高三数学一轮复习精品学案:§14.2 不等式选讲
高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
高考文科数学一轮复习选修不等式选讲第二节证明不等式的基本方法课件

(理3)、作定差理法、与性作质商法:作差法是作差后与__比较,作商法是把两个_____作商后与__
比较.
结论
充分条件
已知条件或一个明显成立的事实
0
正数
1
2.基本不等式 (1)基本不等式判断大小的基本原则:积定_______,和定_______. (2)基本不等式使用的基本原则:_________和__最__小__. 积最大
第二节 证明不等式 的基本方法
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
【教材·知识梳理】
1.不等式的证明方法
(1)综合法:又叫顺推证法或由因导果法,方法是从__________________________
_______________等逐步推导出结论.
(2)分析法:又叫执果索因法,方法是从_____出发,逐已步知寻条找件结出论发成,利立用的定__义__、__公___, 直至所需条件为_____________________________.
提示:(1)×.不知道x的正负,不能直接用基本不等式. (2)×.作商比较法是商与1的大小比较. (3)√.综合法是从已知条件出发,利用定义、公理、定理、性质等逐步推导出结论. (4)×.分析法是从结定三相等
【知识点辨析】(正确的打“√”,错误的打“×”) (1)已知x为实数,则1+x+ ≥3. ( ) (2)比较法最终要判断式子1的符号得出结论. ( ) (3)综合法是从原因推导到x结果的思维方法,它是从已知条件出发,经过逐步推理, 最后达到待证的结论. ( ) (4)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论 成立的必要条件,最后达到题设的已知条件或已被证明的事实. ( )
高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
高三数学一轮复习教案(不等式)

不等式的概念和性质〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些概念解决一些简单问题.〖复习建议〗不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。
〖双基回顾〗常见的性质有8条: 1、反身性(也叫对称性):a >b ⇔b <a 2、传递性:a >b ,b >c ⇔a >c 3、平移性:a >b ⇔a +c >b +c 4、伸缩性:⎩⎨⎧>>0c b a ⇔ac >bc ;⎩⎨⎧<>0c ba ⇔ac <bc5、乘方性:a >b ≥0⇔a n >b n (n ∈N ,n ≥2)6、开方性:a >b ≥0⇔na >nb (n ∈N ,n ≥2)7、叠加性:a >b ,c >d ⇔a +c >b +d 8、叠乘性:a >b ≥0,c >d ≥0⇔a ·c >b ·d一、知识点训练:1、下列结论对否:()N n bd ac d c b a n n ∈〉⇒=〉,,1 ( ) ()b a c bca 〉⇒〉222 ( ) ()ba ab b a 1103〈⇒〈〉且 ( ) ()bd acd c b a 〉⇒〈〈〈〈0,04 ( )()N n b a b a n n ∈〉⇒〉,5 ( ) ()b a b b a 〈〈-⇒〈6 ( )2、ba b a 11〈⇔〉成立的充要条件为 3、用“>”“<”“=”填空:(1)a <b <c <0则ac bc ;a c bc(2) 0<a <b <c <1,则a c b c ;a b a c ;log c a log c b ;a lg c b lg c ;a r c si na a r c si nb .二、典型例题分析:1、比较下面各小题中a 与b 的大小:(1)a =m 3-m 2n -3mn 2 与 b =2m 2n -6mn 2+n 3 (2)a =3x 2-x +1与b =2x 2+x -1 (3)10231=-=b a 与 .2、a >0,a ≠1,t >0,比较m =t a log 21与n =21log +t a 的大小.3、bxax x f -=)(,1≤)1(f ≤2,13≤)2(f ≤20,求)3(f 的取值范围.三、课堂练习:1、若b a 〉,则下列不等式成立的是………………………………………………………………… ( ) (A )ba 11〈 (B ))0(22≠〉c bc ac (C ) 0)lg(〉-b a (D ) b a lg lg 〉 2、设d c b a ≥〉,,那么下列不等式成立的是……………………………………………………… ( ) (A )22)()(c b d a -〈- (B ) 22)()(c b d a -≥- (C ) 22)()(c b d a -≤- (D ) 以上都不对 3、已知0〈〈b a ,则下列不等式能成立的是 …………………………………………………………( ) (A )1〈b a (B )b a -〉 (C ) ba 11〈 (D ) 22a b 〉 4、已知01,0〈〈-〈b a ,则下列不等式成立的是 ……………………………………………………( ) (A )2ab ab a 〉〉 (B ) a ab ab 〉〉2(C ) 2ab a ab 〉〉 (D ) a ab ab 〉〉25、若0〈〈b a ,则下列不等关系中不能成立的是 …………………………………………………… ( )(A )b a 11〉 (B ) a b a 11〈- (C ) b a 〉 (D ) 22b a 〉 四、课堂小结:1、不等式的基本性质是解不等式与证明不等式的理论依据,必须透彻理解,特别要注意同向不等式可相加,也可相乘,但相乘时,两个不等式都需大于零.2、处理分式不等式时不要随便将不等式两边乘以含有字母的分式,如果需要去分母,一定要考虑所乘的代数式的正负.3、作差法是证明不等式的最基本也是很重要的方法,应引起高度注意.