2019-2020年高考数学总复习第九章平面解析几何第6讲双曲线课时作业
2019-2020年高三数学一轮总复习第九章平面解析几何第六节双曲线课时跟踪检测理

2019-2020年高三数学一轮总复习第九章平面解析几何第六节双曲线课时跟踪检测理一抓基础,多练小题做到眼疾手快1.双曲线x 24-y 212=1的焦点到渐近线的距离为________.解析:由题意知双曲线的渐近线方程为y =±3x ,焦点为(±4,0),故焦点到渐近线的距离d =2 3.答案:2 32.已知双曲线x 2+my 2=1的虚轴长是实轴长的2倍,则实数m 的值是________. 解析:依题意得m <0,双曲线方程是x 2-y 2-1m=1,于是有-1m =2×1,m =-14. 答案:-143.双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,那么它的离心率为________.解析:由渐近线互相垂直可知e = 2. 答案: 24.已知双曲线的一个焦点F (0,5),它的渐近线方程为y =±2x ,则该双曲线的标准方程为________________.解析:设双曲线的标准方程为y 2a 2-x 2b2=1,由题意得⎩⎪⎨⎪⎧c =5,ab=2⇒⎩⎪⎨⎪⎧a 2+b 2=5,a =2b ⇒⎩⎪⎨⎪⎧a 2=4,b 2=1,所以双曲线的标准方程为y 24-x 2=1.答案:y 24-x 2=15.设F 1,F 2分别是双曲线x 2-y 2b2=1的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线右支于点B ,则△F 1AB 的面积等于______.解析:由题意可得|AF 2|=2,|AF 1|=4,则|AB |=|AF 2|+|BF 2|=2+|BF 2|=|BF 1|.又∠F 1AF 2=45°,所以△ABF 1是以AF 1为斜边的等腰直角三角形,所以其面积为12×4×2=4.答案:4二保高考,全练题型做到高考达标1.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于________.解析:由双曲线的定义有||PF 1|-|PF 2||=|3-|PF 2||=2a =6,∴|PF 2|=9. 答案:92.已知双曲线x 2a2-y 2=1(a >0)的一条渐近线与直线2x -y +3=0垂直,则该双曲线的准线方程是________.解析:双曲线x 2a 2-y 2=1(a >0)的渐近线为y =±1ax ,若其中一条与直线2x -y +3=0垂直,则有-1a ×2=-1,解得a =2,∴双曲线x 24-y 2=1的准线方程为x =±44+1=±455.答案:x =±4553.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到相应焦点的距离为1,则双曲线C 的方程为______________________.解析:由题意得⎩⎪⎨⎪⎧c -a =1,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b =3,故所求方程为x 2-y 23=1.答案:x 2-y 23=14.双曲线x 24-y 212=1的两条渐近线与直线x =1围成的三角形的面积为______.解析:由题知,双曲线的渐近线为y =±3x ,故所求三角形的面积为12×23×1= 3.答案: 35.(xx·无锡调研)若双曲线x 2a 2-y 2b2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是________.解析:由条件,得|OP |2=2ab ,又P 为双曲线上一点,从而|OP |≥a ,∴2ab ≥a 2,∴2b ≥a ,又∵c 2=a 2+b 2≥a 2+a 24=54a 2,∴e =c a ≥52.答案:⎣⎢⎡⎭⎪⎫52,+∞6.(xx·淮安模拟)设F 1,F 2分别是双曲线x 2a 2-y 2b 2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且|AF 1|=3|AF 2|,则双曲线的离心率为________.解析:因为∠F 1AF 2=90°,故|AF 1|2+|AF 2|2=|F 1F 2|2=4c 2,又|AF 1|=3|AF 2|,且|AF 1|-|AF 2|=2a ,故10a 2=4c 2,故c 2a 2=52,故e =c a =102.答案:1027.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,则该双曲线的离心率为______.解析:双曲线的一条渐近线方程为bx -ay =0,一个焦点坐标为(c,0).根据题意知|bc -a ×0|b 2+a 2=14×2c ,所以c =2b ,a =c 2-b 2=3b ,所以e =c a =23=233. 答案:2338.已知F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0且a ≠b )的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点.给出下面四个命题:①△PF 1F 2的内切圆的圆心必在直线x =a 上; ②△PF 1F 2的内切圆的圆心必在直线x =b 上; ③△PF 1F 2的内切圆的圆心必在直线OP 上; ④△PF 1F 2的内切圆必通过点(a,0). 其中所有真命题的序号是______.解析:设△PF 1F 2的内切圆分别与PF 1,PF 2切于A ,B ,与F 1F 2切于M ,则|PA |=|PB |,|F 1A |=|F 1M |,|F 2B |=|F 2M |,又点P 在双曲线的右支上,所以|PF 1|-|PF 2|=2a ,设点M 的坐标为(x,0),则由|PF 1|-|PF 2|=2a ,可得(x +c )-(c -x )=2a ,解得x =a ,显然内切圆的圆心与点M 的连线垂直于x 轴.由以上分析易知,①④正确,②③错误.答案:①④9.双曲线x 2a 2-y 2b2=1(a >1,b >0)的焦距为2c ,直线l 过点(a,0),(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥45c ,求双曲线的离心率e 的取值范围.解:直线l 的方程为x a +y b=1,即bx +ay -ab =0. 由(1,0)到l 的距离d 1=b a -a 2+b 2,同理由(-1,0)到l 的距离d 2=b a +a 2+b 2,所以s=d 1+d 2=2aba 2+b2=2ab c. 由s ≥45c ,得2ab c ≥45c ,即5a c 2-a 2≥2c 2,于是有5e 2-1≥2e 2,即4e 4-25e 2+25≤0, 解得54≤e 2≤5,由e >1得52≤e ≤ 5.故双曲线的离心率e 的取值范围为⎣⎢⎡⎦⎥⎤52,5. 10.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上. (1)求双曲线的方程; (2)求证:·M =0; (3)求△F 1MF 2的面积.解:(1)∵e =2,则双曲线的实轴、虚轴相等. ∴可设双曲线方程为x 2-y 2=λ. ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6. (2)证明:设=(-23-3,-m ),M =(23-3,-m ).∴·=(3+23)×(3-23)+m 2=-3+m 2, ∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴·=0.(3)△F 1MF 2的底|F 1F 2|=4 3. 由(2)知m =± 3.∴△F 1MF 2的高h =|m |=3, ∴S △F 1MF 2=12×43×3=6.三上台阶,自主选做志在冲刺名校1.(xx·常州调研)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________.解析:设双曲线方程为x 2a 2-y 2b2=1(a ,b >0),不妨设一个焦点为F (c,0),虚轴端点为B (0,b ),则k FB =-bc.又渐近线的斜率为±b a,所以由直线垂直关系得-b c ·b a =-1-b a显然不符合,即b 2=ac ,又c 2-a 2=b 2, 故c 2-a 2=ac ,两边同除以a 2,得方程e 2-e -1=0, 解得e =5+12(舍负). 答案:5+122.已知P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且·P =0,若△PF 1F 2的面积为9,则a +b =________.解析:因为e =c a =54,所以a =45c ,b =c 2-a 2=35c .因为·=0(即PF 1⊥PF 2),S △PF 1F 2=9, 所以|PF 1|·|PF 2|=18.因为⎩⎪⎨⎪⎧||PF 1|-|PF 2||=2a ,|PF 1|2+|PF 2|2=|F 1F 2|2,所以⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,|PF 1|2+|PF 2|2=4c 2,两式相减得,2|PF 1|·|PF 2|=4b 2,所以b 2=9,所以b =3,所以c =5,a =4,所以a +b =7. 答案:73.已知P (x ,y )是双曲线x 2a 2-y 2b2=1(a >0,b >0)上任意一点,F 2(c,0)是双曲线右焦点,求PF 2的最小值及取得最小值时点P 的坐标.解:因为P (x ,y )是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,所以y 2=-b 2+b 2a2x 2,从而PF 2=x -c2+y 2=c 2a2x 2-2cx +a 2=c 2a 2⎝⎛⎭⎪⎫x -a 2c 2+2a 2. 