2020年高三数学大串讲第19讲(数列单调性、奇偶项、存在性问题)(原卷版)
专题7 函数的奇偶性和周期性-2020年江苏省高考数学考点探究(原卷版)

专题7 函数的奇偶性和周期性专题知识梳理1.奇、偶函数的定义对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),则称f(x)为奇函数;对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x)(或f(-x)-f(x)=0),则称f(x)为偶函数.2.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含0,则f(0)=__0__.(4)若函数f(x)是偶函数,则有__f(|x|)=f(x)__.(5)奇函数在对称区间上的单调性__相同__,偶函数在对称区间上的单调性__相反__.3.周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.注1:函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.注2:函数周期性常用结论对f(x)定义域内任一自变量的值x,(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).考点探究考向1 判断函数的奇偶性【例】判断下列函数的奇偶性:(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3; (4)f (x )=⎩⎪⎨⎪⎧x 2+x (x <0)-x 2+x (x >0); (5)f (x )=x 2-|x -a |+2.题组训练1.下列函数中为偶函数的是________.①y =1x②y =lg|x | ③y =(x -1)2 ④y =2x2.下面的定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是________.3.(易错题)试判断函数()f x =的奇偶性.考向2 函数奇偶性与单调性的综合应用【例1】(1)若函数f(x)=xln(x+√a+x2)为偶函数,则a=______.(2)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x−1)>0,则x的取值范围是______.【例2】(1) 设函数f(x)=a·2x+a-22x+1(x∈R)为奇函数,求实数a的值;(2) 设函数f(x)是定义在(-1,1)上的偶函数,在(0,1)上是增函数,若f(a-2)-f(4-a2)<0,求实数a的取值范围.题组训练1.设函数f(x)=(x+1)(2x+3a)为偶函数,则a=______ .2.已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(−1)=______.3.已知f(x)是定义在R 上的偶函数,且在区间(−∞,0)上单调递增,若实数a 满足f(2|a−1|)>f(−√2),则a 的取值范围是______.4.若函数f(x)={x(x −b),x ≥0ax(x +2),x <0(a,b ∈R)为奇函数,则a +b 的值为______.5.设f(x)=log 21−ax x−1−x 为奇函数,a 为常数.(1)求a 的值;(2)判断并证明函数f(x)在x ∈(1,+∞)时的单调性;(3)若对于区间[2,3]上的每一个x 值,不等式f(x)>2x +m 恒成立,求实数m 取值范围.考向3 函数的奇偶性与周期性的综合应用【例1】定义在R 上的奇函数f(x)有最小正周期4,且x∈(0,2)时,f(x)=3x9x +1.求f(x)在[-2,2]上的解析式.【例2】(2019·江苏卷)设f(x),g(x)是定义在R 上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x ∈(0,2]时,f(x)=√1−(x −1)2,g(x)={k(x +2),0<x ≤1,−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程f(x)=g(x)有8个不同的实数根,则k 的取值范围是______.题组训练1.若f(x)是周期为2的奇函数,当x ∈(0,1)时,f(x)=x 2−8x +30,则f(√10)=______.2.奇函数f(x)的周期为4,且x ∈[0,2],f(x)=2x −x 2,则f(2018)+f(2019)+f(2020)的值为________.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.4.(拔高题)设函数f (x )的定义域关于原点对称,且满足:① f (x 1-x 2)=1221()()1()()f x f x f x f x +- (x 1≠x 2);② 存在正常数a ,使得f (a )=1. 求证:(1) f (x )是奇函数;(2) f (x )是周期为4a 的周期函数.。
2020年高考数学(理)二轮复习命题考点串讲系列-专题19 排列、组合、二项式定理(含答案解析)

2020年高考数学(理)二轮复习命题考点串讲系列-专题19 排列、组合、二项式定理1、考情解读1.排列、组合与二项式定理每年交替考查,主要以选择、填空的形式出现,试题难度中等或偏易.2.排列、组合试题具有一定的灵活性和综合性,常与实际相结合,转化为基本的排列组合模型解决问题,需用到分类讨论思想,转化思想.3.与二项式定理有关的问题比较简单,但非二项问题也是今后高考的一个热点,解决此类问题的策略是转化思想.2、重点知识梳理 1.两个重要公式 (1)排列数公式 A m n =n !n -m !=n (n -1)(n -2)…(n -m +1)(n ,m ∈N *,且m ≤n ).(2)组合数公式 C m n =n !m !n -m !=nn -1n -2…n -m +1m !(n ,m ∈N *,且m ≤n ).2.三个重要性质和定理 (1)组合数性质①C m n =C n -m n (n ,m ∈N *,且m ≤n );②C m n +1=C m n +C m -1n (n ,m ∈N *,且m ≤n );③C 0n =1. (2)二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+C 2n a n -2b 2+…+C k n a n -k ·b k +…+C n n b n ,其中通项T r +1=C r n an -r b r . (3)二项式系数的性质①C 0n =C n n ,C 1n =C n -1n ,…,C r n =C n -r n ;②C 0n +C 1n +C 2n +…+C n n =2n;③C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1. 3、高频考点突破 考点1 排列与组合例1.【2017课标II ,理6】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【变式探究】【2016年高考四川理数】用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为(A )24 (B )48 (C )60 (D )72 【答案】D【解析】由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有44A 种排法,所以奇数的个数为443A 72 ,故选D.【变式探究】(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个解析 由题意,首位数字只能是4,5,若万位是5,则有3×A 34=72个;若万位是4,则有2×A 34个=48个,故40 000大的偶数共有72+48=120个.选B.答案 B考点二 排列组合中的创新问题例2.用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)解析 分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a +a 2+a 3+a 4+a 5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b 5)种不同取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球中任取0个,1个,…,5个,有(1+c )5种不同的取法,所以所求的取法种数为(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5,故选A.答案 A【变式探究】设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .130答案 D考点三 二项展开式中项的系数例3.【2016年高考北京理数】在6(12)x 的展开式中,2x 的系数为__________.(用数字作答)【答案】60.【解析】根据二项展开的通项公式16(2)r r r r T C x +=-可知,2x 的系数为226(2)60C -=。
2020年高考数学一轮复习《函数的性质—奇偶性、单调性、周期性》

2020年高考数学一轮复习《函数的性质—奇偶性、单调性、周期性》考纲解读1.理解函数的单调性、最大值、最小值及其几何意义,会利用单调性解决函数的最值问题.2.结合具体函数,了解函数奇偶性的含义.3.会利用函数的图像理解和研究函数的性质.命题趋势研究有关函数性质的高考试题,考查重点是求函数的单调区间,利用函数单调性求函数的最值(值域)、比较大小及求解函数不等式.函数奇偶性的判断及其应用是常考知识点,常与函数的单调性、周期性、对称性、最值等结合综合考查.知识点精讲函数奇偶性定义设D D x x f y (),(∈=为关于原点对称的区间),如果对于任意的D x ∈,都有)()(x f x f =-,则称函数)(x f y =为偶函数;如果对于任意的D x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数.性质(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数)(x f 是偶函数⇔函数)(x f 的图象关于y 轴对称;函数)(x f 是奇函数⇔函数)(x f 的图象关于原点中心对称.(3)若奇函数)(x f y =在0=x 处有意义,则有0)0(=f ;偶函数)(x f y =必满足|)(|)(x f x f =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数)(x f 的定义域关于原点对称,则函数)(x f 能表示成一个偶函数与一个奇函数的和的形式.记)]()([21)(x f x f x g -+=,)]()([21)(x f x f x h --=,则)()()(x h x g x f +=. (6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如)()(),()(),()(),()(x g x f x g x f x g x f x g x f ÷⨯-+.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶;奇)(÷⨯偶=奇;偶)(÷⨯偶=偶.(7)复合函数)]([x g f y =的奇偶性原来:内偶则偶,两奇为奇.函数的单调性定义一般地,设函数)(x f 的定义域为D ,区间D M ⊆,若对于任意的M x x ∈21,,当21x x <时,都有)()(21x f x f <(或)()(21x f x f >),则称函数)(x f 在区间M 上是单调递增(或单调递减)的,区间M 为函数)(x f 的一个增(减)区间.注:定义域中的M x x ∈21,具有任意性,证明时应特别指出“对于任意的M x x ∈21,”. 单调性是针对定义域内的某个区间讨论的.熟练掌握增、减函数的定义,注意定义的如下两种等价形式:设],[,21b a M x x =∈且21x x <,则)(0)()(2121x f x x x f x f ⇔>--在],[b a 上是增函数⇔过单调递增函数图象上任意不同两点的割线的斜率恒大于零⇔0)]()()[(2121>--x f x f x x .)(0)()(2121x f x x x f x f ⇔<--在],[b a 上是减函数⇔过单调递减函数图象上任意不同两点的割线的斜率恒小于零⇔0)]()()[(2121<--x f x f x x .性质对于运算函数有如下结论:在公共区间上,增+增=增;减+减=减;增-减=增;减-增=减. 一般地,对于乘除运算没有必然的结论.如“增×增=增”不一定成立;“若)(x f 为增函数,则)(1x f 为减函数”也是错误的.如)0,()(≠∈=x R x x x f ,则xx f y 1)(1==为减函数是不正确的,但若具备如下特殊要求,则结论成立:若)(x f 为增函数,且(0)(>x f 或)(x f 0<),则)(1x f 为减函数. 若)(x f 为减函数,且(0)(>x f 或)(x f 0<),则)(1x f 为增函数. 复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.函数的周期性定义设函数))((D x x f y ∈=,如存在非零常数T ,使得对任何D T x D x ∈+∈,,且)()(x f T x f =+,则函数)(x f 为周期函数,T 为函数的一个周期.若在所有的周期中存在一个最小的正数,则这个最小的正数叫做最小正周期.注:函数的周期性是函数的“整体”性质,即对于定义域D 中的任何一个x ,都满足)()(x f T x f =+;若)(x f 是周期函数,则其图像平移若干整数个周期后,能够完全重合. 性质若)(x f 的周期为T ,则)0,(≠∈n Z n nT 也是函数)(x f 的周期,并且有)()(x f nT x f =+. 有关函数周期性的重要结论(如表所示) ()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T Tf a x f a x b a f b x f b x f a x f a x af x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x af x f a x f a x b a f b x f b x f a x f a x af x f a x f a x a f x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数函数的的对称性与周期性的关系(1)若函数)(x f y =有两条对称轴)(,b a b x a x <==,则函数)(x f 是周期函数,且)(2a b T -=;(2)若函数)(x f y =的图象有两个对称中心))(,(),,(b a c b c a <,则函数)(x f y =是周期函数,且)(2a b T -=;(3)若函数)(x f y =有一条对称轴a x =和一个对称中心))(0,(b a b <,则函数)(x f y =是周期函数,且)(4a b T -=.题型归纳及思路提示题型16 函数的奇偶性思路提示:判断函数的奇偶性,常用以下两种方法:(1)定义法.①首先看定义域是否关于原点对称;②若)()(x f x f -=-,则函数)(x f 为奇函数;若)()(x f x f =-,则函数)(x f 为偶函数.(2)图像法.根据函数图像的对称性进行判断,若函数)(x f 的图像关于原点中心对称,则)(x f 为奇函数;若函数)(x f 的图像关于y 轴对称,则)(x f 为偶函数.【例2.25】判断下列函数的奇偶性.(1)3|3|36)(2-+-=x x x f ; (2)11)(22-+-=x x x f ;(3))1(log )(22++=x x x f ;(4)2|2|)1(log )(22---=x x x f ; (5)⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f .解析 (1)由3|3|36)(2-+-=x x x f 可知⎩⎨⎧-≠≠≤≤-⇒⎩⎨⎧≠-+≥-606603|3|0362x x x x x 且,故函数)(x f 的定义域为}6006|{≤<<<-x x x 或,定义域不关于原点对称,故)(x f 为非奇非偶函数.(2)由110101222±=⇒=⇒⎩⎨⎧≥-≥-x x x x ,故函数)(x f 的定义域为}1,1{-,关于原点对称,故0)(=x f ,所以)()()(x f x f x f -==-,所以函数)(x f 既是奇函数又是偶函数.