五、能力测试: 姓名 得分1、下列命题中正确的是……………………………………………………………………………… ( ) (A )22,b a b a 〉〉则若 (B ) b a b a 〉〉则若,22 (C ) 22,b a b a 〉〉则若 (D ) 22,b a b a 〉〉则若2、设011〈〈ba ,则有 …………………………………………………………………………………( ) (A ) 22b a 〉 (B ) ab b a 2〉+ (C ) 2b ab 〈 (D ) b a b a +〉+22 3、若0,=++〉〉c b a c b a ,则有…………………………………………………………………… ( ) (A ) ac ab 〉 (B ) bc ac 〉 (C ) bc ab 〉 (D )以上皆错4、若0,〉〉〉b a bd ac ,则 ………………………………………………………………………………( ) (A ) 0〉〉d c (B ) d c 〉 (C ) d c 〈 (D )c 、d 大小不确定5、以下命题:⑴a >b ⇒|a |>b ⑵a >b ⇒a 2>b 2 ⑶|a |>b ⇒ a >b ⑷a >|b | ⇒ a >b 正确的个数有………………………………………………………………………………………( ) (A ) 1个 (B ) 2个 (C ) 3个 (D )4个6、已知a >2,比较12++=a ab 与2的大小.7、比较下列各数的大小: (1))11(log ),1(log an a m a a +=+= (提示:分a >1,a <1讨论) (2)n n a -+=1与1--=n n b (提示:分子有理化后再比较)8、如果二次函数)(x f y =的图象过原点,并且1≤)1(-f ≤2,3≤)1(f ≤4,求)2(-f 的取值范围.不等式的解法——分式与高次〖考纲要求〗在熟练掌握一元一次与一元二次不等式的解法的基础上初步分式与高次不等式的解法. 〖复习建议〗分式与高次不等式的一般解法:序轴标根法,能注意到其中的一些特殊点与解集的关系,能注意到区间端点与解集的关系.一、知识点训练:1、下列不等式与012≤+x x同解的是……………………………………………………………( ) (A) 01≤+xx (B)0)1(≤+x x (C)0)1lg(≤+x (D)21|1|≤+x x2、不等式(x -2)2·(x -1)>0的解集为 .3、不等式(x +1) ·(x -1)2≤0的解集为 .4、不等式x x<1的解集为 . 二、典型例题分析:1、解不等式:(x -1)·(x -2)·(x -3)·(x -4)>1202、解不等式:0)5)(1)(3()2(2>-+++x x x x3、解不等式:232532≥-+-x x x4、若不等式6163922<+--+<-x x mx x 对一切x 恒成立,求实数m 的范围5、求适合不等式11)1(02<+-<x x 的整数x 的值.6、解关于x 的不等式a x x-<-11三、课堂练习:1、不等式1213≥--x x 的解集为……………………………………………………………………( ) (A){x |43≤x ≤2} (B) {x |43≤x <2}(C) {x |x >2或者x ≤43} (D){x |x <2}2、不等式21≥+x x的解集为 . 3、如果不等式1122+-->++-x x b x x x a x 的解集为(21,1),则b a ⋅= .四、课堂小结:分式与高次不等式的解题基础是一元二次不等式的解法,常用方法是序轴标根法,但是要注意标根时的起点位置.五、能力测试:1、与不等式023≥--xx 同解的不等式是……………………………………………………………( ) (A)(x -3)(2-x )≥0 (B)lg(x -2)≤0 (C)032≥--x x(D)(x -3)(2-x )>0 2、如果x 1<x 2<…<x n ,n ≥2,并且{x |(x -x 1)(x -x 2)…(x -x n )>0}⊃{x |x 2-(x 1+x 2)x +x 1x 2<0},那么自然数n …………………………………………………………………………………………………( ) (A)等于2 (B)是大于2的奇数(C) 是大于2的偶数 (D)是大于1的任意自然数 3、不等式(x -1)(x +2)(3-x )>0的解集为 .4、不等式01)3()4)(1(2≤+---x x x x 的解集为 . 5、a >0,b >0,那么不等式a xb <<-1的解集为 . 6、已知不等式11<-x ax的解集为{x |x <1或x >2},那么a = . 7、解不等式:x xx x x <-+-+222322(提示:)1)(2(2223++-=---x x x x x x )8、不等式)(122322N n n x x x x ∈>++++对一切x 都成立,求n 的值.9、解关于x 的不等式)0( 12)1(>>--a x x a不等式的解法——指数 对数(无理不等式)〖考纲要求〗新的考纲虽然没有明确要求掌握简单的指数、对数无理不等式的解法,但是却要求掌握函数的单调性,会利用函数单调性比较大小,而这也正是我们这一讲的出发点..