当点P 在双曲线右支上时,x ≥a >a 2c ,所以x =a ,即点P 坐标为(a,0)时,PF 2取最小值c -a ;当点P 在双曲线左支上时,x ≤-a ,所以x =-a ,即点P 坐标为(-a,0)时,PF 2取最小值c +a .2019-2020年高三数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系课时跟踪检测理一抓基础,多练小题做到眼疾手快1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为________. 解析:由两圆心距离d =+2+12=17,又R +r =2+3=5,∴d <R +r ,∴两圆相交. 答案:相交2.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为________. 解析:因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 答案: 23.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A ,B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为________.解析:设直线的斜率为k ,又弦AB 的中点为(-2,3),所以直线l 的方程为kx -y +2k +3=0,由x 2+y 2+2x -4y +a =0得圆的圆心坐标为(-1,2),所以圆心到直线的距离为2,所以|-k -2+2k +3|k 2+1=2,解得k =1,所以直线l 的方程为x -y +5=0. 答案:x -y +5=04.若圆x 2+y 2+mx -14=0与直线y =-1相切,其圆心在y 轴的左侧,则m =________.解析:圆的标准方程为⎝ ⎛⎭⎪⎫x +m 22+y 2=⎝ ⎛⎭⎪⎫m 2+122,圆心到直线y =-1的距离m 2+12=|0-(-1)|,解得m =±3,因为圆心在y 轴的左侧,所以m = 3.答案: 35.已知点P 是圆C :x 2+y 2+4x -6y -3=0上的一点,直线l :3x -4y -5=0.若点P 到直线l 的距离为2,则符合题意的点P 有________个.解析:由题意知圆的标准方程为(x +2)2+(y -3)2=42, ∴圆心到直线l 的距离d =|-6-12-5|5=235>4,故直线与圆相离,则满足题意的点P有2个.答案:2二保高考,全练题型做到高考达标1.(xx·苏州模拟)对任意的实数k ,直线y =kx -1与圆C :x 2+y 2-2x -2=0的位置关系是________.解析:直线y =kx -1恒经过点A (0,-1),圆x 2+y 2-2x -2=0的圆心为C (1,0),半径为3,而|AC |=2<3,故直线y =kx -1与圆x 2+y 2-2x -2=0相交.答案:相交2.圆x 2+y 2+2y -3=0被直线x +y -k =0分成两段圆弧,且较短弧长与较长弧长之比为1∶3,则k =________.解析:由题意知,圆的标准方程为x 2+(y +1)2=4.较短弧所对圆周角是90°,所以圆心(0,-1)到直线x +y -k =0的距离为22r = 2.即|1+k |2=2,解得k =1或-3. 答案:1或-33.直线y =x +4与圆(x -a )2+(y -3)2=8相切,则a 的值为________. 解析:法一:联立⎩⎪⎨⎪⎧y =x +4,x -a2+y -2=8,消去y 可得,2x 2-(2a -2)x +a 2-7=0,则由题意可得Δ=[-(2a -2)]2-4×2×(a 2-7)=0,整理可得a 2+2a -15=0,解得a =3或-5.法二:因为(x -a )2+(y -3)2=8的圆心为(a,3),半径为22,所以由直线y=x +4与圆(x -a )2+(y -3)2=8相切,知圆心到直线的距离等于半径,所以|a -3+4|12+-2=22,即|a +1|=4,解得a =3或-5.答案:3或-54.在圆x 2+y 2+2x -4y =0内,过点(0,1)的最短弦所在直线的倾斜角是________. 解析:由题意知,圆心为(-1,2),过点(0,1)的最长弦(直径)斜率为-1,且最长弦与最短弦垂直,∴过点(0,1)的最短弦所在直线的斜率为1,即倾斜角是π4.答案:π45.已知直线l :x +ay -1=0(a ∈R)是圆C :x 2+y 2-4x -2y +1=0的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |=________.解析:由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1). ∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36. ∴|AB |=6. 答案:66.直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,所以圆心到直线的距离为d =|2×3-4+3|4+1=5,所以弦长为2r 2-d 2=2×25-5=220=4 5.答案:4 57.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程是____________.解析:依题意得知,当∠ACB 最小时,圆心C 到直线l 的距离达到最大,此时直线l 与直线CM 垂直,又直线CM 的斜率为1,因此所求的直线l 的方程是y -2=-(x -1),即x +y -3=0.答案:x +y -3=08.(xx·南京名校联考)已知圆O :x 2+y 2=1,直线x -2y +5=0上动点P ,过点P 作圆O 的一条切线,切点为A ,则|PA |的最小值为________.解析:过O 作OP 垂直于直线x -2y +5=0,过P 作圆O 的切线PA ,连结OA ,易知此时|PA |的值最小.由点到直线的距离公式,得|OP |=|1×0-2×0+5|1+22= 5.又|OA |=1,所以|PA |=|OP |2-|OA |2=2.答案:29.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |=2,解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.10.如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P .(1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解:(1)设圆A 的半径为R .由于圆A 与直线l 1:x +2y +7=0相切, ∴R =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意; ②当直线l 的斜率存在时,设直线l 的方程为y =k (x +2).即kx -y +2k =0. 连结AQ ,则AQ ⊥MN .∵|MN |=219,∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34,∴直线l :3x -4y +6=0.故直线l 的方程为x =-2或3x -4y +6=0. 三上台阶,自主选做志在冲刺名校1.(xx·苏州调研)已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.解析:圆C 1的标准方程为(x +2a )2+y 2=4,其圆心为(-2a ,0),半径为2;圆C 2的标准方程为x 2+(y -b )2=1,其圆心为(0,b ),半径为1.因为圆C 1和圆C 2只有一条公切线,所以圆C 1与圆C 2相内切,所以-2a -2+-b2=2-1,得4a 2+b 2=1,所以1a2+1b 2=⎝ ⎛⎭⎪⎫1a 2+1b 2(4a 2+b 2)=5+b 2a 2+4a 2b2≥5+2b 2a 2·4a 2b 2=9,当且仅当b 2a 2=4a 2b2,且4a 2+b 2=1,即a 2=16,b 2=13时等号成立.所以1a 2+1b2的最小值为9.答案:92.(xx·江阴一中检测)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长为________.解析:连结OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A中,OA =5,O 1A =25,∴OO 1=5,∴AC =5×255=2,∴AB =4. 答案:43.已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线3x -4y +7=0相切,且被y 轴截得的弦长为23,圆C 的面积小于13.(1)求圆C 的标准方程;(2)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;如果不存在,请说明理由.解:(1)设圆C :(x -a )2+y 2=r 2(a >0),由题意知⎩⎪⎨⎪⎧|3a +7|32+42=r ,a 2+3=r ,解得a =1或a =138,又S =πr 2<13,∴a =1,r =2, ∴圆C 的标准方程为(x -1)2+y 2=4.(2)当斜率不存在时,直线l 为x =0,不满足题意.当斜率存在时,设直线l :y =kx +3,A (x 1,y 1),B (x 2,y 2),又l 与圆C 相交于不同的两点,联立得⎩⎪⎨⎪⎧y =kx +3,x -2+y 2=4,消去y 得(1+k 2)x 2+(6k -2)x +6=0,∴Δ=(6k -2)2-24(1+k 2)=12k 2-24k -20>0, 解得k <1-263或k >1+263.x 1+x 2=-6k -21+k 2,y 1+y 2=k (x 1+x 2)+6=2k +61+k2, =+=(x 1+x 2,y 1+y 2),=(1,-3),假设∥,则-3(x 1+x 2)=y 1+y 2,∴3×6k -21+k 2=2k +61+k 2, 解得k =34∉⎝ ⎛⎭⎪⎫-∞,1-263∪⎝ ⎛⎭⎪⎫1+263,+∞,假设不成立, ∴不存在这样的直线l .。
