.…………………………………………………………………6分(2)由(1)知2121n n b n t -=-+.要使12m b b b ,,成等差数列,必须212m b b b =+,即312123121m t t m t -⨯=+++-+,………………………………………………………………8分. (3)整理得431m t =+-,…………………………………………………………… 11分因为m ,t 为正整数,所以t 只能取2,3,5.当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.故存在正整数t ,使得12m b b b ,,成等差数列. ……………………………… 15分例3、设数列{}n a 的前n 项和2n S n =,数列{}n b 满足*()nn n a b m N a m=∈+.(Ⅰ)若128,,b b b 成等比数列,试求m 的值;(Ⅱ)是否存在m ,使得数列{}n b 中存在某项t b 满足*14,,(,5)t b b b t N t ∈≥成等差数列?若存在,请指出符合题意的m 的个数;若不存在,请说明理由.解:(Ⅰ)因为2n S n =,所以当2n ≥时,121n n n a S S n -=-=-……………………3分又当1n =时,111a S ==,适合上式,所以21n a n =-(*n N ∈)…………………4分所以2121n n b n m -=-+,则1281315,,1315b b b m m m ===+++,由2218b b b =,得23115()3115m m m =⨯+++,解得0m =(舍)或9m =,所以9m =………………7分 (Ⅱ)假设存在m ,使得*14,,(,5)t b b b t N t ∈≥成等差数列,即412t b b b =+,则712127121t m m t m -⨯=+++-+,化简得3675t m =+-…………………………………12分 所以当51,2,3,4,6,9,12,18,36m -=时,分别存在43,25,19,16,13,11,10,9,8t =适合题意, 即存在这样m ,且符合题意的m 共有9个 ………………………………………14分例4、【2010徐州三模】已知数列{}n a 是各项均不为0的等差数列,nS 为其前n 项和,且满足221n n a S -=,令11n n n b a a +=⋅,数列{}n b 的前n 项和为n T .(1)求数列{}n a 的通项公式及数列{}n b 的前n 项和为n T ;(2)是否存在正整数,m n (1)m n <<,使得1,,m n T T T 成等比数列?若存在,求出所有的,m n 的值;若不存在,请说明理由.解:(1)因为{}n a 是等差数列,由212121()(21)(21)2n n n na a n a S n a --+-===-,又因为0n a ≠,所以21n a n =-,………………………………………………………2分由111111()(21)(21)22121n n n b a a n n n n +===--+-+所以111111(1)2335212121n n T n n n =-+-++-=-++L .……………………………6分 (2)由(1)知,21n n T n =+, 所以11,,32121m n m nT T T m n ===++,若1,,m n T T T 成等比数列,则21()()21321m nm n =++,即2244163m n m m n =+++.……8分 解法一:由2244163m n m m n =+++,可得223241m m n m -++=,所以22410m m -++>, ……………………………………………………………12分从而:11m <<+,又m ∈N ,且1m >,所以2m =,此时12n =.故可知:当且仅当2m =, 12n =使数列{}n T 中的1,,m n T T T成等比数列。

…………16分解法二:因为1136366n n n =<++,故2214416m m m <++,即22410m m --<,………12分从而:1122m -<<+,(以下同上).三、三个存在型变量------连续的解题思路:这类问题的形式一般是,“是否存在连续的三项,恰好成等差数列(或等比数列)”。

可以先假设存在,然后构造一个关于单存在性变量的方程,即转化为一个方程有正整数根的问题,我们可以按照处理零点问题的方法(“解方程”或者“画图像”)求解。

例5、【扬州2010一模】已知数列{}n a ,(0,0,,,0,*)n n n a p q p q p q R n N λλλ=+>>≠∈≠∈.⑴求证:数列1{}n n a pa +-为等比数列;⑵数列{}n a 中,是否存在连续的三项,这三项构成等比数列?试说明理由;⑶设{(,)|3,*}n n n n A n b b k n N ==+∈,其中k 为常数,且k N *∈,{(,)|5,*}n n n B n c c n N ==∈,求A ∩B.解:⑴∵n a =n n p q λ+,∴111()()n n n n n n n a pa p q p p q q q p λλλ+++-=+-+=-,∵0,0,q p q λ≠>≠∴211n n n n a pa qa pa +++-=-为常数∴数列1{}n n a pa +-为等比数列------------------------------------------------------------4分⑵取数列{}n a 的连续三项12,,(1,)n n n a a a n n N *++≥∈,∵211222212()()()()n n n n n n n n n n n a a a pq p q p q p q p q λλλλ++++++-=+-++=--,0,0,,0p q p q λ>>≠≠Q ,∴2()0n n p q p q λ--≠,即212n n n a a a ++≠,∴数列{}n a 中不存在连续三项构成等比数列; ------------------------------------------9分⑶当1k =时,3315n n n nk +=+<,此时B C =∅I ;当3k =时,33323n n n n nk +=+=⋅为偶数;而5n 为奇数,此时B C =∅I ;当5k ≥时,35n n nk +>,此时B C =∅I ;----------------------------------------------12分当2k =时,325n n n+=,发现1n =符合要求, 下面证明唯一性(即只有1n =符合要求)。

由325n n n+=得32()()155n n+=,设32()()()55x x f x =+,则32()()()55x xf x =+是R 上的减函数, ∴ ()1f x =的解只有一个从而当且仅当1n =时32()()155n n +=,即325n n n+=,此时{(1,5)}B C =I ;当4k =时,345nnn+=,发现2n =符合要求, 下面同理可证明唯一性(即只有2n =符合要求)。

从而当且仅当2n =时34()()155n n +=,即345n n n+=,此时{(2,25)}B C =I ;综上,当1k =,3k =或5k ≥时,B C =∅I ; 当2k =时,{(1,5)}B C =I ,当4k =时,{(2,25)}B C =I 。

相关文档
最新文档