(3)因为对任意实数x ,都有0||12≥+>++x x x x ,故定义域为R.且)()1(log 11(log )1(log )(222222x f x x x x x x x f -=++-=++=-+=-),故)(x f 为奇函数. (4)由100102|2|012<<<<-⇒⎩⎨⎧≠-->-x x x x 或,定义域关于原点对称. 此时,xx x x x f --=---=)1(log 2|2|)1(log )(2222,故有)()(x f x f -=-,所以)(x f 为奇函数. (5)当0<x 时,)()(,02x f x x x f x -=--=->-;当0>x 时,)()(,02x f x x x f x -=-=-<-.故)(x f 为奇函数.评注 利用定义判断函数的奇偶性要注意以下几点:①首先必须判断)(x f 的定义域是否关于原点对称.若不关于原点对称,则是非奇非偶函数.若关于原点对称,则对定义域任意x 说明满足定义.若否定奇偶性只需有一个自变量不满足. ②有些函数必须根据定义域化简解析式后才可判断,否则可能无法判断或判断错误,如本例(2),若不化简可能误判为偶函数,而本例(4)可能误判为非奇非偶函数.③本例(3)若用奇偶性的等价形式,则01log )1(log )1(log )()(22222==+++-+=+-x x x x x f x f ,即)()(x f x f -=-,故)(x f 为奇函数,显然,等价形式的整理较定义法更为容易.这提醒我们,在函数解析式较复杂时,有时使用等价形式来判断奇偶性较为方便.变式1:判断下列函数的奇偶性.(1)xx x x f -+-=11)1()(; (2)24|3|3)(x x x f -+-=; (3)⎪⎩⎪⎨⎧>-≤≤--<+=)1(2)11(0)1(2)(x x x x x x f ;(4)|2||2|)(++-=x x x f .解析 (1)函数()(f x x =-的定义域为{|11}x x -≤<,其定义域不关于原点对称,故函数()f x 为非奇非偶函数.(2)函数()f x =-2,2),其定义域关于原点对称,又函数()f x ==()()f x f x -=-,故()f x 函数为奇函数.(3)解法一:设1x <-,则1,()2()x f x x f x ->-=--=-,同样当11x -≤≤时,()()f x f x -=-,故()f x 函数为奇函数.解法二:(图象法)函数()f x 的图象如图2-42所示,知函数()f x 为奇函数.(4)函数()f x 的定义域为R ,关于原点对称,又()|2||2||2||-2|=()f x x x x x f x -=--+-+=++,故函数()f x 为偶函数.变式2:已知函数2lg )2lg()(2-++=x x x f ,试判断其奇偶性.解析 函数的定义域为R,又222()()lg()02x x f x f x +--+===,故函数()f x 为奇函数.【例2.26】已知函数),0()(2R x x xa x x f ∈≠+=,试判断其奇偶性. 分析 利用函数奇偶性的定义进行判断.解析 当0=a 时,2)(x x f =,满足)()(x f x f =-,故)(x f 为偶函数;当0≠a 时,xa x x f x a x x f -=-+=22)(,)(,假设)()(x f x f =-对任意R x ∈,0≠x 恒成立,则此时0=a ,与前提矛盾;假设)()(x f x f -=-对任意R x ∈,0≠x 恒成立,则此时022=x ,即0=x ,与条件定义域},0|{R x x x ∈≠矛盾.综上所述,当0=a 时,)(x f 为偶函数;当0≠a 时,函数)(x f 为非奇非偶函数.评注 ①函数)(x f 是奇函数⇔0)()(=-+x f x f ;函数)(x f 是偶函数0)()(=--⇔x f x f .奇偶函数的前提是函数的定义域关于原点对称.②若要说明一个函数为非奇非偶函数,可以举一个反例.③本题的结论还可以借用运算函数的的奇偶性的规律获得,已知函数是一个由2x 与x a 通过加法法则运算得到的函数,而2x y =为偶函数,)0(≠=a xa y 为奇函数,故当0≠a 时,)(x f 为“偶+奇”形式,故为非奇非偶函数;当0=a 时,则2)(x x f =为偶函数.变式1:函数)()1221()(x f x F x ⋅-+=是偶函数,并且)(x f 不等于零,则)(x f 是( ) A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数解析 可证明2()1()21x g x f x =+⋅-为奇函数,要使2()(1)()21x F x f x =+⋅-是偶函数,由运算函数的奇偶性规律可知,()f x 是奇函数,故选A.变式2:对于函数R x x f y ∈=),(,“|)(|x f y =的图象关于y 轴对称”是“)(x f 是奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 若函数()y f x =是奇函数,则()()f x f x -=-,此时,|()||()||(f x f x f x -=-=,因此|()|y f x =是偶函数,其图象关于y 轴对称,但当|()|y f x =的图象关于y 轴对称时,未必推出()y f x =是奇函数,如2y x =是偶函数,且22|()|||y f x x x ===,其图象关于y 轴对称,并非奇函数,故“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”的必要不充分条件.故选B.【例 2.27】定义在实数集上的函数)(x f ,对任意R y x ∈,都有)()(2)()(y f x f y x f y x f =-++,且0)0(≠f ,试判断)(x f 的奇偶性.分析 对于抽象函数的奇偶性判断通常利用赋值法得到)(x f 与)(x f -的关系.解析 由函数定义域为R 可知定义域关于原点对称.依题意可令0,0==y x ,得2)]0([2)0(2f f =,因为0)0(≠f ,所以1)0(=f .令0=x ,可得)(2)()(y f y f y f =-+,即)()(y f y f -=,所以)()(x f x f -=,故函数)(x f 为偶函数.评注 对于抽象函数奇偶性的判断,常通过赋值法(如令1,1,0-=x 等)凑成含有)(x f 与)(x f -的关系的式子,然后进行判断.变式1:已知函数)(x f 在R 上有定义,且对任意R y x ∈,都有)()()(y f x f y x f +=+,试判断)(x f 的奇偶性.解析 令0x y ==,得(0)2(0),(0)f f f ==,令y x =-,得0=()+()0,()f f x f x f x f x-=-=-(),所以函数()y f x =是奇函数. 变式2:若定义在R 上的函数)(x f 满足对任意R x x ∈21,有1)()()(2121++=+x f x f x x f ,则下列说法正确的是( )A.)(x f 是奇函数B.)(x f 是偶函数C.)(x f +1为奇函数D.)(x f +1为偶函数 解析 解法一:由12,x x R ∈有1212()()()1f x x f x f x +=++, 设12,x x x x ==-,则(0)()()11f f x f x =+-+=-,所以()1()1[f x f x f x +=---=-(-)+1],令()()1F x f x =+,故()()1[()1]F(x)F x f x f x -=-+=-+=-,所以()()1F x f x =+是奇函数,故选C.变式3:已知函数)(x f 在)1,1(-上有定义,且对任意)1,1(,-∈y x 都有)1()()(xyy x f y f x f ++=+,试判断函数)(x f 的奇偶性. 分析 对于抽象函数的奇偶性判断通常利用赋值法,如令0x y ==转化.解析 由于()()()1x y f x f y f xy ++=+,令0x y ==,得2(0)(0)f f =,即(0)0f =;令y x =-,则()()(0)0f x f x f +-==,所以()()f x f x -=-,故()f x 为奇函数. 变式4:已知)(x f ,)(xg 在R 上有定义,对任意的R y x ∈,,有)()()()()(y f x g y g x f y x f -=-,且0)1(≠f .(1)求证:)(x f 为奇函数;(2)若)2()1(f f =,求)1()1(-+g g 的值.解析 解法一:令0x y ==,则(0)(0)(0)(0)(0)f f g g f =-=0,令0,1x y ==,则(1)(1)(0)(1)(0)f f g g f =-,又(1)0f ≠,(0)0,f =所以(0)1g = , 令0x =,则()(0)()(0)()()f y f g y g f y f y -=-=-,所以()f x 为奇函数.. 解法二:令,x m n =-,则x n m -=-所以,()()()()()()f x f m n f m g n g m f n =-=-,()()()()()()()f x f n m f n g m g n f m f x -=-=-=-,所以()f x 为奇函数.(2)令1,1x y ==-,则(2)(1)(1)(1)(1)f f g g f =-+,所以(2)(1)[(1)(1)]f f g g =-+,又因为(1)20f f =≠(),所以(1)(1)1g g -+=,故(1)(1)g g -+的值为1.【例 2.28】已知偶函数1)1()(23++-=mx x a x f 的定义域为),83(2m m m --,则=+a m 2______________.分析 定义域关于原点对称是奇函数或偶函数的必要条件.解析 因为)(x f 为偶函数,故其定义域必关于原点对称,所以0832=--m m ,且m m m <--832,解得4=m .由函数)(x f 为偶函数得3x 的系数为0,则01=-a ,即1=a ,故62=+a m .变式1:若函数))(12()(a x x x x f -+=为奇函数,则=a ( ) 21.A 32.B 43.C 1.D 解析 解法一: 由函数的定义域为1{|2x x ≠-且}x a ≠,有因为()f x 奇函数,可知定义域关于原点对称,故12a =,故选A. 解法二:()(21)(x a)x f x x =+-为奇函数,由于分子为奇函数,则分母为偶函数,又知分母为二次函数,则一次项系数为0,所以12a =,故选A.变式2:若函数)2(log )(22a x x x f a ++=是奇函数,则=a _____________. 分析 由函数的定义域含有数0,则必有(0)0f =解析 函数()log (0a f x x a =>且1)a ≠)为定义域为R 的奇函数,且在0x =有意义,故满足(0)0f =,从而得21log 0,2a a =⇒=又0a >且1a ≠,所以2a =.变式3:若a x f x +-=121)(是奇函数,则=a _____________. 解析 解法一:因为()f x 为奇函数,所以()()0f x f x -+=, 即1102121x x a a -+++=--,整理得122021xx a -+=-,得12a =. 解法二:(赋值法)因为()f x 为奇函数,所以(1)(1)0f f -+=,解得12a =. 变式4:函数k k k x f x x(212)(⋅+-=为常数)为其定义域上的奇函数,则=k ____________. 解析 依题意,函数2()12xxk f x k -=+⋅(k 为常数)为其定义域上的奇函数,则22()1212x x x xk k f x k k -----==+⋅+⋅, 得12122,21212k k k k k k k k k k k k ---==+++故(2)(2)(21)(12)k k k k k k k k +-=-+,22(1)(21)0,1k k k -+==±,若k=1,得12(),12x x f x -=+1221()(),1221x x x x f x f x -----===-++故12()12x x f x -=+为奇函数; 若k=-1,得1221(),1221x x x x f x --+==--2112()(),2112x xx xf x f x --++-====---故()f x 为奇函数; 故k=1或k=-1变式5:函数)1)(11(log )(>--=a x kx x f a 为其定义域上的奇函数,则=k __________. 解析 依题意,函数1()l o g ()(1)1a kx f x a x -=>-为其定义域上的奇函数,则111()l o g ()l o g ()l o g (),111a a a k x k x x f x x x kx +---==-=---- 即2222211,11(1)0,111kx x k x x k x k x kx+-=-=-⇒-==±---得 若k=1,得1()()(1),1a a x f x log log x -==--无意义,故舍去; 若k=-1,得111()(),()()()(),111a a a x x x f x log f x log log f x x x x +--=-===----+满足()f x 为奇函数,故k=-1【例2.29】已知函数)(x f 是定义在R 上的偶函数,当)0,(-∞∈x 时,4)(x x x f -=,则当),0(+∞∈x 时,)(x f =_______________.解析 当0>x 时,则44)()()(,0x x x x x f x --=---=-<-,因为)(x f 是偶函数,所以)(x f 4)(x x x f --=-=,故当),0(+∞∈x 时,4)(x x x f --=.评注 解此类题分三步:第一步将所求解析式自变量的范围转化为已知解析式中自变量的范围;第2步将转化后的自变量代入已知解析式;第3步利用函数的奇偶性求出解析式.变式1:已知函数)(x f 为R 上的奇函数,且当0>x 时,2)(x x x f -=,求函数)(x f 的解析式.解析 当x ﹤0时,-x ﹥0,所以f(-x)=-x-(-x)2=-x-x 2,因为f(x)为奇函数,所以f(x)=- f(-x)= x 2+x,所以当x ﹤0时f(x)=- f(-x)= x 2+x ;当x=0时,f(0)=0,所以22(0)().0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩ ()【例 2.30】已知)(x f 为定义域是关于原点对称区间上的函数,求证:)(x f 一定可以写成一个奇函数与一个偶函数之和的形式.分析 先设)(x f 能写成一个函数)(x g 和一个偶函数)(x h 之和,再利用奇偶函数的定义列方程组,解方程组即得.解析 先假设存在)()()(x h x g x f +=……………①其中)(x g 为奇函数,)(x h 是偶函数,则)()()()()(x h x g x h x g x f +-=-+-=-………② 由①+②得,2)()()(x f x f x h -+=,由①-②得,2)()()(x f x f x g --=. 由此,我们得出结论,对定义域关于原点对称的函数)(x f ,都可以写成一个奇函数与一个偶函数之和.变式1:已知定义在R 上的奇函数)(x f 和偶函数)(x g 满足)1,0(2)()(≠>+-=+-a a a a x g x f x x .若a g =)2(,则)2(f =( )2.A 415.B 417.C 2.a D 解析 因为f(x)为奇函数,g(x)为偶函数,所以由f(x)+g(x)=a x -a -x +2…①得f(-x)+g(-x)=a -x -a x +2即-f(x)+g(x)= a -x -a x +2….②① +② ,得g(x)=2,①-②得f(x)= a x -a -x ,又g(2)=a ,所以a=2,所以f(x)= 2x -2-x ,f(2)= 22-2-2=15/4,故选B变式2:设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论正确的是( )A.|)(|)(x g x f +是偶函数 |)(|)(.x g x f B -是奇函数)(|)(|.x g x f C +是偶函数 )()(|.x g x f D -是奇函数解析 令f(x)=x 2,g(x)=x 3,则A.f(x)+|g(x)|= x 2+| x 3|, f(-x)+|g(-x)|= x 2+| x 3|= f(x)+|g(x)|,故选项A 正确.同理B,C,D 错误.【例2.31】函数)(1sin )(3R x x x x f ∈++=,若2)(=a f ,则)(a f -的值为( ) 3.A 0.B 1.