2020版高考数学大一轮复习第九章平面解析几何第6讲双曲线检测文(最新整理)

第6讲双曲线[基础题组练]1.若双曲线C1:错误!-错误!=1与C2:错误!-错误!=1(a>0,b〉0)的渐近线相同,且双曲线C2的焦距为4错误!,则b=()A.2 B.4C.6 D.8解析:选B。
由题意得,错误!=2⇒b=2a,C2的焦距2c=4错误!⇒c=错误!=2错误!⇒b=4,故选B。
2.已知双曲线x2a2-错误!=1(a〉0,b〉0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=4b,且双曲线的焦距为25,则该双曲线的方程为( )A。
x24-y2=1 B.错误!-错误!=1C.x2-y24=1 D。
错误!-错误!=1解析:选A。
由题意可得错误!解得错误!则该双曲线方程为错误!-y2=1.3.(2019·辽宁抚顺模拟)当双曲线M:x2m2-错误!=1(-2≤m<0)的焦距取得最小值时,双曲线M的渐近线方程为( )A.y=±错误!x B.y=±错误!xC.y=±2x D.y=±错误!x解析:选C.由题意可得c2=m2+2m+6=(m+1)2+5,当m=-1时,c2取得最小值,即焦距2c取得最小值,此时双曲线M的方程为x2-错误!=1,所以渐近线方程为y=±2x。
故选C.4.已知双曲线错误!-错误!=1(a>0,b〉0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆内,则双曲线离心率的取值范围是( ) A.(2,+∞)B.(1,2)C。
错误! D.错误!解析:选A.由双曲线的性质可得|AF|=错误!,即以AB为直径的圆的半径为错误!,而右顶点与左焦点的距离为a+c,由题意可知错误!>a+c,整理得c2-2a2-ac〉0,两边同除以a2,则e2-e-2〉0,解得e>2或e<-1,又双曲线的离心率大于1,所以e>2.5.已知双曲线的焦距为6,其上一点P到两焦点的距离之差为-4,则双曲线的标准方程为________.解析:若双曲线的焦点在x轴上,设其标准方程为错误!-错误!=1。
2020版高考数学一轮复习第九章平面解析几何第6讲双曲线教案(理)(含解析)新人教A版

第6讲 双曲线基础知识整合1.双曲线的概念平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做□01双曲线.这两个定点叫做双曲线的□02焦点,两焦点间的距离叫做双曲线的□03焦距. 集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0: (1)当□04a <c 时,M 点的轨迹是双曲线; (2)当□05a =c 时,M 点的轨迹是两条□06射线; (3)当□07a >c 时,M 点不存在. 2.双曲线的标准方程和几何性质续表a ,b ,c 的关系,□19c 2=a 2+b 2(c >a >0,c >b >0)双曲线中的几个常用结论 (1)焦点到渐近线的距离为b .(2)实轴长和虚轴长相等的双曲线叫做等轴双曲线.(3)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).(4)过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a.(5)双曲线的离心率公式可表示为e =1+b 2a2.1.(2018·浙江高考)双曲线x23-y 2=1的焦点坐标是( )A .(-2,0),(2,0)B .(-2,0),(2,0)C .(0,-2),(0,2)D .(0,-2),(0,2)答案 B解析 因为双曲线方程为x 23-y 2=1,所以焦点坐标可设为(±c,0),因为c 2=a 2+b 2=3+1=4,c =2,所以焦点坐标为(±2,0),选B.2.(2019·宁夏模拟)设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上均不对答案 B解析 根据双曲线的定义得||PF 1|-|PF 2||=8⇒|PF 2|=1或17.又|PF 2|≥c -a =2,故|PF 2|=17,故选B.3.(2019·湖北模拟)若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A.73B.54C.43D.53答案 D解析 由已知可得双曲线的渐近线方程为y =±b a x ,点(3,-4)在渐近线上,∴b a =43,又a 2+b 2=c 2,∴c 2=a 2+169a 2=259a 2,∴e =c a =53.故选D.4.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的渐近线上,则C的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 答案 A解析 ∵点P (2,1)在曲线C 的渐近线y =b a x 上,∴1=2b a ,∴a =2b .又∵a 2+b 2=102=5,即4b 2+b 2=25,∴b 2=5,a 2=20,故选A.5.(2018·北京高考)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.答案 4解析 在双曲线中,c =a 2+b 2=a 2+4,且e =c a =52,∴a 2+4a =52,a 2+4a 2=54,a 2=16,∵a >0,∴a =4.6.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.答案 1 2解析 由题可知双曲线焦点在x 轴上,故渐近线方程为y =±b ax ,又一条渐近线为2x +y =0,即y =-2x ,∴b a=2,即b =2a .又∵该双曲线的一个焦点为(5,0),∴c = 5.由a 2+b 2=c 2可得a 2+(2a )2=5,解得a =1,b =2.核心考向突破考向一 双曲线的定义例1 (1)(2019·山西模拟)已知双曲线C :x 2a 2-y 24=1(a >0)的一条渐近线方程为2x +3y=0,F 1,F 2分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且|PF 1|=2,则|PF 2|=( )A .4B .6C .8D .10答案 C解析 由题意得2a =23,解得a =3.因为|PF 1|=2,所以点P 在双曲线的左支上.所以|PF 2|-|PF 1|=2a ,解得|PF 2|=8.故选C.(2)(2019·河南濮阳模拟)已知双曲线x 2-y 2=4,F 1是左焦点,P 1,P 2是右支上的两个动点,则|F 1P 1|+|F 1P 2|-|P 1P 2|的最小值是( )A .4B .6C .8D .16答案 C解析 设双曲线的右焦点为F 2,∵|F 1P 1|=2a +|F 2P 1|,|F 1P 2|=2a +|F 2P 2|,∴|F 1P 1|+|F 1P 2|-|P 1P 2|=2a +|F 2P 1|+2a +|F 2P 2|-|P 1P 2|=8+(|F 2P 1|+|F 2P 2|-|P 1P 2|)≥8(当且仅当P 1,P 2,F 2三点共线时,取等号),∴|F 1P 1|+|F 1P 2|-|P 1P 2|的最小值是8.故选C.触类旁通双曲线定义的应用主要有两个方面:一是判定平面内动点的轨迹是不是双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.即时训练 1.虚轴长为2,离心率e =3的双曲线的两焦点为F 1,F 2,过F 1作直线交双曲线的一支于A ,B 两点,且|AB |=8,则△ABF 2的周长为( )A .3B .16+ 2C .12+ 2D .24答案 B解析 由于2b =2,e =c a=3,∴b =1,c =3a , ∴9a 2=a 2+1,∴a =24. 由双曲线的定义知,|AF 2|-|AF 1|=2a =22,① |BF 2|-|BF 1|=22,② ①+②得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=2, 又|AF 1|+|BF 1|=|AB |=8, ∴|AF 2|+|BF 2|=8+2,则△ABF 2的周长为16+2,故选B.2.已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.答案 9解析 设双曲线的右焦点为F 1,则由双曲线的定义,可知|PF |=4+|PF 1|,所以当|PF 1|+|PA |最小时满足|PF |+|PA |最小.由双曲线的图象,可知当点A ,P ,F 1共线时,满足|PF 1|+|PA |最小,|AF 1|即|PF 1|+|PA |的最小值.又|AF 1|=5,故所求的最小值为9.考向二 双曲线的标准方程例2 (1)(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x 可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,离心率为 2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.x 24-y 24=1B.x 28-y 28=1C.x 24-y 28=1 D.x 28-y 24=1 答案 B解析 由题意可得c a=2,即c =2a . 