〖复习建议〗1、掌握解指数、对数不等式的方法,一般来说,与解指数、对数方程的方法类似.即: (1)同底法:能化为同底数先化为同底,再根据指数、对数的单调性转化为代数不等式,底是参数时要注意对其进行讨论.并注意到对数真数大于零的限制条件.(2)转化法:多用于指数不等式,通过两边取对数转化为对数不等式(注意转化的等价性). (3)换元法:多用于不等式两边是和的形式,或取对数后再换元,并注意所换“元”的范围. 2、掌握基本无理不等式的转化方法.一、知识点训练:1、当)(l o g)(l o g,10x g x f a aa<<<与时等价的不等式是 …………………………………( ) (A ))()(x g x f < (B ))()(0x g x f << (C ))()(0x f x g << (D )以上都不对 2、当)()(,1x g x f a aa >>与时等价的不等式是 …………………………………………………( )(A )0)()(>>x g x f (B ))()(0x g x f <<(C ))()(x g x f > (D ))()(x g x f < 3、不等式0log log 221>x 的解集为……………………………………………………………( )(A ){x |x <2} (B ){x |0<x <2} (C ){x |1<x <2} (D ){x |x >2}4、不等式(x -1)02≥+x 的解为……………………………………………………………( ) (A )x ≥1 (B )x >1 (C ) x ≥1或者x =-2 (D ) x ≥-2且x ≠15、不等式129->-x x 的解集为 ;二、典型例题分析:1、解不等式66522252.0++-+-≥x xx x2、解不等式154log <x .3、如果x =3是不等式:)33(log )2(log 2+<--x x x a a 的一个解,解此关于x 的不等式.4、解关于x 的不等式:222)21(2--+>x x x*5、解不等式:)10(log 31log ≠<-<-a x x a a三、课堂练习:1、不等式x x 283)31(2--> 的解集为 ; 2、不等式1)22lg(2<++x x 的解集为 ; 3、不等式1323>--x 的解集是 ……………………………………………………………( )(A )φ (B )⎭⎬⎫⎩⎨⎧><≤6232x x x或 (C ){}6>x x (D )⎭⎬⎫⎩⎨⎧<≤232x x 四、课堂小结:掌握指数、对数、无理不等式的常规解法—取对数法、换底法、换元法、利用函数单调性,将它们转化为代数不等式.在进行转化时,应充分注意函数定义域,保证同解变形.在转化为求不等式组的解时,应注意区别“且”、“或”,涉及到最后几个不等式的解集是“交”,还是“并”.五、能力测试:1、与不等式112≤--x x 同解的不等式是 …………………………………………………………( )(A )1120≤--≤x x (B )112≤--x x (C )012≥--x x (D )01≤-x x 2、不等式2)1lg(2>-x 的解为 ……………………………………………………………………( ) (A )x >11 (B )x <-9 (C )x <-9或x >11 (D )-9<x <113、设c <0,下列不等式成立的是 ……………………………………………………………………( )(A )cc 22> (B )c c )21(> (C )c c)21(2> (D )cc)21(2<4、不等式3331>--x的解集为……………………………………………………………………( ) (A ){x |x ≤1} (B ){x |43<x ≤1} (C ){x |43<x <1} (D )R 5、不等式xx x121log <的解集为 ……………………………………………………………………( ) (A ){}21<<x x (B ){}21><x x x 或 (C )φ (D ){}210><<x x x 或 6、)1(log )12(log ->-x x a a 的同集不等式为 …………………………………………………( ) (A )1112,1>-->x x a 时 (B )1,1>>x a 时 (C )1,10><<x a 时 (D )0112log >--x x a 7、{}=->==A C x x xA R I U 则,2,8、不等式lg x +lg(x -3)<1的解集为 . 9、解关于x 的不等式:5252≤--x*10、解不等式1)11(log >-xa不等式的证明—比较法〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些性质解决一些简单问题. 〖复习建议〗掌握求差法与求商法比较两个数的大小。
2023年高考数学(理科)一轮复习——不等式选讲 第一课时 绝对值不等式

内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
知识梳理 1.绝对值三角不等式
定理1:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当__a_b_≥__0____时,等 号成立. 定 理 2 : 如 果 a , b , c 是 实 数 , 那 么 ___|_a_-__b_|≤__|_a_-__c_|+__|c_-__b_|___ , 当 且 仅 当 ____(a_-___c)_(_c_-__b_)≥__0__________时,等号成立.