-C 2.-D分析 函数1s i n )(3++=x x x f 中x x y s i n 3+=为奇函数,借助奇函数的性质求解.解析 令x x x g s i n )(3+=,得1)()(+=x g x f ,依题意得,21)(=+a g ,所以1)(=a g .由)(x g y =为奇函数,故1)()(-=-=-a g a g ,所以01)()(=+-=-a g a f ,故选B. 评注 本题中虽然函数整体没有奇偶性,但可利用局部的奇偶性求解,尤其是当)(x f 为奇函数时,0)()(=+-x f x f ,特别地0)()(m a x m i n =+x f x f .变式1:对于函数c bx x a x f ++=sin )((其中Z c R b a ∈∈,,),选取c b a ,,的一组计算)1(f 和)1(-f ,所得出的正确结果一定不可能是( )A.4和6B.3和1C.2和4D.1和2解析 f(1)+ f(-1)=asin1+b+c+asin(-1)-b+c=2c,因为c ∈Z,则f(1)+ f(-1为偶数,在4个选项中,只有选项D 中1+2=3不是偶数,故选D.变式2:已知函数),(4sin )(3R b a x b ax x f ∈++=,5))10(lg(log 2=f ,则=))2(lg(lg f ( )A.5-B.5-C.3D.4分析 2211log 10,lg(log 10)lg()lg(lg 2),lg 2lg 2===-根据函数y=ax 3+bsinx 为奇函数求解. 解析 由2211log 10,lg(log 10)lg()lg(lg 2),lg 2lg 2===-则f(lg(lg 2)-)+f(lg(lg 2)=8,故f(lg(lg 2)=3,故选C.变式3:设函数1sin )1()(22+++=x x x x f 的最大值为M ,最小值为m ,则.______=+n M解析 将函数解析式化简,利用函数的奇偶性求解.222(1)sin 2sin ()111x x x x f x x x +++==+++,设22sin ()1x x g x x +=+,则()()g x g x -=-,所以()g x 是奇函数,由奇函数图像的对称性知max min ()()0,g x g x +=所以题型17 函数的单调性(区间)思路提示判断函数的单调性一般有四种方法:定义法、图像法、复合函数单调性法和导数法.【例2.32】求证:函数)0()(>+=a xa x x f 在),[+∞a 上是增函数. 分析 利用函数单调性的定义来证明.解析 设任意的两个实数),[,21+∞∈a x x 且21x x <,则有)1)()()()(2121212121x x a x x x a x a x x x f x f --=++-=-(.因为),[,21+∞∈a x x ,所以a x x >21,0,012121<->-x x x x a ,)()(0)()(2121x f x f x f x f <⇒<-,故)(x f 在),[+∞a 上是增函数.评注 利用函数单调性的定义判定时,其步骤为:(1)取值;(2)作差比较;(3)定量;(4)判断.解题时注意所设的21,x x 在区间内须具有任意性.若否定函数单调性时,只要取两个特殊自变量说明不满足即可.变式1:已知函数)(x f 对任意R y x ∈,,满足2)()()(++=+y x f y f x f ,当0>x 时,2)(>x f ,求证:)(x f 在R 上是增函数.分析 判断抽象函数的单调性利用定义法求解.解析 任取x 1,x 2∈R ,设x 1﹤x 2, x 2- x 1﹥0,因为x ﹥0,时,f(x)﹥2,所以f( x 2- x 1) ﹥2,由f(x)+ f(y)= f(x+y)+2,可得f(x+y)- f(x)= f(y)-2,设x+y=x 2,x=x 1,则y=x 2-x 1,所以f( x 2)- f( x 1)= f( x 2- x 1)-2.因为f( x 2- x 1) ﹥2,所以 f( x 2)- f( x 1)= f( x 2- x 1)-2﹥0,所以f( x 2)﹥ f( x 1),当即x 1﹤x 2, f( x 2)﹥ f( x 1),所以f(x)在R 上是增函数.评注:判定抽象函数的单调性时,常利用赋值法和定义法比较f( x 2)和 f( x 1)的大小变式2:定义在R 上的函数0)0(),(≠=f x f y ,当0>x 时,1)(>x f ,且对任意的R b a ∈,,有)()()(b f a f b a f ⋅=+.(1)求证:1)0(=f ;(2)求证:对任意的R x ∈,恒有0)(>x f ;(3)证明:)(x f 是R 上的增函数;(4)若1)2()(2>-⋅x x f x f ,求x 的取值范围.(5)解析 (1)令a=b=0,则f(0)=[ f(0)]2,因为f(0)≠0,所以f(0)=1.(6)(2)当x ﹥0 时,f( x)﹥1﹥0;当x=0 时,f( 0)=1﹥0;(7)当x ﹤0 时,f( x) f(- x)= f( 0)=1,则f( x)= 【f(- x)】-1﹥0,(8)故对任意的x ∈R ,恒有f( x)﹥0.(9)(3)令a ﹥0,则a+b ﹥b,f(a+b)- f(b)= f(a) fb)- f(b)=[ f(a)-1] fb),(10)当a ﹥0时,f( a)﹥1,且b ∈R,恒有f(b)﹥0.故f(a+b) ﹥ f(b),(11)所以f(x)在R 上是增函数.(12)(4)因为f(x). f(2x-x 2)= f(3x-x 2) ﹥1= f( 0),所以3x-x 2 ﹥ 0,(13)所以0﹤x ﹤3,故x 的取值范围时(0,3)【例2.33】设),(a -∞是函数5||42+-=x x y 的一个减区间,则实数a 的取值范围是( ) ),2.[+∞-A ]2,.(--∞B ),2.[+∞C ]2,.(-∞D分析 作出函数的图象,找出递减区间,从而确定a 的取值范围.解析 由5||42+-=x x y 得,)()(x f x f =-,知)(x f y =为偶函数,其图象关于y 轴对称.只要画出当0≥x 时的图象,然后作出其关于y 轴对称的图形即可得到0<x 部分的图象,如图所示.可知,若),(a -∞为函数)(x f 的减区间,则2-≤a .故选B.变式1:下列区间中,函数|)2ln(|)(x x f -=在其上为增函数的是( )]1,.(-∞A ]34,1.[-B )23,0.[C )2,1.[D 解析 用图象法解决,将y=lnx 的图像关于y 轴对称得到y=ln (-x ),再向右平移两个单位,得到y=ln (-(x-2))的图像,将得到的图像在x 轴下方的部分翻折上来,即得到f(x)=|ln(2-x)|的图像,由图2-43知,选项中f(x)是增函数的显然只有D.故选D.评注:要得到函数f(x)=|ln(2-x)|的图像,也可先作函数y=ln(x+2)的图像,将其关于y 轴对称得函数y=ln(-x+2)的图像,在x 轴下方的部分翻折上来,即得到f(x)=|ln(2-x)|的图像.变式2:已知函数a e x f a x ()(||-=为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是__________________.解析 如图2-44所示,函数f(x)在区间【a,+∞)上单调递增,因此【1,+∞) ⊆【a,+∞),故a 的取值范围是(-∞,1】.变式3:定义在R 上的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间]2,1[上是减函数,则)(x f ( )A.在区间]1,2[-上是增函数,在区间]4,3[上是减函数B.在区间]1,2[--上是增函数,在区间]4,3[上是减函数C.在区间]1,2[-上是减函数,在区间]4,3[上是增函数D.在区间]1,2[--上是减函数,在区间]4,3[上是增函数E.分析 根据题意,作出函数f(x)的草图,判断函数的单调性即求函数的单调区间.F.解析 由f(x)= f(2-x)可知f(x)的图像关于x=1对称,又因为f(x)为偶函数,其图像关于x=0对称,可得到f(x)为周期函数且最小正周期为2,结合f(x)在区间[1,2]是减函数,可得到如图2-45所示的函数f(x)的草图,观察可知,f(x)在区间[-2,-1]上是增函数,在区间[3,4]上是减函数.故选B.G.变式4:已知⎩⎨⎧≥<+-=)1(log )1(4)13()(x x x a x a x f a 是R 上的减函数,那么a 的取值范围是( ))1,0.(A )31,0.(B )31,71.[C )1,71.[D分析 本题所给的函数为分段的形式,要满足在R 上的递减不仅要满足在每个子区间上递减,而且要满足在整个定义域上都递减.解析 函数f(x)在R 上递减,故x ﹤1时,f(x)=(3a-1)x+4a 单调递减,因此3a-1﹤0,得a ﹤⅓;当x ≥1时,f(x)=log a x 单调递减,故0 ﹤a ﹤1.同时结合f(x)的图像(如图2-46所示),当x=1时,(3a-1)+4a ≥log a 1,解得a ≥1/7,综上a 的取值范围是[1/7, 1/3).故选C.评注:关于分段函数的单调性应注意:若()(),()x f x c b x ∈⎧=≥⎨∈⎩g(x) [a,b]其中h(x) ([c,d]),g(x)在[a,b]上是增函数,h(x)在[c,d]上是增函数,则f(x)在区间[a,b]∪ [c,d]上不一定是增函数,若使f(x)在区间[a,b]∪ [c,d]上一定是增函数,需补充条件g(b)≤h(c).即有下面的重要结论:分段函数()(),()x f x c b x ∈⎧=≥⎨∈⎩g(x) [a,b]其中h(x) ([c,d])为单调增函数 max min ,()c b ⎧⎪⇔≥⎨⎪≤⎩g(x) 在[a,b]上递增h(x) 在[c,d]上递增其中g(x)h(x)分段函数()(),()x f x c b x ∈⎧=≥⎨∈⎩g(x) [a,b]其中h(x) ([c,d])为单调减函数min max ,()c b ⎧⎪⇔≥⎨⎪≥⎩g(x) 在[a,b]上递减h(x) 在[c,d]上递减其中g(x)h(x)题型18 函数的周期性思路提示(1))0(||)()(≠=⇒=+a a T x f a x f ;)(||)()(b a b a T b x f a x f ≠-=⇒+=+;(2))0(||2)()(≠=⇒-=+a a T x f a x f ;)(||2)()(b a b a T b x f a x f ≠-=⇒+-=+;)0,(||2)()(≠≠-=⇒=+⋅+c b a b a T c b x f a x f .(3))0(||6),2()()(≠=---=a a T a x f a x f x f .【例 2.34】已知函数)(x f 对任意实数x 都满足)(1)1(x f x f =+,若8)1(=f ,则=)2014(f ___________.解析 1)(1(,)(1)1(=⋅+=+x f x f x f x f ),有1)2()1(=+⋅+x f x f ,所以)2()(+=x f x f ,故2=T ,所以81)1(1)0()2014(===f f f .变式1:函数)(x f 对任意实数x 都满足)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ____. 解析 1(2),(2)()1()f x f x f x f x +=+=即,有(4)(+2)1f x f x +=,所以f(x+4)=f(x),故T=4,f(5)=f(1)=-5,所以f(f(5))=f(-5)=f(-1)=1/f(1)=-1/5【例2.35】已知函数)(x f 满足),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==,则=)2010(f _____________.解析 令)1()1()()1()1()1()(4,1-++=⇒-++==x f x f x f x f x f f x f y)1()()1(--=+⇒x f x f x f ,6=T ,所以)0()2010(f f =,又令0,1==y x ,有)1()1()0()1(4f f f f +=,所以21)2010(,21)0(==f f . 【例2.36】已知函数)(x f 是定义在实数集R 上的不恒等于零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( )A.0B.21C.1D.25 分析 )(x f 为偶函数,有)()1()1(x f x x xf +=+,只能从x x =+1或者01=++x x 时入手.解析 当01=++x x 时,即21-=x 时,)21(21)21(21)21(21f f f =-=-,得0)25(,0)23(,0)21(===f f f ,故选A. 评注 本题也可以从另外一方面解答,先构造一个函数,当Z x ∉时,xx f x x f )(1)1(=++.令x x f x g )()(=,则1)1()1(++=+x x f x g .所以)()1(x g x g =+,1=T ,令21-=x ,得0)21(),21(21)21(21)21(21==-=-f f f f .因为)21(25(g g =),即02)21(2)25(==f f .故0)25(=f .变式1:已知a 为非零常数,R x ∈且)(1)(1)(x f x f a x f -+=+,试判断)(x f 的周期性. 解析 1()11()1()11()(),(2)1()1()1()()11()f x f x f x a f x f x a f x a f x f x f x a f x f x +++++-+=+===-+--+--, 所以(2)()1f x a f x +=-,即(2)(4)1f x a f x a ++=-所以f(x+4a)=f(x),T=4|a|, 故(x)为周期函数,且T=4|a|.题型19 函数性质的综合思路提示(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.如函数)(x f 的图象关于点)0,(a 和点)0,(b 中心对称,可得)(||2b a b a T ≠-=. )2()(),2()(x b f x f x a f x f --=--=,所以)2()2(x b f x a f -=-,可得||2b a T -=. 如函数)(x f 的图象关于直线a x =和直线b x =轴对称,可得)(||2b a b a T ≠-=.)2()(),2()(x b f x f x a f x f -=-=,所以)2()2(x b f x a f -=-,可得||2b a T -=.如函数)(x f 关于点)0,(a 中心对称,且关于直线b x =轴对称,可得)(||4b a b a T ≠-=.)2()(),2()(x b f x f x a f x f -=--=,所以)2()2(x b f x a f -=--,故)()44(x f x a b f =+-,||4b a T -=.【2.37】定义在R 上的偶函数)(x f 满足:对任意的)](0,(,2121x x x x ≠-∞∈,有0)]()()[(2121>--x f x f x x ,则当*N n ∈时,有( ))1()1()(.+<-<-n f n f n f A )1()()1(.+<-<-n f n f n f B)1()()1(.-<-<+n f n f n f C )()1()1(.n f n f n f D -<-<+分析 偶函数关于y 轴对称,关于y 轴对称的两部分图象单调性相反.解析 由]0,(,21-∞∈∀x x ,有0)]()()[(2121>--x f x f x x 可得]0,(-∞∈x 时,)(x f 单调递增,因为)(x f 为偶函数,所以当),0(+∞∈x 时,)(x f 单调递减,所以自变量绝对值越小,所对应的的函数值越大.因为110+<<-≤n n n ,所以)1()()()1(+>-=>-n f n f n f n f ,故选C.变式1:已知定义域为R 的函数)(x f 在区间),8(+∞上减函数,且函数)8(+=x f y 为偶函数,则( ))7()6(.f f A > )7()6(.f f B > )9()7(.f f C > )10()7(.f f D > 解析 因为s(x+8)为周期函数,所以f(-x+8)=f(x+8),所以f(x)关于x=8对称,又因x ∈(8,+ ∞)时,f(x)为减函数,所以x ∈(-∞,8)时,f(x)为增函数,所以|x-8|越小,f(x)越大, |6-8|>|7-8|⇒f(6)<f(7); |6-8|>|9-8|⇒f(6)<f(9)|7-8|=|9-8|⇒f(7)=f(9) ;|7-8|<|10-8|⇒f(7) >f(10).故选D.