又左焦点F (-c,0),P (0,4),则直线PF 的方程为y -04-0=x +c0+c,化简即得y =4cx +4.结合已知条件和图象易知直线PF 与y =b ax 平行,则4c =ba,即4a =bc .故⎩⎨⎧c =2a ,4a =bc ,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=8,b 2=8,故双曲线方程为x 28-y 28=1.故选B.触类旁通即时训练 3.(2019·西安模拟)已知双曲线x 2a2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y2100=1 D.3x 2100-3y225=1 答案 A解析 依题意,双曲线的渐近线为y =2x ,故b a=2①;在直线y =2x +10中,令y =0,故x =-5,所以a 2+b 2=25②.联立①②,解得a 2=5,b 2=20.4.(2018·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 答案 C解析 设双曲线的右焦点坐标为F (c,0)(c >0),则x A =x B =c ,由c 2a 2-y 2b 2=1可得,y =±b 2a,不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a ,双曲线的一条渐近线方程为bx -ay =0,据此可得,d 1=|bc -b 2|a 2+b2=bc -b 2c ,d 2=|bc +b 2|a 2+b2=bc +b 2c ,则d 1+d 2=2bc c =2b =6,则b =3,b 2=9,双曲线的离心率e =c a =1+b 2a2=1+9a 2=2,据此可得,a 2=3,则双曲线的方程为x 23-y 29=1. 考向三 双曲线的几何性质角度1 双曲线离心率问题例3 (1)(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为32c ,则其离心率的值是___. 答案 2解析 因为双曲线的焦点F (c,0)到渐近线y =±b a x ,即bx ±ay =0的距离为|bc ±0|a 2+b 2=bcc=b ,所以b =32c ,因此a 2=c 2-b 2=c 2-34c 2=14c 2,a =12c ,e =2. (2)(2016·山东高考)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案 2解析 由已知得|AB |=|CD |=2b2a,|BC |=|AD |=|F 1F 2|=2c .因为2|AB |=3|BC |,所以4b2a=6c ,又b 2=c 2-a 2,所以2e 2-3e -2=0, 解得e =2,或e =-12(舍去).触类旁通求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c的方程或不等式,利用b 2=c 2-a 2和e =c a转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.即时训练 5.双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2⊥x 轴,则双曲线的离心率为( )A. 6B. 3C. 2D.33答案 B解析 如图所示,在Rt △MF 1F 2中,∠MF 1F 2=30°,F 1F 2=2c ,∴MF 1=2c cos30°=433c ,MF 2=2c ·tan30°=233c ,∴2a =MF 1-MF 2=433c -233c =233c ⇒e =ca= 3.6.已知点F 1,F 2分别是双曲线x 2a2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)答案 D解析 依题意,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e<2,e 2-2e-1<0,(e -1)2<2,所以1<e <1+2,故选D.角度2 双曲线的渐近线问题例4 (1)(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 答案 A解析 ∵e =c a =3,∴b 2a 2=c 2-a 2a 2=e 2-1=3-1=2,∴ba= 2.因为该双曲线的渐近线方程为y =±b ax ,所以该双曲线的渐近线方程为y =±2x ,故选A.(2)(2019·深圳调研)在平面直角坐标系xOy 中,双曲线的中心在原点,焦点在y 轴上,一条渐近线方程为x -2y =0,则它的离心率为( )A. 5B.52C. 3D .2答案 A解析 依题意设双曲线的方程是y 2a 2-x 2b 2=1(其中a >0,b >0),则其渐近线方程是y =±ab x ,由题知a b =12,即b =2a ,因此其离心率e =a 2+b 2a =5aa= 5.触类旁通即时训练 7.(2018·全国卷Ⅲ)已知双曲线C :x 2a2-y 2b2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( )A. 2 B .2 C.322D .2 2答案 D解析 因为e =c a=1+⎝ ⎛⎭⎪⎫b a 2=2,所以b a=1,所以双曲线的渐近线方程为x ±y =0,所以点(4,0)到渐近线的距离d =41+1=2 2.故选D. 8.(2019·河北武邑中学模拟)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点与x 轴垂直的直线与渐近线交于A ,B 两点,若△OAB 的面积为13bc3,则双曲线的离心率为( ) A.52 B.53 C.132D.133答案 D解析 设A (x 0,y 0),由题意,得x 0=c ,代入渐近线方程y =b a x 中,得y 0=bc a ,即A ⎝ ⎛⎭⎪⎫c ,bc a ,同理可得B ⎝⎛⎭⎪⎫c ,-bc a ,则12×2bc a ×c =13bc 3.整理,得ca =133,即双曲线的离心率为133.故选D. 考向四 直线与双曲线的位置关系例5 已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0)经过点P (2,1),且其中一焦点F 到一条渐近线的距离为1.(1)求双曲线Γ的方程;(2)过点P 作两条相互垂直的直线PA ,PB 分别交双曲线Γ于A ,B 两点,求点P 到直线AB 距离的最大值.解 (1)∵双曲线x 2a 2-y 2b 2=1过点(2,1),∴4a 2-1b2=1. 不妨设F 为右焦点,则F (c,0)到渐近线bx -ay =0的距离d =|bc |a 2+b 2=b ,∴b =1,a 2=2,∴所求双曲线的方程为x 22-y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +m .将y =kx +m 代入x 2-2y 2=2中,整理得(2k 2-1)x 2+4kmx +2m 2+2=0.∴x 1+x 2=-4km 2k 2-1,① x 1x 2=2m 2+22k 2-1.② ∵PA →·PB →=0,∴(x 1-2,y 1-1)·(x 2-2,y 2-1)=0,∴(x 1-2)(x 2-2)+(kx 1+m -1)(kx 2+m -1)=0,∴(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+m 2-2m +5=0.③将①②代入③,得m 2+8km +12k 2+2m -3=0,∴(m +2k -1)(m +6k +3)=0.而P ∉AB ,∴m =-6k -3,从而直线AB 的方程为y =kx -6k -3.将y =kx -6k -3代入x 2-2y 2-2=0中,判别式Δ=8(34k 2+36k +10)>0恒成立,∴y =kx -6k -3即为所求直线.∴P 到AB 的距离d =|2k -6k -3-1|1+k 2=4|k +1|k 2+1. ∵⎝ ⎛⎭⎪⎫d 42=k 2+1+2k k 2+1=1+2k k 2+1≤2. ∴d ≤42,即点P 到直线AB 距离的最大值为4 2.触类旁通求解双曲线综合问题的主要方法双曲线的综合问题主要为直线与双曲线的位置关系.解决这类问题的常用方法是: 1设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x 或y 的一元二次方程,利用根与系数的关系及整体代入的思想解题. 2利用点差法.即时训练 9.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同点A ,B . (1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,取PA →=512PB →,求a 的值. 解 (1)将y =-x +1代入双曲线x 2a2-y 2=1(a >0)中,得(1-a 2)x 2+2a 2x -2a 2=0. 所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 21-a 2>0,解得0<a <2且a ≠1. 又双曲线的离心率e =1+a 2a =1a 2+1, 所以e >62且e ≠2,即e ∈⎝ ⎛⎭⎪⎫62,2∪(2,+∞). (2)设A (x 1,y 1),B (x 2,y 2),P (0,1),因为PA →=512PB →,所以(x 1,y 1-1)=512(x 2,y 2-1), 由此得x 1=512x 2. 由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根,且1-a 2≠0,所以x 1+x 2=1712x 2=-2a 21-a2, x 1x 2=512x 22=-2a 21-a2, 消去x 2得-2a 21-a 2=28960,由a >0,解得a =1713.。