索引
(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值. 解 |x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5, 当且仅当x=0,y=3时等号成立, 即|x-2y+1|的最大值为5.
索引
感悟提升
求含绝对值的函数最值时,常用的方法有三种: (1)利用绝对值的几何意义. (2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||. (3)利用零点分区间法.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
考点一 绝对值不等式的解法
例1 (2022·西安五校联考)已知函数f(x)=|x-3|+|x+a|. (1)当a=-1时,求不等式f(x)≥3的解集; 解 当a=-1时,f(x)≥3, 即|x-3|+|x-1|≥3, ∴x4≤ -12,x≥3或12<≥x3<3,或x2≥ x-3,4≥3,
索引
(2)求f(x)≥g(x)的解集. 解 因为函数y=f(x)和y=g(x)图象的交点为(0,2)和(6,4),结合函数图象可 得f(x)≥g(x)的解集为(-∞,0]∪[6,+∞).
高考数学一轮复习不等式选讲第2讲不等式的证明习题课件

S<a+a b+a+b b+c+c d+c+d d=2,]若 x1,x2,x3∈(0,+∞),则 3
个数xx12,xx23,xx31的值(
)
A.至多有一个不大于 1
B.至少有一个不大于 1
C.都大于 1
D.都小于 1
解析 故选 B.
解法一:设 x1≤x2≤x3,则xx12≤1,xx23≤1,xx31≥1.
一、释疑难
对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已 经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。
二、补笔记
上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一 遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。
2019/5/24
精选最新中小学教学课件
thank
you!
2019/5/24
精选最新中小学教学课件
4.已知 a,b∈R,a2+b2=4,则 3a+2b 的取值范围 是____[-__2___1_3_,__2__1_3_]___.
解析 根据柯西不等式 (ac + bd)2≤(a2 + b2)·(c2 + d2) , 可 得 (3a + 2b)2≤(a2 + b2)·(32+22) ∴-2 13≤3a+2b≤2 13. 3a+2b∈[-2 13,2 13].
[B 级 能力达标]
68东北师大附属中学高三第一轮复习导学案-不等式选讲(2)A

③、如果a>b,那么a+c>b+c,即a>b a+c>b+c。
推论:如果a>b,且c>d,那么a+c>b+d.即a>b, c>d a+c>b+d.
④、如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac<bc.
⑤、如果a>b >0,那么 (n N,且n>1)
⑥、如果a>b >0,那么 (n N,且n>1)。
(二)、含有绝对值的不等式的两种基本类型
第一种类型:设a为正数。根据绝对值的意义,不等式 的解集是 ,它的几何意义就是数轴上到原点的距离小于a的点的集合是开区间(-a,a),如图所示。
如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型:设a为正数。根据绝对值的意义,不等式 的解集是{ 或 }
1.
2.
