第九章 解析几何 第二节 圆锥曲线

合集下载

解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2023届高考数学二轮复习含解析

 解析几何  第二讲 圆锥曲线的概念与性质,与弦有关的计算问题——2023届高考数学二轮复习含解析

专题七 解析几何 第二讲 圆锥曲线的概念与性质,与弦有关的计算问题1.若椭圆2222:1(0)x y C a b a b+=>>的短轴长等于焦距,则椭圆的离心率为( )A.122.已知O 是坐标原点,椭圆221259x y +=上的一点M 到左焦点1F 的距离为2,N 是MF 的中点,则ON 的长为( ) A.8B.6C.5D.43.若π0,2α⎛⎫∈ ⎪⎝⎭,方程22sin cos 1x y αα+=表示焦点在y 轴上的椭圆,则α的取值范围是( )A.π0,4⎛⎫ ⎪⎝⎭B.π0,3⎛⎫⎪⎝⎭C.ππ,42⎛⎫⎪⎝⎭ D.ππ,32⎛⎫⎪⎝⎭ 4.已知双曲线2222:1(0,0)x y T a b a b-=>>,直线y b =-与T 交于A ,B 两点,直线7y b =与T交于C ,D 两点,四边形ABCD 的两条对角线交于点E ,60AEB ∠=︒,则双曲线T 的离心率为( )C.2D.45.已知双曲线22122:1(0,0)x y C a b a b-=>>1C 同渐近线的双曲线2C 过点A ,直线:40l x y +-=与x 轴、y 轴分别交于B ,C 两点,且与双曲线2C 交于D ,若CD CB λ=,则λ=( ) A.2B.58C.38D.36.双曲线E 与椭圆22:162x y C +=焦点相同且离心率是椭圆C E的标准方程为( )A.2213y x -=B.2221y x -=C.22122x y -= D.2213x y -= 7.已知F 为抛物线2:4C y x =的焦点,,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则||||AB DE +的最小值为( )A.16B.14C.12D.108.(多选)已知点P 为双曲线2222:1(0,0)x y C a b a b-=>>所在平面内一点,12(,0),(,0)F c F c -分别为C 的左、右焦点,2121,4PF F F PF c ⊥=,线段12,PF PF 分别交双曲线于,M N 两点,11PF MF λ=,22PF NF μ=.设双曲线的离心率为e ,则下列说法正确的有( )A.若1PF 平行渐近线,则2e =B.若4λ=,则2e = C.若3μ=,则eD.λμ9. (多选)已知椭圆C 的中心在原点,焦点1F ,2F 在y 轴上,且短轴长为2,离心率1F 作y 轴的垂线,交椭圆C 于P ,Q 两点,则下列说法正确的是( ) A.椭圆方程为2213y x +=B.椭圆方程为2213x y +=C.3PQ =D.2PF Q △的周长为10. (多选)已知抛物线2:2(0)C y px p =>的焦点为F ,若()01,M y 为抛物线C 上一点,直线MF的斜率为M 为圆心的圆与C 的准线相切于点Q ,则下列说法正确的是( )A.抛物线C 的准线方程为3x =-B.直线MF 与抛物线C 相交所得的弦长为15C.MFQ △外接圆的半径为4D.若抛物线C 上两点之间的距离为8,则该线段的中点到y 轴距离的最小值为111.双曲线222:1(0)4x y C b b-=>的一条渐近线方程为320x y +=,则双曲线C 的焦距为__________.12.已知1F ,2F 是椭圆2222:1(0)x y C a b a b +=>>的两个焦点,P 为C 上一点,且1260F PF ∠=︒,12||5||PF PF =,则C 的离心率为______.13.已知抛物线22(0)y px p =>的准线为l ,点P 在抛物线上,PQ l ⊥于点Q ,(2,0)M 与抛物线的焦点不重合,且||||PQ PM =,120MPQ ∠=︒,则p =______________.14.