高考数学一轮总复习第九章平面解析几何第六节双曲线课件

cm,则|AD|=(
A.12 10 cm
B.6 38 cm
C.38 cm
D.6 37 cm
)
答案 (1)B
(2)D
解析(1)由题可知 a2=3-m,b2=m,所以 c= 3.
1
因为|OP|=2|F1F2|,所以
PF1⊥PF2.
又∠PF1F2=30°,所以|PF1|=3,|PF2|= 3,
所以由双曲线的定义可知|PF1|-|PF2|=3- 3=2 3-,解得
3 3
m= 2 .故选
B.
(2)以双曲线的对称中心为坐标原点,建立平面直角坐标系xOy,如图所示.
因为双曲线的离心率为2,
2
所以可设双曲线的方程为 2
依题意可得 2a=30,则
−
2
=1(a>0).
2
3
2
a=15,即双曲线的方程为152
因为|AB|=36 cm,所以 A 的纵坐标为 18.
1 2
)
2.(多选)已知双曲线
2
C:12
−
A.实轴长是虚轴长的 2 倍
B.焦距为 8
C.离心率为 3
D.渐近线方程为 x± 3y=0
2
=1,下列对双曲线
4
C 的判断正确的是(
)
答案 BD
解析 由双曲线
2
C:12
−
2
=1,可得
4
a2=12,b2=4,则 c2=a2+b2=16,
所以 a=2 3,b=2,c=4.所以选项 A 不正确,选项 B 正确;
当2a>|F1F2|时,动点的轨迹不存在;
当2a=0时,动点的轨迹是线段F1F2的中垂线.
2020版高考理科数学_经典版_复习_课件_讲义_课时作业_第九章 平面解析几何 第6讲

c= 2a, 故4a=bc,
a2+b2=c2,
解得ab22= =88, ,
故双曲线方程为x82-y82=1.故选B.
基础知识整合
核心考向突破
配套课时作业
解析
触类旁通 利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形 式,根据已知条件,列出关于参数a,b,c的方程并求出a,b,c的值.与双 曲线xa22-yb22=1有相同渐近线时可设所求双曲线方程为ax22-by22=λ(λ≠0).
答案 A
基础知识整合
核心考向突破
配套课时作业
答案
解析
依题意,双曲线的渐近线为y=2x,故
b a
=2①;在直线y=2x+10
中,令y=0,故x=-5,所以a2+b2=25②.联立①②,解得a2=5,b2=20.
基础知识整合
核心考向突破
配套课时作业
解析
4.(2018·天津高考)已知双曲线ax22-by22=1(a>0,b>0)的离心率为 2,过右 焦点且垂直于 x 轴的直线与双曲线交于 A,B 两点.设 A,B 到双曲线的同一 条渐近线的距离分别为 d1 和 d2,且 d1+d2=6,则双曲线的方程为( )
-y2=1,所以焦点坐标可设为(±c,0),因为
c2=a2+b2=3+1=4,c=2,所以焦点坐标为(±2,0),选B.
基础知识整合
核心考向突破
配套课时作业
解析
2.(2019·宁夏模拟)设P是双曲线
x2 16
-
y2 20
=1上一点,F1,F2分别是双曲
线的左、右焦点,若|PF1|=9,则|PF2|等于( )
2.双曲线的标准方程和几何性质
基础知识整合
2020届高考数学总复习第九章解析几何9_6双曲线课时作业文(含解析)新人教A版

9-6 双曲线课时作业A 组——基础对点练1.“m <8”是“方程x 2m -10-y 2m -8=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A2.已知F 1,F 2为双曲线x 25-y 24=1的左、右焦点,P (3,1)为双曲线内一点,点A 在双曲线上,则|AP |+|AF 2|的最小值为( ) A.37+4 B.37-4 C.37-2 5 D.37+2 5【答案】C 3.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0C .x ±2y =0D .2x ±y =0【答案】A4.过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1 【答案】A 5.(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( ) A. 5 B .2 C. 3 D. 2【答案】C6.(2019·枣庄月考)已知双曲线C 1:x 24-y 2=1,双曲线C 2:x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 2的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若S △OMF 2=16,且双曲线C 1,C 2的离心率相同,则双曲线C 2的实轴长是( )A .32B .16C .8D .4【答案】B7.如图所示,已知双曲线以长方形ABCD 的顶点A ,B 为左、右焦点,且双曲线过C ,D 两顶点.若AB =4,BC =3,则此双曲线的标准方程为__________.【答案】x 2-y 23=18.过双曲线x 2a 2-y 2b 2=1(a >0,b <0)的右焦点且垂于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐近线交于C ,D 两点,若|AB |≥513|CD |,则双曲线离心率的取值范围为______________. 【答案】⎣⎢⎡⎭⎪⎫1312,+∞ 9.如图,已知F 1,F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求:(1)双曲线的离心率.(2)双曲线的渐近线方程.10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程.(2)经过双曲线右焦点F 2作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求|AB |.B 组——能力提升练1.(2018·全国Ⅰ卷)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32 B .3C .2 3D .4【答案】B2.已知双曲线x 23-y 2=1的右焦点是抛物线y 2=2px (p >0)的焦点,直线y =kx +m 与抛物线交于A ,B 两个不同的点,点M (2,2)是AB 的中点,则△OAB (O 为坐标原点)的面积是( )A .4 3B .313 C.14 D .2 3【答案】D 3.(2019·福建莆田一中月考)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,且PF 1⊥PF 2,e 1,e 2分别是两曲线C 1,C 2的离心率,则9e 21+e 22的最小值是________.【答案】8 4.已知F 1,F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0且a ≠b )的两个焦点,P 为双曲线右支上异于顶点的任意一点,O 为坐标原点.给出下面四个命题:①△PF 1F 2的内切圆的圆心必在直线x =a 上;②△PF 1F 2的内切圆的圆心必在直线x =b 上;③△PF 1F 2的内切圆的圆心必在直线OP 上;④△PF 1F 2的内切圆必通过点(a ,0).其中所有真命题的序号是____________.【答案】①④5.(2019·湛江模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c ,0). (1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程.(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.。
北京2020版高考数学一轮复习第九章平面解析几何第六节双曲线作业本理

第六节双曲线A组基础题组1.已知椭圆+=1(a>0)与双曲线-=1有相同的焦点,则a的值为( )A. B.C.4D.2.已知双曲线-=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为( )A.-=1B.-=1C.-=1D.-=13.已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )A.x±y=0B.x±y=0C.x±2y=0D.2x±y=04.已知M(x0,y0)是双曲线C:-y2=1上的一点,F1,F2是C的两个焦点.若·<0,则y0的取值范围是( )A. B.C. D.5.(2017北京,9,5分)若双曲线x2-=1的离心率为,则实数m= .6.(2017北京朝阳二模,9)双曲线-=1的渐近线方程是,离心率是.7.(2017北京房山一模,11)已知双曲线-=1(a>0)的一条渐近线方程为y=2x,则该双曲线的焦距为.8.已知双曲线C:-=1(a>0,b>0)的一条渐近线l的倾斜角为,且C的一个焦点到l的距离为,则双曲线C的方程为.9.已知双曲线的中心在原点,左,右焦点F1,F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:·=0.B组提升题组10.若双曲线C:-=1(a>0,b>0)的一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则C的离心率为( )A.2B.C.D.11.如果双曲线的离心率e=,则称此双曲线为黄金双曲线,有以下几个命题:①双曲线-=1是黄金双曲线;②双曲线y2-=1是黄金双曲线;③在双曲线-=1中,F1为左焦点,A2为右顶点,B1(0,b),若∠F1B1A2=90°,则该双曲线是黄金双曲线;④在双曲线-=1中,过焦点F2作实轴的垂线交双曲线于M、N两点,O为坐标原点,若∠MON=120°,则该双曲线是黄金双曲线.