4. (-1<x<0)
5. 时解关于x的不等式
( ; ; )
6、解不等式:
(当a>1时 当0<a<1时 )
7、解不等式: (-1<x<3)
8、已知 求证: 。
证明 ,∴ ,
由例1及上式, 。
9、7、
10、
练习:
1、已知 求证: 。
2、已知 求证: 。
[题型探究四]:指对不等式解法:
例1、解不等式
解:原不等式可化为: ∵底数2>1
∴ 整理得:
2022届一轮复习人教A版-------不等式选讲----------课件(43张)

较法的应用,无论哪种方法都要注意等号成立的条件.
考点考法探究
自测题
已知a,b,c均为正实数.
2
(1)求证:(a+b)(ab+c )≥4abc;
2
证明:要证(a+b)(ab+c )≥4abc,
2
2
2
2
2
2
2
2
即证a b+ac +ab +bc -4abc≥0,只需证b(a +c -2ac)+a(c +b -2bc)≥0,
绝对值不等式的 含绝对值的函数的图像
·T23
求解·T23
与综合应用·T23
真知真题扫描
1.[2020·全国卷Ⅰ] 已知函数f(x)=|3x+1|-2|x-1|.
(1)画出y=f(x)的图像;
−−3, ≤
解:由题设知f(x)=
1
5−1,−
3
1
− ,
3
< ≤ 1,
+ 3, > 1.
y=f(x)的图像如图所示.
2
2
+
+
+
+
]≥ [a +b +c +2
·
1−
1−
1−
1−
1−
2
1−
1−
2 (1−) 2 (1−)
2 (1−) 2 (1−) 1 2
1
2
2
+2
·
+2
·
]= (a +b +c +2ab+2ac+2bc)= (a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§14.2不等式选讲1.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想. 2.含有绝对值的不等式的性质(1)如果a ,b 是实数,则|a |-|b |≤|a ±b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 3.不等式证明的方法 (1)比较法 ①作差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明a -b >0即可,这种方法称为作差比较法. ②作商比较法由a >b >0⇔a b >1且a >0,b >0,因此当a >0,b >0时,要证明a >b ,只要证明ab>1即可,这种方法称为作商比较法. (2)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,最终推导出所要证明的不等式成立,这种证明方法叫做综合法,即“由因导果”的方法. (3)分析法从待证不等式出发,逐步寻求使它成立的充分条件,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等),从而得出要证的不等式成立,这种证明方法叫做分析法,即“执果索因”的方法.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若|x |>c 的解集为R ,则c ≤0.( × ) (2)不等式|x -1|+|x +2|<2的解集为∅.( √ )(3)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( × ) (4)对|a |-|b |≤|a -b |当且仅当|a |≥|b |时等号成立.( × ) (5)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( √ ) 题组二 教材改编2.『P20T7』不等式3≤|5-2x |<9的解集为( ) A .『-2,1)∪『4,7) B .(-2,1』∪(4,7』 C .(-2,-1』∪『4,7)D .(-2,1』∪『4,7)答案 D解析 由题意得⎩⎪⎨⎪⎧|2x -5|<9,|2x -5|≥3,即⎩⎪⎨⎪⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得⎩⎪⎨⎪⎧-2<x <7,x ≥4或x ≤1,不等式的解集为(-2,1』∪ 『4,7).3.『P20T8』求不等式|x -1|-|x -5|<2的解集. 解 ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立,∴x ≤1;②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4;③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4).题组三 易错自纠4.若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________.答案 4或-6解析 方法一 ①当a =-1时,f (x )=3|x +1|,f (x )min =0,不符合题意;②当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <a ,x -1-2a ,a ≤x ≤-1,3x +1-2a ,x >-1,∴f (x )min =f (a )=-a -1=5,∴a =-6成立; ③当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1,x <-1,-x +2a +1,-1≤x ≤a ,3x +1-2a ,x >a ,∴f (x )min =f (a )=a +1=5,∴a =4成立. 综上,a =4或a =-6.方法二 当a =-1时,f (x )min =0,不符合题意;当a ≠-1时,f (x )min =f (a )=|a +1|=5, ∴a =4或a =-6.5.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c的最小值为________.答案 9解析 把a +b +c =1代入到1a +1b +1c 中, 得a +b +c a +a +b +c b +a +b +cc=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.6.若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值范围为______________. 答案 ⎣⎡⎦⎤-1,12 解析 设y =|2x -1|+|x +2|=⎩⎨⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5; 当-2≤x <12时,y =-x +3>52,y ≤5;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2. 