已知抛物线2:2(0)C x py p =>的焦点为,F O 为坐标原点,的点P 在抛物线C 上,满足||||PF PO =. (1)求抛物线C 的方程.(2)过抛物线C 上的点A 作抛物线C 的切线,l A 与O 不重合,过O 作l 的垂线,垂足为B ,直线BO 与抛物线C 交于点D .当原点到直线AD 的距离最大时,求点A 的坐标.15.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点10,2Q ⎛⎫⎪⎝⎭在线段AB 上,直线PA ,PB 分别交直线132y x =-+于C ,D 两点.(Ⅰ)求点P 到椭圆上点的距离的最大值; (Ⅱ)求||CD 的最小值.答案以及解析1.答案:C解析:由题意,得b c =,则2222b a c c =-=,a =,则椭圆的离心率c e a==. 2.答案:D解析:椭圆221259x y +=上的一点M 到左焦点1F 的距离为2,则点M 到右焦点2F 的距离为8.又N 是1MF 的中点,所以2142ON MF ==. 3.答案:C解析:方程22sin cos 1x y αα+=,即22111sin cos x y αα+=表示焦点在y 轴上的椭圆,则11cos sin αα>.又π0,2α⎛⎫∈ ⎪⎝⎭,所以cos sin αα<,所以ππ,42α⎛⎫∈ ⎪⎝⎭. 4.答案:A解析:在22221x y a b-=中,令y b =-,得x =,不妨设,),(,)A b B b --,同理可得(,7),,7)C b D b -, 由对称性可知,四边形ABCD 的两条对角线的交点E 在y 轴上. 易知直线AC的方程为)y x b =-,令0x =,得3b y =,即0,3b E ⎛⎫⎪⎝⎭. 因为60AEB ∠=︒,所以ABE △是等边三角形,|E A y y AB -=,所以22483b a b ==,因为222c a b =+,所以22358a c =,所以e =. 5.答案:C解析:由题意,双曲线1C的离心率c e a ==1ba=,∴设222:(0)C x y αα-=≠,将点A 代入得48α-=,解得4α=-,222:144y x C ∴-=,与直线l 联立得52D y =.易得0,4B C y y ==,CD CB λ=,()5,4,042D C B C x x x x λ⎛⎫∴--=-- ⎪⎝⎭,解得38λ=,故选C. 6.答案:C解析:由题知,椭圆22162x y +=的焦点坐标为(2,0)和(2,0)-设双曲线E的标准方程为22221(0,0)x y a b a b -=>>,则224a b +=且2a =,解得222a b ==,所以双曲线E 的标准方程为22122x y -=,故选C.7.答案:A解析:如图所示,设直线AB 的倾斜角为θ,过A ,B 分别作准线的垂线,垂足为1A ,1B ,则1||AF AA =,1||BF BB =,过点F 向1AA 引垂线FG ,得||||cos ||||AG AF pAF AF θ-==, 则||1cos p AF θ=-,同理,||1cos pBF θ=+,则22||||||sin p AB AF BF θ=+=,即24|si |n AB θ=, 因为1l 与2l 垂直,所以直线DE 的倾斜角为π2θ+或π2θ-, 则24||cos DE θ=,则2244||||sin cos AB DE θθ+=+22224416sin cos sin 21sin 22θθθθ===⎛⎫⎪⎝⎭, 则易知||||AB DE +的最小值为16. 故选A. 8.答案:ACD解析:本题考查双曲线的定义、离心率问题、焦半径问题.由题意12PF F △为直角三角形,点P坐标为(,)c ±,直线1PF斜率1260k PF F =∠=.不妨设点P 在第一象限,如图.选项A,若1PF 平行渐近线,则ba,得2e =,故A 正确.选项B,若4λ=,则1MF c =.连接2MF (图略),由1260PF F ∠=︒,解得221,21)MF a MF MF c =∴=-=,得1e ,故B 错误.选项C,若3μ=,则2NF =.