其中正确命题的序号为( )A.①和②B.②和③C.③和④D.①和④12.(2016北京,13,5分)双曲线-=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a= .13.(2017北京东城一模,13)若双曲线-=1(a>0,b>0)的渐近线为等边三角形OAB的边OA,OB所在的直线,直线AB过双曲线的焦点,且|AB|=2,则a= .13.若圆(x-2)2+y2=1与双曲线C:-y2=1(a>0)的渐近线相切,则a= ;双曲线C的渐近线方程是.14.若点O和点F2(-,0)分别为双曲线-y2=1(a>0)的对称中心和左焦点,点P(x0,y0)为双曲线右支上的任意一点,则的取值范围为.15.已知双曲线E:-=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.(1)求双曲线E的离心率;(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且△OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E.若存在,求出双曲线E的方程.答案精解精析A组基础题组1.C 因为椭圆+=1(a>0)与双曲线-=1有相同的焦点(±,0),则有a2-9=7,所以a=4.2.A 由题意知圆心坐标为(5,0),即c=5,又e==,所以a=,所以a2=5,b2=20,所以双曲线的标准方程为-=1.3.A 设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=,e2=.因为e1·e2=,所以=,即=,∴=.故双曲线的渐近线方程为y=±x=±x,即x±y=0.4.A 若·=0,则点M在以原点为圆心,半焦距c=为半径的圆上,则解得=.可知:·<0⇒点M在圆x2+y2=3的内部⇒<⇒y0∈.故选A.5.答案 2解析由题意知,a2=1,b2=m.∵e====,∴m=2.6.答案y=±x;解析由题知a=,b=,所以c=3,渐近线方程为y=±x,即y=±x,离心率e==.7.答案10解析由双曲线方程可知b=2,∵双曲线的一条渐近线方程为y=2x,∴==2,∴a=,∴c2=5+20=25,∴c=5,∴焦距为2c=2×5=10.8.答案x2-=1解析由题意知双曲线C的渐近线的斜率为±tan=±,即=,①又双曲线C的一个焦点到l的距离为,所以c==2,②由①②及a2+b2=c2知a=1,b=,故双曲线C的方程为x2-=1.9.解析(1)∵e=,∴可设双曲线的方程为x2-y2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线的方程为-=1.(2)证法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0),∴=,=,∴·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,故·=-1,∴MF1⊥MF2,即·=0.证法二:由证法一知=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0.B组提升题组10.A 由题意可知圆的圆心为(2,0),半径为2.因为双曲线-=1的渐近线方程为y=±x,即bx±ay=0,且双曲线的一条渐近线与圆相交所得的弦长为2,所以=,所以=.故离心率e==2.选A.11.B 对于①,由双曲线方程知a2=2,b2=-1,所以c2=a2+b2=+1,所以e2==,即e=,所以①错误;对于②,由双曲线方程知a2=1,b2=,所以c2=a2+b2=,所以e2==,即e=,所以②正确;对于③,在Rt△F1B1A2中,由射影定理知b2=ac,即c2-a2=ac,由e=知,e2-e-1=0,解得e=或e=(舍去),所以③正确;对于④,如图所示,由∠MON=120°知∠MOF2=60°,易知|MF2|=,|OF2|=c,在Rt△OF2M中,tan∠MOF2=tan 60°===,即b2=ac,由c2=a2+b2得c2-a2=ac,即e2-e-1=0,解得e=或e=(舍),所以④错误.综上可知,正确命题的序号为②③,故选B.12.答案 2解析由OA、OC所在的直线为渐近线,且OA⊥OC,知两条渐近线的夹角为90°,从而双曲线为等轴双曲线,则其方程为x2-y2=a2.OB是正方形的对角线,且点B是双曲线的焦点,则c=2,根据c2=2a2可得a=2.13.答案解析如图所示,设直线AB过双曲线的右焦点F2,则F2(c,0),∵A、B两点在双曲线-=1的渐近线上,双曲线的渐近线方程为y=±x,∴A,B,∴tan∠AOF2=tan 30°====,∴a=b,∵|AB|==2,∴a=bc,∴c=,∴a2=b2c2=3b2=3(c2-a2)=9-3a2,∴4a2=9,∴a=.14.答案;y=±x解析双曲线的渐近线方程为y=±,即x±ay=0.由于圆与渐近线相切,r=1,∴d==1,解得a=(舍负).∴双曲线的渐近线方程为y=±x.15.答案解析由F2(-,0)得c=,∴a=1,∵P(x0,y0)为双曲线右支上任意一点,∴x0≥1,且-=1,∴|PF2|2=(x0+)2+=(x0+)2+-1=2+2x0+1,|OP|2+1=++1=2,∴==+×+1=,∴∈.16.解析(1)因为双曲线E的渐近线方程分别为y=2x,y=-2x,所以=2,所以=2,故c=a, 从而双曲线E的离心率e==.(2)由(1)知,双曲线E的方程为-=1.设直线l与x轴相交于点C.当l⊥x轴时,若直线l与双曲线E有且只有一个公共点,则|OC|=a,|AB|=4a,又因为△OAB的面积为8,所以|OC|·|AB|=8,因此a·4a=8,解得a=2,此时双曲线E的方程为-=1.。
高考数学一轮复习统考 第9章 平面解析几何 第6讲 双曲线课时作业(含解析)北师大版-北师大版高三全

双曲线课时作业1.双曲线x 236-m 2-y 2m2=1(0<m <3)的焦距为()A .6B .12C .36D .236-2m 2答案 B解析 c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线8kx 2-ky 2=8的一个焦点是(0,3),则k 的值是() A .1 B .-1 C .653D .-63答案 B解析 ∵双曲线8kx 2-ky 2=8,焦点在y 轴上,∴双曲线的标准方程为y 2-8k -x 2-1k=1,又c =3,∴-8k -1k=9,解得k =-1.3.(2019·某某永州模拟)焦点是(0,±2),且与双曲线x 23-y 23=1有相同的渐近线的双曲线的方程是()A .x 2-y 23=1B .y 2-x 23=1C .x 2-y 2=2 D .y 2-x 2=2答案 D解析 由已知,双曲线焦点在y 轴上,且为等轴双曲线,故选D .4.(2019·某某凌源联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的顶点(a,0)到渐近线y=b a x 的距离为b2,则双曲线C 的离心率是() A .2 B .3 C .4 D .5答案 A解析 因为顶点(a,0)到渐近线y =bax 的距离d =ab a 2+b2=b 2,所以a c =12,所以e =ca =2.故选A .5.(2019·某某滕州月考)已知双曲线x 225-y 29=1的左、右焦点分别为F 1,F 2,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 是MF 2的中点,O 为坐标原点,则|NO |等于()A .23B .1C .2D .4答案 D解析 由双曲线x 225-y 29=1,知a =5,由双曲线定义,得|MF 2|-|MF 1|=2a =10,得|MF 1|=8,所以|NO |=12|MF 1|=4.6.虚轴长为2,离心率e =3的双曲线的两焦点为F 1,F 2,过F 1作直线交双曲线的一支于A ,B 两点,且|AB |=8,则△ABF 2的周长为()A .3B .16+ 2C .12+ 2D .24答案 B解析 由于2b =2,e =c a=3,∴b =1,c =3a , ∴9a 2=a 2+1,∴a =24. 由双曲线的定义知,|AF 2|-|AF 1|=2a =22,① |BF 2|-|BF 1|=22,② 由①+②,得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=2, 又|AF 1|+|BF 1|=|AB |=8, ∴|AF 2|+|BF 2|=8+2,则△ABF 2的周长为16+2,故选B .7.(2019·全国卷Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为()A .32B .52C .72D .92答案 B解析 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎪⎨⎪⎧x 20+y 20=3,x 204-y 205=1,解得⎩⎪⎨⎪⎧x 20=569,y 20=259,所以P ⎝⎛⎭⎪⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.故选B .8.过双曲线x 2a 2-y 23=1(a >0)的右焦点F 作直线l 与双曲线交于A ,B 两点,使得|AB |=6,若这样的直线有且只有两条,则a 的取值X 围是()A .(0,1]∪(3,+∞)B .(0,1)∪(3,+∞)C .(0,1)D .(3,+∞)答案 B解析 若A ,B 在同一支上,则有|AB |min =2b 2a =6a;若A ,B 不在同一支上,则|AB |min =2a .依题意, 得6a 与2a 不可能同时等于6,所以⎩⎪⎨⎪⎧2a >6,6a <6或⎩⎪⎨⎪⎧2a <6,6a>6,解得a >3或0<a <1,故选B .9.