解不等式52≥a 2+12a +2,得-1≤a ≤12,故实数a 的取值范围为⎣⎡⎦⎤-1,12.题型一绝对值不等式的解法1.(2017·全国Ⅰ)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含『-1,1』,求a的取值范围.解(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0.①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172.(2)当x ∈『-1,1』时,g (x )=2,所以f (x )≥g (x )的解集包含『-1,1』等价于 当x ∈『-1,1』时,f (x )≥2.又f (x )在『-1,1』上的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为『-1,1』. 2.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形的面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a的取值范围为(2,+∞).思维升华解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式.(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式.(3)利用绝对值的几何意义,数形结合求解.题型二利用绝对值不等式求最值典例(1)对任意x,y∈R,求|x-1|+|x|+|y-1|+|y+1|的最小值;(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.解(1)∵x,y∈R,∴|x-1|+|x|≥|(x-1)-x|=1,当且仅当0≤x≤1时等号成立,∴|y-1|+|y+1|≥|(y-1)-(y+1)|=2,当且仅当-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|≥1+2=3,当且仅当0≤x≤1,-1≤y≤1同时成立时等号成立.∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.(2)|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+|2(y-2)+2|≤1+2|y-2|+2≤5,即|x-2y+1|的最大值为5.思维升华 求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |. (3)利用零点分区间法.跟踪训练 (2017·西安模拟)已知a 和b 是任意非零实数. (1)求|2a +b |+|2a -b ||a |的最小值;(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围. 解 (1)∵|2a +b |+|2a -b ||a |≥|2a +b +2a -b ||a |=|4a ||a |=4,当且仅当(2a +b )(2a -b )≥0时等号成立, ∴|2a +b |+|2a -b ||a |的最小值为4.(2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a |恒成立,故|2+x |+|2-x |≤⎝⎛⎭⎪⎫|2a +b |+|2a -b ||a |min .由(1)可知,|2a +b |+|2a -b ||a |的最小值为4,∴x 的取值范围即为不等式|2+x |+|2-x |≤4的解集. 解不等式得-2≤x ≤2,故实数x 的取值范围为『-2,2』.题型三 绝对值不等式的综合应用典例 已知函数f (x )=|x -a |+12a(a ≠0). (1)若不等式f (x )-f (x +m )≤1恒成立,求实数m 的最大值;(2)当a <12时,函数g (x )=f (x )+|2x -1|有零点,求实数a 的取值范围.解 (1)∵f (x )=|x -a |+12a (a ≠0), ∴f (x +m )=|x +m -a |+12a, ∴f (x )-f (x +m )=|x -a |-|x +m -a |≤1, 又|x -a |-|x +m -a |≤|m |, ∴|m |≤1,∴-1≤m ≤1, ∴实数m 的最大值为1. (2)当a <12时,g (x )=f (x )+|2x -1|=|x -a |+|2x -1|+12a=⎩⎪⎨⎪⎧-3x +a +12a+1,x <a ,-x -a +12a +1,a ≤x ≤12,3x -a +12a -1,x >12,∴g (x )min =g ⎝⎛⎭⎫12=12-a +12a=-2a 2+a +12a≤0, ∴⎩⎪⎨⎪⎧ 0<a <12,-2a 2+a +1≤0或⎩⎪⎨⎪⎧a <0,-2a 2+a +1≥0, ∴-12≤a <0, ∴实数a 的取值范围是⎣⎡⎭⎫-12,0. 思维升华 (1)解决与绝对值有关的综合问题的关键是去掉绝对值,化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题的常用方法.跟踪训练 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2,所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 当x =32时,|x +1|-|x -2|-x 2+x =54. 故m 的取值范围为⎝⎛⎦⎤-∞,54.题型四 用综合法与分析法证明不等式典例 (1)已知x ,y 均为正数,且x >y ,求证:2x +1x 2-2xy +y 2≥2y +3; (2)设a ,b ,c >0且ab +bc +ca =1,求证:a +b +c ≥ 3.证明 (1)因为x >0,y >0,x -y >0,2x +1x 2-2xy +y 2-2y =2(x -y )+1(x -y )2=(x -y )+(x -y )+1(x -y )2≥33(x -y )2·1(x -y )2=3, 所以2x +1x 2-2xy +y 2≥2y +3. (2)因为a ,b ,c >0,所以要证a +b +c ≥3,只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1,故需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c 时等号成立)成立,所以原不等式成立.思维升华 用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野. 跟踪训练 (2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.。