变式2:已知偶函数)(x f 在区间),0[+∞上单调递增,则满足)31()12(f x f <-的x 的取值范围是( ))32,31.(A )32,31.[B )32,21.(C )32,21.[D解析 偶函数f(x)在区间(- ∞,0)上单调递增,所以f(x)在区间[0,+ ∞)上单调递减,即|x|越小,f(x)越大,由f(2x-1)=f (|2x-1|)<f(1/3) 可得|2x-1|<1/3,解得1/3<x<2/3.故选A.变式3:设函数)(x f 是奇函数,并且在R 上为增函数,若20πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是( ))1,0.(A )0,.(-∞B )21,.(-∞C )1,.(-∞D解析 因为f(x)是奇函数,且在R 上为增函数,又f(msin Ɵ)+ f(1-m) >0所以f(msin Ɵ) >- f(1-m) =f(m-1),所以msin Ɵ >m-1,令t=sin Ɵ∈[0,1],构造函数g(t)=mt-m+1, t ∈[0,1],由函数g(t)在[0,1]上恒大于0,则-m+1>0,故m <1,故选D.变式4:设函数}{,1)3()(3n a x x x f -+-=是公差不为0的等差数列,14)(...)()(721=+++a f a f a f ,则=+++721...a a a ( )A. 0B. 7C. 14D. 21解析f(x)=(x-3)3+x-1=(x-3)3+x-3+2,设t=x-3,令g(t)=t 3+t,易知g(t)在R 上为单调递增的奇函数.有f(a 1)+ f(a 2)+…+ f(a 7)=14,得g(t 1)+g(t 2)+…+g(t 7)=0,其中t 1=a 1-3,t 2=a 2-3,…当t 1+t 7>0时,得t 1>-t 7,g(t 1) >g(-t 7)=- g(t 7),即g(t 1) + g(t 7)>0,同理g(t 2) + g(t 6)>0,g(t 3) + g(t 5)>0,g(t 4) >0,故t 1+t 7>0得g(t 1) + g(t 2) +…+ g(t 7)>0. 当t 1+t 7<0得g(t 1) + g(t 2) +…+ g(t 7) <0. 又g(t 1) + g(t 2) +…+ g(t 7)=0,故只有t 1+t 7=0 即a 1+a 7=6,则a 1+a 2+…+a 7=( a 1+ a 7)x7/2=21.故选D.评注 :本题考查了单调递增的奇函数的性质:若121212,,0()()0x x D x x f x f x ∀∈+>⇔+>,或121212,,0()()0x x D x x f x f x ∀∈+<⇔+<【例2.38】函数)(x f 的定义域为R ,若)1(+x f 与)1(-x f 都是奇函数,则( ) A.)(x f 是偶函数 B.)(x f 是奇函数 C.)2()(+=x f x f D.)2(+x f 是奇函数 分析 由奇偶性⇒对称性⇒周期性.解析 因为)1(+x f 为奇函数,所以)1()1(+-=+-x f x f ,故)0,1(为函数)(x f 的对称中心,由)1(-x f 为奇函数,同理)0,1(-也为函数)(x f 的对称中心,利用结论知函数)(x f 的周期为4,则)1()3(-=+x f x f ,所以)3(+x f 为奇函数.故选D.变式1:定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在]0,1[-上单调递增,设)3(f a =,)2(),2(f c f b ==,则c b a ,,的大小关系是( )c b a A >>. b c a B >>. a c b C >>. a b c D >>.解析 由f(x+1)= -f(x),可得T=2,所以-2),c=f(2)=f(0),因为f(x)在[-1,0]上单调递增,所以f(0) >-2) > f(-1),所以c >b >a,故选B.变式2:已知定义在R 上奇函数)(x f 满足)()4(x f x f -=-,且在区间]2,0[上是增函数,则( ))80()11()25(.f f f A <<- )25()11()80(.-<<f f f B )25()80()11(.-<<f f f C )11()80()25(.f f f D <<-解析 由f(x-4)= -f(x),可得T=8,所以f(80)=f(0), f(-25)=f(-1),f(11)=f(3)=-f(-1)=f(1),因为f(x)为定义在R 上的奇函数且在[0,2]上单调递增,所以f(x)在[-2,2]上单调递增,所以f(1) >f(0) >f(-1),即f(-25) <f(80) <f(1),故选D.【例 2.39】定义在R 上的函数)(x f 是奇函数,且是以2为周期的周期函数,则)7()4()1(f f f ++=( )1.-A 0.B 1.C 4.D解析 因为)(x f 的T=2,且是定义在R 上的奇函数,所以0)0(=f ,则0)1()0()1()7()4()1(=-++=++f f f f f f ,故选B.变式1:已知)(x f 是R 上最小正周期为2的周期函数,且当20<≤x 时,x x x f -=3)(,则函数)(x f 的图象在区间]6,0[上与x 轴的交点的个数为( ) A.6 B.7 C.8 D.9解析 因为当0≤x ﹤2时,f(x)=x 3-x=x(x 2-1),又因为f(x)是R 上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0,又因为f(1)=0,f(3)=0,f(5)=0,故函数y=f(x)的图像在区间[0,6]上与x 轴的交点的个数为7个,故选B.【例 2.40】函数)(x f 的定义域为D ,若对任意的D x x ∈21,,当21x x <时,都有)()(21x f x f ≤,则称函数)(x f 在D 上为非减函数,设函数)(x f 在]1,0[上为非减函数,且满足以下3个条件:①0)0(=f ;②)(21)3(x f x f =;③)(1)1(x f x f -=-,则=+)81()31(f f ( ) 43.A 21.B 1.C 32.D解析 21)1(21)31(==f f ,也可得41)31(21)91(==f f ,由)(1)1(x f x f -=-可得21)21(=f ,所以41)21(21)61(==f f .因为当1021≤<≤x x 时都有)()(21x f x f ≤,所以可由618191<<得,)61()81()91(f f f ≤≤,即41)81(=f ,所以43)81()31(=+f f .故选A.变式1:定义在R 上的函数满足1)1()(,0)0(=-+=x f x f f ,)(21)3(x f xf =,且当1021≤<≤x x 时,)()(21x f x f ≤,则=)20101(f ___________. 分析 当x 1<x 2时,f(x 1) ≤f(x 2),可知f(x)为非减函数,求这类函数值时用夹逼的方法解答.解析 由f(0)=0,f(x)=+f(1-x)=1,可得f(12)=12,f(1)=1-f(0)=1,f(15)=12f(1)= 12,当x ∈ [15,12]时,1111()()2522f f =≤=,所以111(),[,],252f x x =∈ 同理111[,],(),25104x f x ∈=当时111[,],(),125508x f x ∈=当时111[,],(),125508x f x ∈=当时111[,],(),62525016x f x ∈=当时111[,],(),3125125032x f x ∈=当时又因为1111,().31251250201032x f <<=变式2:设)(x g 是定义在R 上,以1为周期的函数,若函数)()(x g x x f +=在区间]4,3[上的值域为]5,2[-,则)(x f 在区间]10,10[-上的值域为_____________.解析 设x 1∈[3,4],f(x 1)=x 1+g(x 1) ∈[-2,5],因为g(x)是定义在R 上且周期为1的函数,所以当x 2=x 1+1∈[4,5]时,f(x 2)=x 1+1+g(x 1+1)= x 1+g(x 1) +1∈[-1,6], 当x 3=x 2+1∈[5,6]时,f(x 3)=x 1+2+g(x 1+2)= x 1+g(x 1) +2∈[0,7];…当x 7=x 1+6∈[9,10]时,f(x 7)=x 1+6+g(x 1+6)= x 1+g(x 1) +6∈[4,11].同理当x ∈[-10,-9]时,f(x)=f(x 1-13)=x 1-13+g(x 1-13)= x 1+g(x 1) -13∈-15,-8],综上,当x ∈[-10,10]时,函数f(x)的值域为[-15,11].变式3:对于定义域为]1,0[的连续函数)(x f ,如果同时满足以下3个条件:①对任意的]1,0[∈x ,总有0)(≥x f ;②1)1(=f ;③若1,0,02121≤+≥≥x x x x ,都有)()()(2121x f x f x x f +≥+成立,则)(x f 为理想函数.(1)若函数为理想函数,求)(x f 的值域;(2)判断函数])1,0[(12)(∈-=x x g x 是否为理想函数,并予以证明;(3)若函数)(x f 为理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00))((x x f f =,求证:00)(x x f =.(4)解析 (1)由③得f(1)≥f(1)+f(0) ⇒ f(0) ≤0, 由①得f(0) ≥0,所以f(0) =0,当0<x<1时,令t >0且t+x=1,由②③得f(1)≥f(x)+f(t),又因为f(x)为[0,1]上的连续函数,所以f(x) ≤1,所以0≤f(x)≤1,所以f(x)的值域为[0,1].(5)(2) g()x=2x -1(x ∈[0,1])是理想函数,证明如下:x ∈[0,1]时,1≤2x ≤2,所以2x -1≥0,所以满足①;f(1)= 21-1=1,所以满足②; (6)X 1≥0, x 2≥0,x 1+x 2≤1时,(7)g(x 1+x 2)-g(X 1)-g(x 2)=2x 1+x 2 -2x 1-2x 2+1=(2x 1-1)(2x 2-1) ≥0,(8)所以g(x 1+x 2)-g(X 1)-g(x 2)≥0,即g(x 1+x 2) ≥g(X 1)+ -g(x 2),所以满足③. (9)故函数g()x=2x -1(x ∈[0,1])是理想函数.(10)(3)证明:假设f(x 0)=t,当x 0﹥t 时,f(f(x 0))=f(t)=x 0,因为x 0﹥t,函数f(x)在[0,1]上非减,所以f(x) ≥f(t),即t ≥x 0与x 0﹥t 矛盾,故当x 0﹥t 时不成立,同理当x 0﹤t 时,也与已知矛盾.所以f(x 0)= x 0.最有效训练题6(限时45分钟)1.已知函数)32(log )(22--=x x x f ,现使)(x f 为减函数的区间是( ) )6,3.(A )0,1.(-B )2,1.(C )1,.(--∞D2.已知函数]3,2[,)(2-∈=x x x f ,如果存在实数]3,2[,21-∈x x ,使得对任意实数]3,2[-∈x ,都有)()()(21x f x f x f ≤≤,则||21x x -的值是( )A.0B.2C.3D.53.函数)(x f )(R x ∈的图象如图所示,则下列哪个区间是函数)10)((log )(<<=a x f x g a 的单调减区间( )]21,0.[A ),21[)0,.(+∞-∞ B ]1,.[a C ]1,.[+a a D4.已知函数⎩⎨⎧≥<-=)2()2()4()(x a x x a x f x在R上单调递增,则a 的取值范围是( ) ]4,1.(A )4,2.(B )4,2.[C ),4.(+∞D5.函数)(x f 是以2为周期的偶函数,且当)1,0(∈x 时,12)(-=x x f ,则)12(log 2f 的值为( ) 31.A 34.B 2.C 11.D 6.设2)(3-+=x x x f ,若5)(,1)(-==b f a f ,则=+b a ( ) 2.-A 0.B 1.C 2.D7.设函数))(()(R x ae e x x f xx∈+=-是偶函数,则实数=a __________.8.(1)奇函数)(x f 的定义域为]5,5[-,若当]5,0[∈x 时,)(x f 的图象如图所示,则不等式0)(<x f 的解集是__________.(2)已知函数)(x f y =是R 上的偶函数,且在]0,(-∞上是减函数,若()(2)f a f ≥,则实数a 的取值范围是________.9.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且2()()23f x g x x x +=++,则()()f x g x -=_________.10.已知函数||sin 1()||1x x f x x -+=+()x R ∈的最大值为M ,最小值为m ,则M m +的值为___________.11.设()f x 是定义在R 上的奇函数,且对任意实数x 恒有(2)()f x f x +=-.当[0,2]x ∈时, 2()2f x x x =-.(1)求证: ()f x 是周期函数;(2)当[2,4]x ∈时,求()f x 的解析式;(3)计算(0)(1)(2)(2015)f f f f ++++.12.已知定义域为R 的函数1()41xf x a =++是奇函数.(1)求a 的值;(2)判断()f x 的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.最有效训练61.D 解析 由x 2-2x-3 ﹥0得函数的定义域为(-∞,-1)∪(3,+∞),且二次函数t= x 2-2x-3在(-∞,-1)上是减函数,在(3,+∞)上是增函数,而y=log 2t 是增函数,所以复合函数f(x)= log 2(x 2-2x-3)在(-∞,-1)上是减函数.故选D.2.C 解析 由于f(x)=x 2在[-2,0]上单调递减,在[0,3]上单调递增,故最小值点x 1=0,最大值点x 2=3,∣x 1- x 2∣=3.故选C.3.C 解析 令t=log a x(0﹤a ﹤1),则此函数为减函数,由图2-6知y=f(t)在(-∞,0)和(12,+∞)上都是减函数,在[0, 12]上是增函数, 当t ∈[0,12]时,x ∈所以,函数g(x)=f(log a x)在上是减函数.故选C. 4.C 解析 依题意得,函数f(x)在r 上单调递减,则2401,24,2(4)a a x a a⎧->⎪>≤<⎨⎪-≤⎩解得故选C.5.A 解析 f(log 212)= f(log 212-4)= f(log 234)= f(-log 234)= f(log 243),由于0﹤log 243﹤1,故f(log 243)=13.故选A. 6.B 解析 令g(x)=x 3+x,x ∈R,则g(x)为单调递增的奇函数,又f(a)=1,f(b)=-5,所以f(a)+f(b)=g(a)-2+g(b)-2=-4,即g(a) +g(b)=0,所以a+b=0.故选B.7. -1 解析 令g(x)=x,h(x)=e x +ae -x ,因为函数g(x)=x 是奇函数,则由题意知,函数h(x)=e x +ae -x 是奇函数,又函数f(x)的定义域为R , 所以h(0)=0,解得a=-1.8. (1) (-2,0) ∪(2,5]; (2)(-∞,-2] ∪[2, +∞)解析 (1)由奇函数图像的对称性补出其在[-5,0)上的图像,由图像知解集为(-2,0) ∪(2,5].(2)由已知f(x)在[0, +∞)上都是减函数,且f(a)=f(∣a ∣)所以f(a) ≥f(2),故f(∣a ∣) ≥f(2)所以∣a ∣ ≥2,得a ≤-2或a ≥2, 则实数a 的取值范围是(-∞,-2] ∪[2, +∞).9.2x-x 2-3 解析 依题意,f(-x)+g(-x)=x 2-2x+3=- f(x)+g(x),因此f(x)-g(x)= 2x-x 2-3(x ∈R )10. 2 解析 将f(x)变形,利用奇函数的图像冠宇原点对称的特殊性质,因为sin ()1,1x f x x =-+其中sin 1xx μ=+是奇函数,所以M=1+max μ,m=1-min μ故 M+m=2. 11.解析 (1)证明:因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x)所以f(x)是周期为4的周期函数.(2)当x ∈[2,4]时,x-2∈[0,2],所以f(x-2)=-x 2+6x-8,又因为f(x-2)=-f((x-2)+2)= -f(x),所。
高三数学复习课件-函数的奇偶性和单调性综合复习

(3)f(x)= (x-1) .