已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是()A .6B .8C .10D .12答案 C解析 由题意可知点C 3,C 2分别是双曲线C 1:x 216-y 29=1的左、右焦点,点P 在双曲线的左支上,则|PC 2|-|PC 3|=8.|PQ |max =|PC 2|+1,|PR |min =|PC 3|-1,所以|PQ |-|PR |的最大值为(|PC 2|+1)-(|PC 3|-1)=|PC 2|-|PC 3|+2=8+2=10.故选C .10.(2019·某某豫南、豫北联考)已知直线y =x +1与双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且线段AB 的中点M 的横坐标为1,则该双曲线的离心率为()A . 2B . 3C .2D . 5答案 B解析 由题意得M (1,2).设A (x 1,y 1),B (x 2,y 2),分别代入双曲线方程,两式相减并整理得y 21-y 22x 21-x 22=b 2a2=k AB ·k OM =2.∴b 2=2a 2,即c 2-a 2=2a 2,∴e = 3.故选B .11.(2020·某某某某联考)已知双曲线x 24-y 22=1的右焦点F ,P 为双曲线左支上一点,点A (0,2),则△APF 的周长的最小值为()A .4+ 2B .4(1+2)C .2(2+6)D .6+3 2答案 B解析 双曲线x 24-y 22=1的右焦点为F (6,0),设其左焦点为F ′.△APF 的周长l =|AF |+|AP |+|PF |=|AF |+|AP |+2a +|PF ′|,要使△APF 周长最小,只需|AP |+|PF ′|最小.如图,当A ,P ,F ′三点共线时l 取到最小值,且l min =2|AF |+2a =4(1+2).故选B .12.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为()A . 5B .2C . 3D . 2答案 C解析 由题可知|PF 2|=b ,|OF 2|=c ,∴|PO |=a . 在Rt △POF 2中,cos ∠PF 2O =|PF 2||OF 2|=bc, ∵在△PF 1F 2中,cos ∠PF 2O =|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc,∴b 2+4c 2-(6a )22b ·2c =b c⇒c 2=3a 2,∴e = 3.故选C .13.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.答案x 24-y 2=1解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,3),所以42-4×(3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.14.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________.答案 y =±2x解析 根据已知可得,|PF 2|=b 2a 且|PF 1|=2b 2a ,故2b 2a -b 2a =2a ,所以b 2a 2=2,ba=2,双曲线的渐近线方程为y =±2x .15.(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若=,·=0,则C 的离心率为________.答案 2解析 解法一:由=,得A 为F 1B 的中点.又O 为F 1F 2的中点,∴OA ∥BF 2. 又·=0,∴∠F 1BF 2=90°. ∴|OF 2|=|OB |,∴∠OBF 2=∠OF 2B . 又∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B , ∴∠BOF 2=∠OF 2B =∠OBF 2, ∴△OBF 2为等边三角形.如图1所示,∵点B 在直线y =-bax 上,∴-b a =-3,∴离心率e =c a=1+⎝ ⎛⎭⎪⎫b a2=2.解法二:∵·=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c . 如图2,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=b a ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c,0). 又=,∴A 为F 1B 的中点. ∴OA ∥F 2B ,∴b a =bc -a,∴c =2a ,∴离心率e =c a=2.16.(2020·某某摸底)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b2a,P 为双曲线C 右支上一点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则双曲线的离心率为________,λ的值为________.答案5+125-12解析 由F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b2a,可得2c =2b 2a =2c 2-2a 2a ,化简得e 2-e -1=0.∴e >1,∴e =1+52.设△PF 1F 2的内切圆半径为r ,由双曲线的定义得|PF 1|-|PF 2|=2a ,|F 1F 2|=2c ,S △IPF 1=12|PF 1|·r ,S △IPF 2=12|PF 2|·r ,S △IF 1F 2=12·2c ·r =cr ,由S △IPF 1=S △IPF 2+λS △IF 1F 2得,12|PF 1|·r =12·|PF 2|·r+λcr ,故λ=|PF 1|-|PF 2|2c =a c =11+52=5-12.17.(2019·某某崇明模拟)已知点F 1,F 2为双曲线C :x 2-y 2b2=1的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,∠MF 1F 2=30°.(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1,P 2,求·的值.解 (1)设F 2,M 的坐标分别为(1+b 2,0),(1+b 2,y 0)(y 0>0),因为点M 在双曲线C 上,所以1+b 2-y 20b2=1,则y 0=b 2,所以|MF 2|=b 2.在Rt △MF 2F 1中,∠MF 1F 2=30°,|MF 2|=b 2, 所以|MF 1|=2b 2.由双曲线的定义可知,|MF 1|-|MF 2|=b 2=2, 故双曲线C 的方程为x 2-y 22=1.(2)由条件可知,两条渐近线分别为l 1:2x -y =0,l 2:2x +y =0.设双曲线C 上的点P (x 0,y 0),两条渐近线的夹角为θ,由题意知cos θ=13.则点P 到两条渐近线的距离分别为 |PP 1|=|2x 0-y 0|3,|PP 2|=|2x 0+y 0|3.因为P (x 0,y 0)在双曲线C :x 2-y 22=1上,所以2x 20-y 20=2.所以·=|2x 0-y 0|3·|2x 0+y 0|3·cos θ=|2x 20-y 20|3·13=29.18.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解 (1)∵双曲线的渐近线为y =±b ax ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程,得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,将其代入双曲线方程,得34c 2a 2-14c 2b 2=1,即34b 2c2-14a 2c 2=a 2b 2.② 又a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式, 整理得34c 4-2a 2c 2+a 4=0,∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0. ∵e >1,∴e =2,∴双曲线的离心率为 2.19.(2019·某某模拟)已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求·的最小值.解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,半实轴长a = 2.又焦距2c =4,所以半虚轴长b =c 2-a 2= 2. 所以W 的方程为x 22-y 22=1(x ≥2).(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 当AB ⊥x 轴时,x 1=x 2,y 1=-y 2, 从而·=x 1x 2+y 1y 2=x 21-y 21=2.当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m (k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1, 所以·=x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m ) =(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(m 2+2)k 2-1+2k 2m 21-k2+m 2=2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0.所以·>2. 综上所述,当AB ⊥x 轴时,·取得最小值2.20.