1 x 1 x
评析 用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)
之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查其
例2:函数f(x)是定义在(0,+∞)上的增函数,满足: f(xy)=f(x)+f(y),f(8)=3,解不等式f(x)+f(x-2)≥3
[4,+∞)
注:利用函数的单调性解不等式时,必须考虑条件和定义域
练习 1、函数f(x)在(0,+∞)上是减函数求f(a2-a+1)与 f( 3 )的大小关系
3 f(a2-a+1) ≤f( ) 4 2-mx+5 在区间 [-2,+∞) 上是增 2、函数 f(x)=4x 函数,求f(1) 的取值范围。 f(1) ≥25 3、设f(x)是定义域为[-1,1]上的增函数, 解不等式f(x-1)<f(x2-1). (1, 2 ]
函数图像能直观地显示函数的单调性.在单调区间上的增函 数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减 函数,它的图像是沿x轴正方向逐渐下降的.
y
例1 、 画出函数y=-x2+2|x|+3的图像, 并指出函数的单调区间.
解:函数图像如下图所示,
当x≥0时,y=-x2+2x+3=-(x-1)2+4; 当x<0时,y=-x2-2x+3=-(x+1)2+4.
减↓ 增↑ 减↓ 减↓ 增↑
注:
1、复合函数y=f[g(x)]的单调区间必须是其定义域的 子集 2、对于复合函数y=f[g(x)]的单调性是由函数y=f(u)及 u=g(x)的单调性确定的且规律是“同增,异减”
高三数学函数的单调性和奇偶性

函数的单调性和奇偶性一、学习目标1.理解函数的单调性概念:能根据函数单调性定义证明函数在给定区间上的增减性。
2.会判定函数的单调性:会求单调区间。
3.准确掌握一次函数、二次函数的单调性。
4.解奇函数、偶函数的概念及图像物征:能判断某些函数的奇偶性:二、例题分析第一阶梯[例1]什么叫函数f (x)在区间[a,b]上是增函数(减函数)?[解]设任意的x1,x2∈[a,b],当x1<x2时:都有f(x1)<f(x2),那么就说f(x)在区间[a,b]上是增函数。
设任意的x1:x2∈[a,b],当x1<x2时:都有f(x1)>f(x2):都有f(x1)>f(x2):那么就说f(x)在区间[a,b] 上是减函数。
[评注]1.f(x)在某个区间上是增函数或减函数:那么就说函数f(x)在这一区间具有(严格的)单调性:这一区间叫做f(x)的单调区间。
2.函数的单调性相对于区间而言:这个区间当然是函数定义域的子集。
例如:的定义域A=(-∞:0)∪(0:+∞),那么:下列说法正确的是(把正确说法的代号都填上)①f(x)在其定义域A上是增函数②f(x)是单调函数③f(x)在区间(-∞:0)上是增函数④f(x)在区间(0:+∞)上是减函数⑤f(x)的单调增区间有(-∞:0):(0:+∞)答:正确说法是③、⑤:其它说法都是错误的:我们着重论证说法①是错误的:设x1=1,x2=1,则x1,x2∈A,但[例2]怎样根据函数单调性定义:证明函数的增减性?试举一例。
[解]根据单调性定义证明函数增减性的步骤是:(1)设x1,x2:即设x1、x2是该区间上的任意二值:且x1<x2(2)比较f(x1)和f(x2)的大小:通常采用作差法:即作差f(x1)-f(x2):变形:定号。
(也可以用“作商”等其它比较法)(3)作出结论:根据单调性定义:作出增函数或减函数的结论。
例:根据函数单调性定义证明在区间(0:2]上是减函数。
高三数学知识点串讲

高三数学知识点串讲高三是学生们备战高考的最后一年,数学作为高考科目之一,对于学生们而言尤为重要。
掌握高三数学知识点是提高数学成绩的基础,也是冲刺高考的关键。
本文将对高三数学知识点进行串讲,帮助学生们系统复习数学知识,提升解题能力。
一、函数与导数高三数学的第一个重点是函数与导数。
函数是数学中的重要概念之一,它描述了不同元素之间的关系。
而导数则是函数的变化率,表示函数曲线在某一点的切线斜率。
接下来我们将重点讲解函数极限、导数定义及求导法则等内容。
1.1 函数极限函数极限是描述函数在某一点附近的取值情况。
极限存在与否及极限的计算方法是高三数学的重点内容。
极限存在的判定方法有有界性、夹逼定理等,极限的计算方法包括直接代入法、夹逼法、函数性质法等。
1.2 导数定义导数是函数变化率的表示,它反映了函数曲线在某一点的切线斜率。
导数的定义是数学分析中的重要内容,掌握导数定义对于后续求导法则的运用和理解极限概念具有重要意义。
1.3 求导法则求导法则是导数计算的基本规则,它包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等内容。
熟练掌握求导法则对于解题过程中的快速计算至关重要。
二、数列与数项数列与数项是高中数学中的重要概念,也是高三数学的重点之一。
数列是按照一定规律排列的一系列数,而数项则是数列中的每个元素。
接下来我们将重点讲解等差数列、等比数列和数列的求和问题。
2.1 等差数列等差数列是指数列中相邻两项之间的差值相等的数列。
等差数列的性质包括通项公式、前n项和及求和公式等内容。
了解等差数列的性质和求和公式有助于简化计算过程,快速得到结果。
2.2 等比数列等比数列是指数列中相邻两项之间的比值相等的数列。
等比数列的性质包括通项公式、前n项和及求和公式等内容。
掌握等比数列的特点和求和公式有助于解决与等比数列相关的问题。
2.3 数列求和数列求和是高三数学的常见题型,需要掌握的内容包括等差数列求和公式、等比数列求和公式以及部分和公式等。
2020年高三数学大串讲第19讲(数列单调性、奇偶项、存在性问题)(解析版)

第19讲(数列单调性、奇偶项、存在性问题)【目标导航】中学研究的特殊数列只有等差数列与等比数列,一个是线性数列,一个是类指数数列,但数列性质却远远不止这些,因此新数列的考查方向是多样的、不定的,不仅可考查函数性质,而且常对整数的性质进行考查.明确考查方向是解决以新数列为背景的解答题的前提,恰当运用对应性质是解决问题思想方法. 【例题导读】例1、设数列{}n a ()*n N ∈是公差不为零等差数列,满足2369579,6a a a a a a +=+=;数列{}n b ()*n N ∈的前n 项和为n S ,且满足423n n S b +=. (1)求数列{}n a 、{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1112,,b x b 成等差数列;在2b 和3b 之间插入2个数2122,x x ,使221223,,,b x x b 成等差数列;……;在n b 和1n b +之间插入n 个数12,,...,n n nm x x x ,使121,,,...,n n n nm n b x x x b +成等差数列,(i )求11212212......n n n nm T x x x x x x =+++++++; (ii )是否存在正整数,m n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.【答案】(1)()1*11,23n n n a n b n N -⎛⎫==∈ ⎪⎝⎭(2)13144323n n n n T -=--⋅⋅(i )(ii )(9,2)及(3,3). 【解析】(1)设数列{}n a 的公差为()d d ≠0,则由条件369a a a +=, 可得()()111258a d a d a d +++=+,1a d ∴=,又由25796a a a +=,可得()()()21114668a d a d a d +++=+,将1a d =代入上式得254954d d d +=,24949d d ∴=01n d d a n ≠∴=∴=Q ,由423n n S b += ①当2n ≥时,11423n n S b --+= ②①-②得:14220n n n b b b -+-=,11(2)3n n b b n -∴=≥, 又111142302b b b +=∴=≠,{}n b ∴是首项为12,公比为13的等比数列,故()1*1123n n b n N -⎛⎫=∈ ⎪⎝⎭,()1*11,23n n n a n b n N -⎛⎫∴==∈ ⎪⎝⎭.(2)①在n b 和1n b +之间插入n 个数12,,,n n nn x x x K , 因为121,,,,,n n n nn n b x x x b +K 成等差数列,设公差为n d ,则11111112323(2)113(1)n n n n n n b b d n n n -+⎛⎫⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭===-+-++, 则111233(1)n nk n n nk x b kd n -⎛⎫=+=- ⎪+⎝⎭,11111(1)233(1)23n nnk nn k n n nx n n -=+⎛⎫∴=⋅-⋅= ⎪+⎝⎭∑, 11212212211333n n n nn n nT x x x x x x ∴=+++++++=+++L L L ①则231111133333n n n n nT +-=++⋯++ ② ①-②得:2111111332111111133333323313nnn n n nn n n n T +++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+++-=-=--⎪⎝⎭-L , 13144323n n n n T -∴=--⋅⋅, ②若12m n m a T a +=,因为n a n =,所以m a m =,则13111144323222n nn m m m-+--==+⋅⋅, 1111443232n n n m ---=⋅⋅,从而3321432n n n m--=⋅, 故()23234623462323323323n n n n n n n n m n n n --++⋅+===+------, 当1n =时,*10232m N =+=-∉-, 当2n =时,*14292m N =+=∈,当3n =时,*213m N =+=∈,下证4(*)n n N ≥∈时,有32346n n n -->+,即证3690n n -->,设()369(4)x f x x x =--≥,则4()3ln 3636360x x f x '=->-≥->,()f x ∴在[4,)+∞上单调递增,故4n ≥时,43693649480n n -->-⨯-=>,即4601323nn n +<<--, 从而4n ≥时,m 不是整数,故所求的所有整数对为(9,2)及(3,3).例2、有限个元素组成的集合为{}12,,,n A a a a =L ,*n N ∈,集合A 中的元素个数记为()d A ,定义{},A A x y x A y A +=+∈∈,集合A A +的个数记为()d A A +,当()()()()12d A d A d A A ⋅++=,称集合A 具有性质Γ.(1)设集合{}1,,M x y =具有性质Γ,判断集合M 中的三个元素是否能组成等差数列,请说明理由; (2)设正数列{}n d 的前n 项和为n S ,满足1123n n S S +=+,其中113d =,数列{}n d 中的前2020项:1232020,,,,d d d d L 组成的集合{}1232020,,,,d d d d L 记作D ,将集合D D +中的所有元素()*123,,,,k t t t t k N ∈L 从小到大排序,即123,,,,k t t t t L 满足123k t t t t <<<<L ,求2020t ;(3)已知集合{}12,,,n C c c c =L ,其中数列{}n c 是等比数列,0n c >,且公比是有理数,判断集合C 是否具有性质Γ,说明理由. 【解析】(1)集合M 中的三个元素不能组成等差数列,理由如下: 因为集合{}1,,M x y =具有性质Γ,所以()()()()162d M d M d M M ⋅++==,由题中所给的定义可知:M M +中的元素应是:2,1,1,2,2,x y x y x y +++这6个元素应该互不相等,假设M 中的三个元素能构成等差数列,不妨设1,,x y 成等差数列,这时有21x y =+这与集合元素集合中的6个元素互不相等矛盾,其它二种情况也是一样,故M 中的三个元素不能能构成等差数列;(2)11112(*)2(**)(2,)33n n n n S S S S n n N *+-=+⇒=+≥∈,(**)(*)-得:12n n d d +=,说明数列从第二项起,数列{}n d 是等差数列,因为1123n n S S +=+,113d =,所以有121212233d d d d +=+⇒=,所以22()23n n d -=⋅,显然113d =也成立,因此1222()2()33n n n d n N --*=⋅=∈.所以21998199912222,,,,,33333D ⎧⎫=⎨⎬⎩⎭L 121121121222222221333m n n m n n m n m n n d d d m n ---------+<⇔+<⇔+<⇒<⇒<-,显然11(,)m n m n N *≤<-∈根据定义在n d 之间增加的元素个数为:(1)(1)(2)(3)212n n n n n --+-+-+++=L ,这样包括n d 在内前面一共有(1)(1)22n n n n n -++=个元素. 当63n =时,包括63d 在内前面共有2016个,显然不到第2020个数,所以只有当64n =时,能找到因此3636320204642228333t d d +=+=+=; (3)集合C 具有性质Γ,理由如下:设等比数列{}n c 的公比为q ,所以通项公式为:1110)(n n a a q a ->=,q 为有理数.设假设当1234n n n n <<…时,1423n n n n c c c c +=+成立,则有314211111111n n n n a q a q a q a q ----+=+,3141211n n n n n n q q q ---=+-因为q 为有理数,所以设mq n=(,)m n N *∈且,m n 互质,因此有 313143412141244241()()()1n x n n n x n x n n n n n n n n x n m m mm m n m n n n n n---------=+-⇒=⋅+⋅-, 式子的左边是m 的倍数,右边是n 的倍数,而,m n 互质,显然1423n n n n c c c c +=+不成立,因此C C +集合中的元素个数为:(1)(1)(2)212n n n n n ++-+-+++=L ,因此它符合已知所下的定义,因此集合C 是否具有性质Γ.例3、已知正项数列{}n a 的前n 项和为n S ,且()2*241n n n a a S n N+=-∈.(1)求数列{}n a 的通项公式;(2)若21211n n n n a b S S -++=⋅,数列{}n b 的前n 项和为n T ,求n T 的取值范围;(3)若()211,22,n n na n c n ⎧+⎪=⎨⎪⎩为奇数为偶数()*n N ∈,从数列{}n c 中抽出部分项(奇数项与偶数项均不少于两项),将抽出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列. 【解析】(1)当1n =时,由2241n n n a a S +=-,得2111241a a a +=-,得11a =, 由2241n n n a a S +=-,得2111241n n n a a S ++++=-,两式相减,得22111224n n n n n a a a a a +++-+-=,即()221120n n n n a a a a ++--+=,即()()1120n n n n a a a a ++--+=因为数列{}n a 各项均为正数,所以10n n a a ++>,所以12n n a a +-= 所以数列{}n a 是以1为首项,2为公差的等差数列.因此,12(1)21n a n n =+-=-,即数列{}n a 的通项公式为21n a n =-. (2)由(1)知21n a n =-,所以2(121)2n n n S n +-==所以22212112(21)(21)n n n n a n b S S n n -++==⋅-+221114(21)(21)n n ⎡⎛⎤=-⎢ ⎥-+⎝⎦⎣ 所以222222246133557n T =++⨯⨯⨯222(21)(21)n n n ++-+L 2222222111111111433557(21)(21)n n ⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫=-+-+-++-⎨⎬ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭L 21114(21)n ⎡⎤=-⎢⎥+⎣⎦, 令21()1(21)f n n =-+,则(1)()f n f n +-=2222118(1)0(21)(23)(23)(21)n n n n n +-=>++++, 所以()f n 是单调递增数列,数列{}n T 递增,所以129n T T ≥=,又14n T <,所以n T 的取值范围为21,94⎡⎫⎪⎢⎣⎭.(3)2,212,2n n n n k c n k=-⎧⎪=⎨⎪=⎩,设奇数项取了s 项,偶数项取了k 项,其中s ,*k N ∈,2s ≥,2k ≥.因为数列{}n c 的奇数项均为奇数,偶数项均为偶数,因此,若抽出的项按照某种顺序构成等差数列,则该数列中相邻的项必定一个是奇数,一个是偶数.假设抽出的数列中有三个偶数,则每两个相邻偶数的等差中项为奇数. 设抽出的三个偶数从小到大依次为2i ,2j ,()21pi j p ≤<<,则1122222i j i j --+=+为奇数,而1i ≥,2j ≥,则12j -为偶数,12i -为奇数,所以1i =.又1122222j p j p --+=+为奇数,而2j ≥,3p ≥,则12j -与12p -均为偶数,矛盾.又因为2k ≥,所以2k =,即偶数只有两项, 则奇数最多有3项,即s k +的最大值为5.设此等差数列为1d ,2d ,3d ,4d ,5d ,则1d ,3d ,5d 为奇数,2d ,4d 为偶数,且22d =. 由13224d d d +==,得11d =,33d =,此数列为1,2,3,4,5. 同理,若从大到小排列,此数列为5,4,3,2,1.综上,当等差数列的项数最大时,满足条件的数列为1,2,3,4,5和5,4,3,2,1. 例4、已知n *∈N ,数列{}n a 的前n 项和为n S ,且11n n S a a +=-;数列{}n b 的前n 项和为n T ,且满足()112n n n T b n n b +=++,且12a b =.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式; (3)设nn na cb =,问:数列{}n c 中是否存在不同两项i c ,j c (1i j ≤<,i ,j *∈N ),使i j c c +仍是数列{}n c 中的项?若存在,请求出i ,j ;若不存在,请说明理由.【解析】(1)∵数列{}n b 的前n 项和为n T ,且满足()112n n n T b n n b +=++,∴11b =,22b =, 由11n n S a a +=-,得()112n n S a a n -=-≥. ∴()122n n a a n -=≥,且121a a a =-,即212a a =.∴数列{}n a 是首项为122a b ==,公比为2的等比数列,∴2nn a =.(2)∵()112n n n T b n n b +=++① 2n ≥时,()()11111112n n n T b n n b ---+=-+-+②①-②得()1111111222n n n n n b b b nb n b --+-=++--,∴()114231n n n n b b nb n b ---=+--,()()1433n n n b n b ----=-,3n ≥时,()()12543n n n b n b -----=-,∴()()()214428n n n n b n b n b ---+-=-,∴212n n n b b b --+=,∴{}n b 为等差数列,∴()111n b n n =+-⋅=.(3)2n n c n=,假设{}n c 中存在不同的两项i c ,j c (1i j ≤<),使i j k c c c +=(k *∈N )222i j k i j k ⇒+=, 注意到()()()()11121212220111n nn n n n n n n n c c n n n n n n +++⋅-+⋅-⋅-=-==≥+++. ∴{}n c 单调递增,由22k jk j k j>⇒>,则1k j ≥+,∴()()11222211jk j i j k j i j j +-≥⇒≥++,令j i m -=(m 1≥),∴j m i =+,∴()()()()()112211111j ij j m i m i m i j i m i i m i -++++⎛⎫⎛⎫≤==++ ⎪⎪-+-+-⎝⎭⎝⎭,∵2m i +≥,∴2131m i +≤+-,而11m m i +≤+,∴()231mm ≤+,231m m≤+.令21nn C n =+,则()()()()()()11121222220211212n n n n n n n n n n C C n n n n n n ++++-+⋅-=-==>++++++, ∴{}n C 为单调递增,注意到3m =时,322313=<+,42163145=>+,∴m 只能为1,2,3.①当1m =时,11j i j i -=⇒=+,∴()()222212323221i i i i i i i i ++++≤==++,故i 只能为1,2,3,当1i =时,2j =,此时242442k k k =+=⇒=;当2i =时,3j =,此时2814233k k =+=无整数解,舍;当3i =时,4j =,此时2820433k k =+=,无正整数解,舍去. ②当2m =时,2j i =+,此时()()()2222346233601i i i i i i i i i+++≤⇒≥⇒--≤++,∴1i =,此时3j =,2814233k k =+=⇒无解;③当3m =时,3j i =+,此时()()()222348712816791202i i i i i i i i i i ++≤⇒++≥+⇒+-≤+,无正整数解,舍去.综上:存在1i =,2j =满足题意.例5、已知数列{}n a 的前n 项和n S ,对任意正整数n ,总存在正数,,p q r 使得1n n a p -=,n n S q r =-恒成立:数列{}n b 的前n 项和n T ,且对任意正整数n ,2n n T nb =恒成立. (1)求常数,,p q r 的值; (2)证明数列{}n b 为等差数列; (3)若12b =,记31222224n n n n n b n b n b P a a a +++=++ 1212222n n n n n nn b n b a a ---+++⋯++,是否存在正整数k ,使得对任意正整数n ,n P k ≤恒成立,若存在,求正整数k 的最小值,若不存在,请说明理由. 【解析】∵,p q 为正数 ∴2p q ==.又∵11a =,1S q r =-,且11a S = ∴1r =.(2)∵2n n T nb =③∴当2n ≥时,()1121n n T n b --=-④,∴③-④得: ()121n n n b nb n b -=--,即()()121n n n b n b --=-⑤, 又∵()11n n n b nb +-=⑥∴⑤+⑥得: ()()()112211n n n n b n b n b -+-=-+-,即112n n n b b b -+=+ ∴{}n b 为等差数列.(3)∵10b =,22b =,由(2)知{}n b 为等差数列 ∴22n b n =-.又由(1)知12n n a -=,∴122222n n n n n P -+=+ 2322444222n n n n ----+++L , 又∵1222n n n P ++=++L 232221244424422222n n n n n n n n -----++++, ∴121214422222n n n n n n n nP P +--+-=+- 122424n n n n +-⋅=, 令10n n P P +->得122420n n n +-⋅>, ∴61123422n n n n+<=+<,解得1n =, ∴1n =时,10n n P P +->,即21p P >, ∵2n ≥时,24n≥,1342n+< ∴1612322n n n n+>+=,即122420nn n +-⋅<. 此时1n n P P +<,即234p p p >>>L ,∴n P 的最大值为2222227222n P ⨯⨯+=+= 若存在正整数k ,使得对任意正整数n ,n P k ≤恒成立,则max 72k P ≥=, ∴正整数k 的最小值为4.例6、定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“()M q 数列”.设数列{}n b 中131,7b b ==(1)若24b =,且数列{}n b 是“()M q 数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“()M q 数列”,并说明理由;(3)若数列{}n b 是“(2)M 数列”,是否存在正整数,m n ,使得4039404020192019m n b b <<?若存在,请求出所有满足条件的正整数,m n ;若不存在,请说明理由. 【解析】【分析】(1)计算21323,3b b b b -=-=,故{}1n n b b +-是公比为1的等比数列,计算得到答案;(2){}n b 是“()M q ”数列,化简得到1122n n n b b b +-=-,即()2113n n n n b b b b +++-=-,得到证明;(3){}1n n b b +-是公比为2的等比数列,12n n n b b +-=,利用累加法得到21nn b =-,得到1m n =+,计算得到答案.【详解】(1)由题意可得21323,3b b b b -=-=,由数列{}n b 为“()M q 数列”可得()3221b b q b b -=-,即1q =,则{}1n n b b +-是公比为1的等比数列,即21*13,n n b b b b n N +-=-=∈,则{}n b 是首项为1,公差为3的等差数列,32n b n =-; (2){}n b 是“()M q ”数列,,理由如下:2n ≥时,由1122n n b S n λ+=-+,可得112(1)2n n b S n λ-=--+, 两式作差可得1122n n n b b b +-=-即113,22n n b b n +-=-≥,则21132n n b b ++-=-,两式作差可得21133n n n n b b b b +++-=-,即()2113,2n n n n b b b b n +++-=-≥,由32313,72b b b -=-=,可得252b =,则()3221933322b b b b -==⨯=-, 则()2113n n n n b b b b +++-=-对任意*n N ∈成立,则{}1n n b b +-为首项是32,公比为3的等比软列,则{}n b 为()M q 数列;(3)由{}n b 是(2)M 数列,可得{}1n n b b +-是公比为2的等比数列, 即()11212n n n b b b b -+-=-,则()32212b b b b -=-,由131,7b b ==,可得23b=,则12n n n b b +-=,则()()()2112132122222n n n n n b b b b b b b b ---=-+-++-=+++=-L L ,则21nn b =-,若正整数,m n 满足4039404020192019m n b b <<,则40392140402019212019m n -<<-, 由210,210n m ->->,则2121m n ->-,则m n >,若2m n ≥+,则22121344212121m n n n n +--≥=+>---,不满足40392140402019212019m n -<<-, 若1m n =+,则140392140402019212019n n +-<<-,则403914040222019212019n -<<--,即1122019212019n <<-, 则2021220202n <<,则正整数10n =,则11m =; 因此存在满足条件的,,11,10m n m n ==.例7、设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3,…,N ),则)(A G 的元素个数不小于N a -1a . 【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析. 【解析】(3)当1a a N ≤时,结论成立.只要证明当1a a N >时仍然成立即可. 试题解析:(1))(A G 的元素为2和5.(2)因为存在n a 使得1a a n >,所以{}∅≠>≤≤∈*1,2a a N i N i i . 记{}1,2min a a N i N i m i >≤≤∈=*,则2≥m ,且对任意正整数m k a a a m k <≤<1,. 因此)(A G m ∈,从而∅≠)(A G . (3)当1a a N ≤时,结论成立. 以下设1a a N >. 由(Ⅱ)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(,记10=n . 则p n n n n a a a a <⋅⋅⋅<<<210.对p i ,,1,0⋅⋅⋅=,记{}i n k i i a a N k n N k G >≤<∈=*,.如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G . 从而对任意n k n p ≤≤,p n k a a ≤,特别地,p n N a a ≤. 对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a . 所以p a aa a a a i ip n pi n n N ≤-=-≤--∑=)(1111.【反馈练习】1.已知数列{}n a 的首项13a =,对任意的*n ∈N ,都有11(0)n n a ka k +=-≠,数列{}1n a -是公比不为1的等比数列.(1)求实数k 的值; (2)设4,,1,,n n n n b a n -⎧=⎨-⎩为奇数为偶数数列{}n b 的前n 项和为n S ,求所有正整数m 的值,使得221m m S S -恰好为数列{}n b 中的项.【答案】(1)2;(2)2. 【解析】(1)由11n n a ka +=-,13a =可知,231a k =-,2331a k k =--, 因为{1}na -为等比数列,所以2213(1)(1)(1)a a a -=--,即22(32)2(32)k k k -=⨯--,即231080k k -+=,解得2k =或43k =, 当43k =时,143(3)3n n a a +-=-,所以3n a =,则12n a -=, 所以数列{1}n a -的公比为1,不符合题意;当2k=时,112(1)n n a a +-=-,所以数列{1}na -的公比1121n n a q a +-==-, 所以实数k 的值为2.(2)由(1)知12nn a -=,所以4,,2,,n nn n b n -⎧=⎨⎩为奇数为偶数 则22(41)4(43)4[4(21)]4m m S m =-++-+++--+L2(41)(43)[4(21)]444m m =-+-++--++++L L144(4)3m m m +-=-+,则212244(4)3m m m mS S b m m --=-=-+,因为22+1324m m m b b m +=-+,又222+322+1()()3420m m m m m b b b b ++-+=⨯->, 且2350b b +=>,130b =>,所以210m S ->,则20m S >,设2210,mt m S b t S -=>∈*N , 则1,3t =或t 为偶数,因为31b =不可能,所以1t =或t 为偶数,①当2121=mm S b S -时,144(4)3344(4)3m mm m m m +--+=--+,化简得2624844m m m -+=--≤,即242m m -+≤0,所以m 可取值为1,2,3, 验证2173S S =,433S S =,658723S S =得,当2m =时,413S b S =成立.②当t 为偶数时,1222144(4)331443124(4)134m mmm mm m S S m m m m +---+==+--+--++, 设231244m m m m c -+-=,则211942214m m m m m c c ++-+-=,由①知3m >,当4m =时,545304c c --=<; 当4m >时,10m m c c +->,所以456c c c ><<L ,所以m c 的最小值为5191024c -=, 所以22130151911024m m S S -<<+<-+,令22214m m S b S -==,则2314312414mm m +=-+-+, 即231240m m -+-=,无整数解. 综上,正整数m 的值为2.2.已知无穷数列{}n a ,{}n b ,{}n c 满足:对任意的*n N ∈,都有1n a +=n n b c -,1n b +=n n c a -,1n c +=n n a b -.记n d ={},,n n n max a b c ({},,max x y z 表示3个实数x ,y ,z 中的最大值).(1)若1a =1,1b =2,1c =4,求4a ,4b ,4c 的值; (2)若1a =1,1b =2,求满足2d =3d 的1c 的所有值;(3)设1a ,1b ,1c 是非零整数,且1a ,1b ,1c 互不相等,证明:存在正整数k ,使得数列{}n a ,{}n b ,{}n c 中有且只有一个数列自第k 项起各项均为0.【答案】(1)4a =0,4b =1-,4c =1.(2)2-,1-,1,2.(3)见详解 【解析】(1)由题意:2a =11b c -=24-=2-;2b =11c a -=41-=3;2c =11a b -=12-=1-;以此类推,看得出4a =0,4b =1-,4c =1.(2)若1a =1,1b =2,1c =x ,则2a =2x -,2b =1x -,2c =1-,,3a =11x --,3b =12x --,3c =21|x x ---,当01x ≤<时,3a =x -,3b =1|x -,3c =1,3d =1,由3d =2d ,得|x =1,不符合题意. 当12x ≤<,3a =2x -,3b =1x -,3c =32x -,,由3d =2d ,得x =1,符合题意.当2x ≥,3a =2x -,3b =3x -,3c =1-,由3d =2d ,得x =2,符合题意, 综上1c 的取值是:2-,1-,1,2.