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),某某数m 的取值X 围.解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由已知,得a =3,c =2.由a 2+b 2=c 2,得b 2=1. 故双曲线C 的方程为x 23-y 2=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0,可得m 2>3k 2-1且k 2≠13.①设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为B (x 0,y 0). 则x 1+x 2=6km 1-3k 2,x 0=x 1+x 22=3km1-3k2,y 0=kx 0+m =m1-3k2.由题意,知AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0),整理得3k 2=4m +1.②将②代入①,得m 2-4m >0,∴m <0或m >4. 又3k 2=4m +1>0(k ≠0),∴m >-14,又k 2≠13,∴m ≠0,∴m 的取值X 围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学总复习第九章平面解析几何第6讲双曲线课时作业基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·台州调研)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A.y =±12xB.y =±22x C.y =±2xD.y =±2x解析 因为2b =2,所以b =1,因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x ,故选B. 答案 B2.(2015·广东卷)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) A.x 24-y 23=1B.x 29-y 216=1 C.x 216-y 29=1D.x 23-y 24=1 解析 因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选C.答案 C3.(2016·浙江卷)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<1解析 由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.答案 A4.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45解析 由x 2-y 2=2,知a =b =2,c =2. 由双曲线定义,|PF 1|-|PF 2|=2a =22, 又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.答案 C5.(2017·杭州调研)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 3解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3. 答案 D 二、填空题6.(2015·浙江卷)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.解析 由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x . 答案 2 3 y =±22x 7.(2016·北京卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.解析 取B 为双曲线右焦点,如图所示.∵四边形OABC 为正方形且边长为2,∴c =|OB |=22, 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2. 答案 28.(2016·山东卷)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b2a=3×2c .又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝ ⎛⎭⎪⎫c a 2-3⎝ ⎛⎭⎪⎫c a -2=0,即2e 2-3e-2=0,解得e =2或e =-1(舍去). 答案 2 三、解答题9.(2017·宁波十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0. (1)解 ∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0). ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线的方程为x 2-y 2=6.(2)证明 法一 由(1)可知,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∴k MF 1=m 3+23,k MF 2=m3-23,k MF 1·k MF 2=m 29-12=-m 23. ∵点M (3,m )在双曲线上,∴9-m 2=6,m 2=3, 故k MF 1·k MF 2=-1,∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.法二 由(1)可知,a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2, ∵点M (3,0)在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.10.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. 能力提升题组 (建议用时:30分钟)11.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1D.x 212-y 24=1 解析 由双曲线方程知右顶点为(a ,0),不妨设其中一条渐近线方程为y =b ax ,因此可得点A 的坐标为(a ,b ).设右焦点为F (c ,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16,所以有(c -a )2+b2=c 2,又c 2=a 2+b 2,则c =2a ,即a =c2=2,所以b 2=c 2-a 2=42-22=12.故双曲线的方程为x 24-y 212=1,故选A.答案 A12.若双曲线x 2a 2-y 2b2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤1,52 B.⎝ ⎛⎦⎥⎤1,72 C.⎣⎢⎡⎭⎪⎫52,+∞D.⎣⎢⎡⎭⎪⎫72,+∞ 解析 由条件,得|OP |2=2ab ,又P 为双曲线上一点,从而|OP |≥a ,∴2ab ≥a 2,∴2b ≥a ,又∵c 2=a 2+b 2≥a 2+a 24=54a 2,∴e =c a ≥52.答案 C13.(2016·浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设点P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2,解得-1+7<m <3, 又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8. 答案 (27,8)14.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.解 (1)依题意得⎩⎪⎨⎪⎧ab=2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1. (2)由(1)知双曲线的渐近线方程为y =±2x ,设A (m ,2m ),B (-n ,2n ),其中m >0,n >0,由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n . 将点P 的坐标代入y 24-x 2=1, 整理得mn =1.设∠AOB =2θ,∵tan ⎝ ⎛⎭⎪⎫π2-θ=2, 则tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n ,∴S △AOB =12|OA ||OB |sin 2θ=2mn =2.15.(2017·浙大附中模拟)已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3. (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A 、B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A )、B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A +x B =62k 1-3k 2<0,x A x B =-91-3k 2>0,解得33<k <1. ∴当33<k <1时,l 与双曲线左支有两个交点. (3)由(2)得:x A +x B =62k1-3k 2,∴y A +y B =(kx A +2)+(kx B +2) =k (x A +x B )+22=221-3k 2.∴AB 的中点P 的坐标为⎝⎛⎭⎪⎫32k 1-3k 2,21-3k 2. 设直线l 0的方程为:y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.∵33<k <1,∴-2<1-3k 2<0. ∴m <-2 2.∴m的取值范围为(-∞,-22).。