(3)先证明:存在正整数3k ≥,使,k a ,k b ,k c 中至少有一个为零, 假设对任意正整数3k ≥,k a ,k b ,k c 都不为零,由1a ,1b ,1c 是非零整数,且1a ,1b ,1c 互不相等,得1*d N ∈,*2d N ∈,若对任意3k ≥,k a ,k b ,k c 都不为零,则*k d N ∈.即对任意1k ≥,*k d N ∈. 当1k ≥时,1k a +={}|,k k k kkb c max b c d -<≤,1k b+=k k k c a d -<,1k c +=k k k a b d -<,所以1k d +={}111,,k k k k max a b c d +++<,所以{}k d 单调递减,由2d 为有限正整数,所以必存在正整数3m ≥,使得0m d ≤,矛盾,所以存在正整数3k ≥,使k a ,k b ,k c 中至少有一个为零,不妨设k a =0,且10a ≠,20a ≠…10k a -≠,则1k b -=1k c -,且1k b -=11k k c a --≠, 否则若1k b -=1k c -=1k a -,因为111k k k a b c ---++=0, 则必有1k a -=1k b -=1k c -=0,矛盾.于是,k b =110k k c a ---≠,k c =110k k a b ---≠,且k b =k c -,所以,1k a +=0,1k b +=k c ,1k c +=k b -=k c -,以此类推,即有:对n k ∀≥,n a =0,1n b +=k c ,1n c +=k c -,0k c ≠, 此时有且仅有一个数列{}n a 自k 项起各项均为0. 综上:结论成立.3.对于项数为m (*m ∈N 且1m >)的有穷正整数数列{}n a ,记{}12min ,,,k k b a a a =⋅⋅⋅(1,2,,)k m =⋅⋅⋅,即k b 为12,,,k a a a ⋅⋅⋅中的最小值,设由123,,,,m b b b b ⋅⋅⋅组成的数列{}n b 称为{}n a 的“新型数列”. (1)若数列{}n a 为2019,2020,2019,2018,2017,请写出{}n a 的“新型数列”{}n b 的所有项;(2)若数列{}n a 满足101,6222,7n n n a n n -⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-≥⎩,且其对应的“新型数列”{}n b 项数[21,30]m ∈,求{}n b 的所有项的和;(3)若数列{}n a 的各项互不相等且所有项的和等于所有项的积,求符合条件的{}n a 及其对应的“新型数列”{}n b .【答案】(1)数列{}n b 为2019,2019,2019,2018,2017(2)1128(3)满足题意的数列{}n a :1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1.所以对应的“新型数列”{}n b 分别为:1,1,1;1,1,1;2,1,1;2,2,1;3,1,1;3,2,1.【解析】(1)数列{}n b 为2019,2019,2019,2018,2017;(2)由已知得:当6n ≤时,{}n a 关于n 递减;当7n ≥时,{}n a 关于n 递减, 又67,a a >*n N ∴∈时,{}n a 关于n 递减.*N n a ∈Q ,21m ∴≤.又[21,30]m ∈,21m ∴=.{}n b ∴共21项且各项分别与{}n a 中各项相同,其和为262111110241024102415141222T ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭611115(151)2210241212⎛⎫- ⎪+⎝⎭=+-1128=. (3)先不妨设数列{}n a 单调递增,当2m =时,*12,a a N ∈,121222a a a a a +=<,12,a ∴<11a =,此时无解,不满足题意;当3m =时,由123123a a a a a a ++=得12312333a a a a a a a ++=<,123a a ∴<,又12a a <,11,a ∴=22a =,代入原式得33a =.当4m ≥时,1212n n m a a a a a a ma ++⋅⋅⋅+=⋅⋅⋅<, 而12(1)!m m m a a a m a ma ⋅⋅⋅≥->,矛盾, 所以不存在满足题意的数列{}n a .综上,满足题意的数列{}n a :1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1. 所以对应的“新型数列”{}n b 分别为:1,1,1;1,1,1;2,1,1;2,2,1;3,1,1;3,2,1.5.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,1,,2,k k n kk n c c b n +⎧<<==⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(Ⅰ)31n a n =+;32nn b =⨯(Ⅱ)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 依题意得()()262426262424124q d d q d d ⎧=+-=+⎪⎨=++=+⎪⎩,解得32d q =⎧⎨=⎩, 故4(1)331n a n n =+-⨯=+,16232n nn b -=⨯=⨯.所以,{}n a 的通项公式为31n a n =+,{}n b 的通项公式为32nn b =⨯.(Ⅱ)(i )()()()()22211321321941n n n nnnn a c a b -=-=⨯+⨯-=⨯-.所以,数列(){}221n n a c -的通项公式为()221941n n na c -=⨯-.(ii )()22111nni i i i i i i a c a a c ===+-⎡⎤⎣⎦∑∑()2222111nni i i i i a a c ===+-∑∑()2212432n nn ⎛⎫- ⎪=⨯+⨯ ⎪⎝⎭()1941n i i =+⨯-∑ ()()2114143252914n n n n---=⨯+⨯+⨯--()211*2725212n n n n N --=⨯+⨯--∈.5.已知数列{a n }满足:a 1=1,且当n ≥2时,11(1)()2nn n a a R λλ---=+∈(1)若λ=1,证明数列{a 2n -1}是等差数列;(2)若λ=2.①设223n nb a =+,求数列{bn }的通项公式;②设2113ni n i Cn a n ==⋅∑,证明:对于任意的p ,m ∈ N *,当p > m ,都有p C ≥ C m . 【答案】(1)证明见解析;(2)①243nn b =⋅;②证明见解析 【解析】(1)证明:当1λ=时,()1112nn n a a ---=+,()2+12+1221112n n n n a a a --∴=+=+①,()222121112n n n n a a a ----=+=②,则①+②得21211n n a a +--=, 当1n =时,11a =,{}21n a -∴是首项为1,公差为1的等差数列 (2)①当2λ=时,()11122nn n a a ---=+,当2n =时,()22111222a a --=+=, ()2222212111222n n n n a a a ++++--∴=+=①,()212122112212n n n n a a a ++--=+=+②,①+②2⨯得22242n n a a +=+,22222433n n a a +⎛⎫∴+=+ ⎪⎝⎭,即14n n b b +=, 122282333b a =+=+=Q , {}n b \是首项为83,公比为4的等比数列,1824433n n n b -∴=⋅=⋅②由(2)①知()22413nn a =-,同理由212221212n n nn a a a a +-=+⎧⎨=⎩可得212141n n a a +-=+,212111433n n a a +-⎛⎫∴+=+ ⎪⎝⎭, 当1n =时,11141333a +=+=, 2113n a -⎧⎫∴+⎨⎬⎩⎭是首项为43,公比为4的等比数列,12114144333n n n a --∴+=⋅=⋅,()211413nn a -∴=- ()()213212421ni n n i a a a a a a a -=∴=+++++++∑L L()()()()()481414248433414141143143993n n n n n n n n n--=-+-=-+--=----, 1111444343333n n n n n n C n n n +++⎛⎫--∴=--= ⎪⋅⋅⎝⎭,()()211214314434133n n n n n n n n C C n n +++++-+----=-+⋅⋅ ()()()()21243143143413n n n n n n n n n +++⎡⎤-+--+--⎣⎦=+⋅()()122346681213n n n n n n n n ++-++++=+⋅()()122346141213n n n n n n n ++-⋅+++=+当1n =时,21321661412023C C -⨯+++-==⨯;当2n =时,213642428120233C C -+++-==⨯⨯; 当3n ≥时,10n n C C +->,∴对于一切n *∈N ,都有1n n C C +≥,故对任意,p m N *∈,当p m >时,p m C C ≥6.对于*,n N ∀∈若数列{}n x 满足11,n n x x +->则称这个数列为“K 数列”.(1)已知数列1,21,m m +是“K 数列”,求实数m 的取值范围;(2)是否存在首项为1-的等差数列{}n a 为“K 数列”,且其前n 项和n S 使得212n S n n <-恒成立?若存在,求出{}n a 的通项公式;若不存在,请说明理由;(3)已知各项均为正整数的等比数列{}n a 是“K 数列”,数列12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,若1,1n n a b n +=+试判断数列{}n b 是否为“K 数列”,并说明理由. 【答案】(1)2m >;(2)见解析;(3)见解析. 【解析】(Ⅰ)由题意得()111,m +->()211,m m -+>解得2,m >所以实数m 的取值范围是 2.m >(Ⅱ假设存在等差数列{}n a 符合要求,设公差为,d 则1,d > 由11,a =-得()1,2n n n S n d -=-+由题意,得()21122n n n d n n --+<-对*n N ∈均成立,即()1.n d n -< ①当1n =时,;d R ∈ ②当1n >时,,1n d n <- 因为111,11n n n =+>-- 所以1,d ≤与1d >矛盾, 所以这样的等差数列不存在.(Ⅲ)设数列{}n a 的公比为,q 则11,n n a a q -=因为{}n a 的每一项均为正整数,且()1110,n n n n n a a a q a a q --=-=->> 所以在{}1n n a a --中,“21a a -”为最小项. 同理,11122n n a a -⎧⎫-⎨⎬⎩⎭中,“211122a a -”为最小项. 由{}n a 为“K 数列”,只需211,a a ->即()111,a q -> 又因为12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,且211122a a -为最小项, 所以21111,22a a -≤即()112a q -≤, 由数列{}n a 的每一项均为正整数,可得()112,a q -= 所以11,3a q ==或12, 2.a q ==①当11,3a q ==时,13,n n a -=则3,1nn b n =+令()*1,n n n c b b n N+=-∈则()()133213,2112n n n n n c n n n n ++=-=⋅++++又()()()()12321332312n n n n n n n n +++⋅-⋅++++()()234860,213n n n n n n ++=⋅>+++ 所以{}n c 为递增数列,即121,n n n c c c c -->>>⋅⋅⋅> 所以213331,22b b -=-=> 所以对于任意的*,n N ∈都有11,n n b b +->即数列{}n b 为“K 数列”.②当12,2a q ==时,2,nn a =则12.1n n b n +=+因为2121,3b b -=≤ 所以数列{}n b 不是“K 数列”.综上:当11,3a q ==时,数列{}n b 为“K 数列”,当12,2a q ==时,2,nn a =数列{}n b 不是“K 数列”.7.数列{}n a 满足112n n n a a a +-=-对任意的*2,n n N ≥∈恒成立,n S 为其前n 项的和,且44a =,836S =. (1)求数列{}n a 的通项n a ;(2)数列{}n b 满足()12122321213212nn n k n k n n b a b a b a b a a --+-++⋅⋅⋅++⋅⋅⋅+=--,其中*1,2,,,=⋅⋅⋅∈k n n N .①证明:数列{}n b 为等比数列;②求集合()*3,,,.p m m p a a m p m p N b b ⎧⎫⎪⎪=∈⎨⎬⎪⎪⎩⎭【答案】(1)*,n a n n N =∈;(2)①过程见详解;②(){}6,8.【解析】(1)因为数列{}n a 满足112n n n a a a +-=-对任意的*2,n n N ≥∈恒成立,所以数列{}n a 是等差数列,设公差为d ,因为44a =,836S =,所以1134878362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:111a d =⎧⎨=⎩, 因此*,n a n n N =∈;(2)①因为数列{}n b 满足()12122321213212nn n k n k n n b a b a b a b a a --+-++⋅⋅⋅++⋅⋅⋅+=--,()()1221(23)3212-+-+⋅⋅⋅+=--n n b n b n b n ,所以()()1121(23)2532122---+-+⋅⋅⋅+=--+n n b n b n b n (*2,n n N ≥∈),两式作差可得:()11212322--++⋅⋅⋅++=⋅-n n n b b b b (*2,n n N ≥∈),又()113212=--b a 也满足上式,所以()11212322--++⋅⋅⋅++=⋅-n n n b b b b ()*n N ∈,记数列{}n b 的前n 项和为n T , 则12322--=⋅-n n n T b ,当2n ≥时,2112322----=⋅-n n n T b ,两式作差可得:2132n n n b b --+=⋅,所以()12101122(1)(2)0-----=--=⋅⋅⋅=--=n n n n n b b b ,即()121011122(1)(2)(1)(11)0------=--=⋅⋅⋅=--=--=n n n n n n b b b ,所以12n n b -=,因此12n nb b +=,即数列{}n b 为等比数列; ②由3p m m p a a b b =得11322m p m p --=,即32p mp m-=, 记n n n a c b =,由①得12-=n n n c ,所以1112++=≤n n c n n c ,因此1n n c c +≥(当且仅当1n =时等号成立).由3pm m pa ab b =得3=>m p pc c c ,所以<m p . 设(,,)*=-∈t p m m p t N ,由32p mp m-=得3()2+=tm t m ,即323t t m =-;当1t =时,3m =-,不符合题意; 当2t =时,6m =,此时8p =符合题意;当3t =时,95m =,不符合题意; 当4t =时,1213m =,不符合题意,下面证明当4t ≥,*t N ∈时,3123=<-t tm , 不妨设()233(4)=--≥xf x x x ,则()2ln 230'=->xf x 在[)4,+∞上恒成立,所以()f x 在[)4,+∞单调递增; 所以()(4)10≥=>f x f , 所以,当4t ≥,*t N ∈时,3123=<-t tm 恒成立,不符合题意; 综上,集合()(){}*3,,,6,8p m m pa a m p m p Nb b ⎧⎫⎪⎪=∈=⎨⎬⎪⎪⎩⎭. 8.给定数列{}n a ,若满足1a a =(0a >且1a ≠),对于任意的*,n m ∈N ,都有m n n m a a a +=,则称数列{}n a 为“指数型数列”.(1)已知数列{}n a 的通项公式为4nn a =,试判断数列{}n a 是不是“指数型数列”;(2)已知数列{}n a 满足112a =,()*1123n n n n a a a a n ++=+∈N ,证明数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,并判断数列11n a ⎧⎫+⎨⎬⎩⎭是否为“指数型数列”,若是给出证明,若不是说明理由; (3)若数列{}n a 是“指数型数列”,且()*112a a a a +=∈+N ,证明数列{}n a 中任意三项都不能构成等差数列. 【答案】(1)是;(2)是,理由详见解析;(3)详见解析. 【解析】(1)数列{}n a ,444n mn m n m n m a a a ++==⨯=,所以数列{}n b 是“指数型数列”(2)数列11n a ⎧⎫+⎨⎬⎩⎭是“指数型数列”11111311232131n n n n n n n n a a a a a a a a ++++⎛⎫=+⇒=+⇒+=+ ⎪⎝⎭,所以11n a ⎧⎫+⎨⎬⎩⎭是等比数列, 11111133n n n a a -⎛⎫+=+⨯= ⎪⎝⎭,111113331m n n m n n n m a a a ++⎛⎫⎛⎫⎛⎫++===+ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ 所以数列11n a ⎧⎫+⎨⎬⎩⎭是“指数型数列” (3)若数列{}n a 是“指数型数列”,由定义得:11112nn n mn m n n n a a a a a a a a a a +++⎛⎫=⇒=⇒== ⎪+⎝⎭假设数列{}n a 中存在三项s a ,t a ,u a 成等差数列,不妨设s t u <<则2t s u a a a =+,得:11122222t s ut s u a a a a a a a a a +++⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭整理得:2(1)(2)(2)(1)t su s u s u s a a a a ----++=+++(*)若a 为偶数时,右边为偶数,(1)u sa -+为奇数,则左边为奇数,(*)不成立; 若a 为奇数时,右边为偶数,(2)u sa -+为奇数,则左边为奇数,(*)不成立;所以,对任意的*a ∈N ,(*)式不成立.9.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =.由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:f (x ) 极大值因为2663=<=,所以max ()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.10.对于数列{}n a ,把1a 作为新数列{}n b 的第一 项,把i a 或()2,3,4,...,i a i n -=作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列 1,2,3,4,5的一个生成数列是1,2,3,4,5--.已知数列{}n b 为数列()12n n N *⎧⎫∈⎨⎬⎩⎭的生成数列,n S 为数列{}n b 的前n 项和. (1)写出3S 的所有可能值; (2)若生成数列{}n b 满足311178n n S ⎛⎫=-⎪⎝⎭,求数列{}n b 的通项公式. 【答案】(1)1357,,,8888;(2)1,322()1,322n n nn k b k N n k *⎧=-⎪⎪=∈⎨⎪-≠-⎪⎩. 【解析】(1)由已知,()1231111,,2,,2248n n b b n N n b b *==∈≥∴=±=±,由于31117111511131111,,,,2488248824882488S ++=+-=-+=--=∴可能值为 1357,,,8888. (2)311178n n S ⎛⎫=- ⎪⎝⎭Q ,当1n =时,12331111788a a a S ⎛⎫++==-= ⎪⎝⎭.当2n ≥时, 323133331111111178788n n n n n nn n a a a S S ----⎛⎫⎛⎫++=-=---=⎪ ⎪⎝⎭⎝⎭,{}323131,,8n n n n n a a a n N b *--∴++=∈Q 是()12n n N *⎧⎫∈⎨⎬⎩⎭的生成数列,323133231332313111;;,222n n n n n n n n nb b b b b b ------∴=±=±=±∴++()()323131111142122288n n n n n n N *--=±±±=±±±=∈,在以上各种组合中,当且仅当()32313421,,888n n n n n n b b b n N *--==-=-∈时才成立.1,322()1,322n n nn k b k N n k *⎧=-⎪⎪∴=∈⎨⎪-≠-⎪⎩.。
高考数学专题讲座 第19讲 高频考点分析之数列探讨

【备战2013高考数学专题讲座】 第19讲:高频考点分析之数列探讨1~2讲,我们对客观性试题解法进行了探讨,3~8讲,对数学思想方法进行了探讨,9~12讲对数学解题方法进行了探讨,从第13讲开始我们对高频考点进行探讨。
数列是高考数学的必考内容,全考查的比重不小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列与函数和导数、三角函数、解析几何、组合数的综合应用问题是命题热点和难点。
从解题思想方法的规律着眼,高考数学中主要有:① 方程思想的应用,利用公式列方程(组);② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用等。
从题型的角度,高考中数列问题主要有以下几种: 1. 等差、等比数列的相关知识;2. 裂项求和法的运用:3. 逐商求积法的运用:4. 错位相减法的运用:5. 周期(循环)数列(扩展)的运用:6. 数列特征方程的应用;7. 数列与函数(方程)的综合应用; 8. 数列与三角函数的综合应用。
结合2012年全国各地高考的实例,我们从以上八方面探讨数列问题的求解。
一、等差、等比数列的相关知识:包括等差、等比数列的概念、性质、通项公式、前n 项和公式或可直接转化为等差、等比数列的数列。
典型例题:例1. (2012年全国大纲卷文5分)已知数列{}n a 的前n 项和为n S ,1112n n a S a +==,则n S =【 】A.12n - B.13()2n - C.12()3n - D.112n - 【答案】B 。
【考点】数列的通项公式和求和公式的应用。
【解析】∵1112n n a S a +==,,∴122S a =,即221212a a ==,。
又∵12n n S a +=,∴()122n n S a n -=≥。
∴1122n n n n S S a a -+-=-,即122n n n a a a +=-。
∴132n n a a +=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19讲(数列单调性、奇偶项、存在性问题)【目标导航】中学研究的特殊数列只有等差数列与等比数列,一个是线性数列,一个是类指数数列,但数列性质却远远不止这些,因此新数列的考查方向是多样的、不定的,不仅可考查函数性质,而且常对整数的性质进行考查.明确考查方向是解决以新数列为背景的解答题的前提,恰当运用对应性质是解决问题思想方法. 【例题导读】例1、设数列{}n a ()*n N ∈是公差不为零等差数列,满足2369579,6a a a a a a +=+=;数列{}n b ()*n N ∈的前n 项和为n S ,且满足423n n S b +=. (1)求数列{}n a 、{}n b 的通项公式;(2)在1b 和2b 之间插入1个数11x ,使1112,,b x b 成等差数列;在2b 和3b 之间插入2个数2122,x x ,使221223,,,b x x b 成等差数列;……;在n b 和1n b +之间插入n 个数12,,...,n n nm x x x ,使121,,,...,n n n nm n b x x x b +成等差数列,(i )求11212212......n n n nm T x x x x x x =+++++++; (ii )是否存在正整数,m n ,使12m n ma T a +=成立?若存在,求出所有的正整数对(),m n ;若不存在,请说明理由.例2、有限个元素组成的集合为{}12,,,n A a a a =L ,*n N ∈,集合A 中的元素个数记为()d A ,定义{},A A x y x A y A +=+∈∈,集合A A +的个数记为()d A A +,当()()()()12d A d A d A A ⋅++=,称集合A 具有性质Γ.(1)设集合{}1,,M x y =具有性质Γ,判断集合M 中的三个元素是否能组成等差数列,请说明理由; (2)设正数列{}n d 的前n 项和为n S ,满足1123n n S S +=+,其中113d =,数列{}n d 中的前2020项:1232020,,,,d d d d L 组成的集合{}1232020,,,,d d d d L 记作D ,将集合D D +中的所有元素()*123,,,,k t t t t k N ∈L 从小到大排序,即123,,,,k t t t t L 满足123k t t t t <<<<L ,求2020t ;(3)已知集合{}12,,,n C c c c =L ,其中数列{}n c 是等比数列,0n c >,且公比是有理数,判断集合C 是否具有性质Γ,说明理由.例3、已知正项数列{}n a 的前n 项和为n S ,且()2*241n n n a a S n N+=-∈.(1)求数列{}n a 的通项公式; (2)若21211n n n n a b S S -++=⋅,数列{}n b 的前n 项和为n T ,求n T 的取值范围;(3)若()211,22,n n na n c n ⎧+⎪=⎨⎪⎩为奇数为偶数()*n N ∈,从数列{}n c 中抽出部分项(奇数项与偶数项均不少于两项),将抽出的项按照某一顺序排列后构成等差数列.当等差数列的项数最大时,求所有满足条件的等差数列.例4、已知n *∈N ,数列{}n a 的前n 项和为n S ,且11n n S a a +=-;数列{}n b 的前n 项和为n T ,且满足()112n n n T b n n b +=++,且12a b =.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式; (3)设nn na cb =,问:数列{}n c 中是否存在不同两项i c ,j c (1i j ≤<,i ,j *∈N ),使i j c c +仍是数列{}n c 中的项?若存在,请求出i ,j ;若不存在,请说明理由.例5、已知数列{}n a 的前n 项和n S ,对任意正整数n ,总存在正数,,p q r 使得1n n a p -=,n n S q r =-恒成立:数列{}n b 的前n 项和n T ,且对任意正整数n ,2n n T nb =恒成立. (1)求常数,,p q r 的值; (2)证明数列{}n b 为等差数列;(3)若12b =,记31222224n n n n n b n b n b P a a a +++=++ 1212222n n n n n nn b n b a a ---+++⋯++,是否存在正整数k ,使得对任意正整数n ,n P k ≤恒成立,若存在,求正整数k 的最小值,若不存在,请说明理由.例6、定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“()M q 数列”.设数列{}n b 中131,7b b ==(1)若24b =,且数列{}n b 是“()M q 数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“()M q 数列”,并说明理由;(3)若数列{}n b 是“(2)M 数列”,是否存在正整数,m n ,使得4039404020192019m n b b <<?若存在,请求出所有满足条件的正整数,m n ;若不存在,请说明理由.例7、设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合. (1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素; (2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3,…,N ),则)(A G 的元素个数不小于N a -1a .【反馈练习】1.已知数列{}n a 的首项13a =,对任意的*n ∈N ,都有11(0)n n a ka k +=-≠,数列{}1n a -是公比不为1的等比数列.(1)求实数k 的值;(2)设4,,1,,n n n n b a n -⎧=⎨-⎩为奇数为偶数数列{}n b 的前n 项和为n S ,求所有正整数m 的值,使得221m m S S -恰好为数列{}n b 中的项.2.已知无穷数列{}n a ,{}n b ,{}n c 满足:对任意的*n N ∈,都有1n a +=n n b c -,1n b +=n n c a -,1n c +=n n a b -.记n d ={},,n n n max a b c ({},,max x y z 表示3个实数x ,y ,z 中的最大值).(1)若1a =1,1b =2,1c =4,求4a ,4b ,4c 的值; (2)若1a =1,1b =2,求满足2d =3d 的1c 的所有值;(3)设1a ,1b ,1c 是非零整数,且1a ,1b ,1c 互不相等,证明:存在正整数k ,使得数列{}n a ,{}n b ,{}n c 中有且只有一个数列自第k 项起各项均为0.3.对于项数为m (*m ∈N 且1m >)的有穷正整数数列{}n a ,记{}12min ,,,k k b a a a =⋅⋅⋅(1,2,,)k m =⋅⋅⋅,即k b 为12,,,k a a a ⋅⋅⋅中的最小值,设由123,,,,m b b b b ⋅⋅⋅组成的数列{}n b 称为{}n a 的“新型数列”. (1)若数列{}n a 为2019,2020,2019,2018,2017,请写出{}n a 的“新型数列”{}n b 的所有项;(2)若数列{}n a 满足101,6222,7n n n a n n -⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-≥⎩,且其对应的“新型数列”{}n b 项数[21,30]m ∈,求{}n b 的所有项的和;(3)若数列{}n a 的各项互不相等且所有项的和等于所有项的积,求符合条件的{}n a 及其对应的“新型数列”{}n b .4.设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,1,,2,k k n kk n c c b n +⎧<<==⎨=⎩其中*k ∈N .(i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .已知数列{a n }满足:a 1=1,且当n ≥2时,11(1)()2nn n a a R λλ---=+∈(1)若λ=1,证明数列{a 2n -1}是等差数列;(2)若λ=2.①设223n n b a =+,求数列{bn }的通项公式;②设2113ni n i Cn a n ==⋅∑,证明:对于任意的p ,m ∈ N *,当p > m ,都有p C ≥ C m .6.对于*,n N ∀∈若数列{}n x 满足11,n n x x +->则称这个数列为“K 数列”. (1)已知数列1,21,m m +是“K 数列”,求实数m 的取值范围;(2)是否存在首项为1-的等差数列{}n a 为“K 数列”,且其前n 项和n S 使得212n S n n <-恒成立?若存在,求出{}n a 的通项公式;若不存在,请说明理由;(3)已知各项均为正整数的等比数列{}n a 是“K 数列”,数列12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,若1,1n n a b n +=+试判断数列{}n b 是否为“K 数列”,并说明理由.7.数列{}n a 满足112n n n a a a +-=-对任意的*2,n n N ≥∈恒成立,n S 为其前n 项的和,且44a =,836S =. (1)求数列{}n a 的通项n a ;(2)数列{}n b 满足()12122321213212nn n k n k n n b a b a b a b a a --+-++⋅⋅⋅++⋅⋅⋅+=--,其中*1,2,,,=⋅⋅⋅∈k n n N .①证明:数列{}n b 为等比数列;②求集合()*3,,,.p m m p a a m p m p N b b ⎧⎫⎪⎪=∈⎨⎬⎪⎪⎩⎭8.给定数列{}n a ,若满足1a a =(0a >且1a ≠),对于任意的*,n m ∈N ,都有m n n m a a a +=,则称数列{}n a 为“指数型数列”.(1)已知数列{}n a 的通项公式为4nn a =,试判断数列{}n a 是不是“指数型数列”;(2)已知数列{}n a 满足112a =,()*1123n n n n a a a a n ++=+∈N ,证明数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,并判断数列11n a ⎧⎫+⎨⎬⎩⎭是否为“指数型数列”,若是给出证明,若不是说明理由; (3)若数列{}n a 是“指数型数列”,且()*112a a a a +=∈+N ,证明数列{}n a 中任意三项都不能构成等差数列.9.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.10.对于数列{}n a ,把1a 作为新数列{}n b 的第一 项,把i a 或()2,3,4,...,i a i n -=作为新数列{}n b 的第i 项,数列{}n b 称为数列{}n a 的一个生成数列.例如,数列 1,2,3,4,5的一个生成数列是1,2,3,4,5--.已知数列{}n b 为数列()12n n N *⎧⎫∈⎨⎬⎩⎭的生成数列,n S 为数列{}n b 的前n 项和. (1)写出3S 的所有可能值; (2)若生成数列{}n b 满足311178n n S ⎛⎫=-⎪⎝⎭,求数列{}n b 的通项公式.。