连接1NF (图略),由2190PF F ∠=︒,解得112,2NF a NF NF ∴=-=,得e 故C 正确. 选项D,114PF c MF λ==,14cMF λ∴=,点M 的坐标为2,M M cx c y λ=-=,代入双曲线方程得()2222ac c b λ+=,22b NF a =,则22PF NF λμμ==∴==故D 正确.故选ACD.9.答案:ACD解析:由已知,得22b =,3c a =,则1b =.又222a b c =+,所以23a =,所以椭圆的方程为2213y x+=.由题意,得223b PQ a ===,2PF Q △的周长为4a =.故选ACD. 10.答案:ACD解析:过点M 作MB 垂直于x 轴,垂足为B ,MF k =-,∴直线MF 的倾斜角为120°,60MFB ∴∠=︒,在Rt MBF △中,30BMF ∠=︒,||2||212pMF BF ⎛⎫∴==- ⎪⎝⎭,又由抛物线的定义可得||12pMF =+,21122p p ⎛⎫∴-=+ ⎪⎝⎭,解得6p =,∴抛物线C 的方程为212y x =,抛物线C 的准线方程为3x =-,故A 正确;易知直线MF的方程为3)y x =-,代入抛物线C 的方程,得21090x x -+=,解得1x =或9x =,∴直线MF 与抛物线C 相交所得弦长为19616++=,选项B 不正确;易得M ,(3,0)F,(3,Q -,||QF ==120QMF ∠=︒,设MFQ △外接圆的半径为r,根据正弦定理可得||28sin QF r QMF ====∠,4r ∴=,选项C正确;设抛物线C 上的两点分别为()11,G x y ,()22,H x y ,则||||||8GF HF GH +≥=,当且仅当G ,H ,F 三点共线时,等号成立,由抛物线的定义可知,1212||||6GF FH x x p x x +=++=++,所以1268x x ++≥,即122x x +≥,所以线段GH 的中点到y 轴的距离122122x x +≥=,选项D 正确.故选ACD. 11.答案:解析:根据题意,双曲线222:1(0)4x y C b b -=>C:x 24-y 2b 2=1(b >0)的焦点在x 轴上,则其渐近线方程为2by x =±,又由该双曲线的一条渐近线方程为320x y +=,即32y =-=3=;所以2c ==15PF =122PF +=153a =,2PF =12PF F 中,由余弦定理可得:22212121212||||||2||||cos F F PF PF PF PF F PF =+-⋅∠,而1260F PF ∠=︒,即222255429933a a a c a =+-⨯⨯712=,可得离心率c e a ==13.答案:45解析:如图,设抛物线的焦点为F ,连接PF ,由拖物线的定义知||||PQ PF =,又||||PQ PM =,所以||||PF PM =,由PQ l ⊥及120MPQ ∠=︒,得60PMF ∠=︒,于是PFM △为正三角形,||22pMF =-,所以点P 的坐标为1242p p ⎛⎫⎫+- ⎪⎪ ⎪⎝⎭⎝⎭, 将其代入22(0)y px p =>,得23221424p p p ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,即2556480p p +-=,即(12)(54)0p p +⋅-=,所以45p =. 14.答案:(1)24x y =(2)(2)-或( 解析:本题考查抛物线的标准方程,直线与抛物线的位置关系.(1)依题意设点1),(0,0),(0,)2p P O F p ,由||||PF PO =,又0p >,解得2p =,所以抛物线C 的方程为24x y =.(2)设()22,(0)A t t t ≠,由214y x =求导,得12y x '=, 所以过点A 的切线l 斜率为122k t t =⨯=, 所以切线l 的方程为2(2)y t t x t -=-, 即2y tx t =-.因为直线OB 与切线l 垂直,所以1OB k t=-, 直线OB 方程为1y x t=-,即0x ty +=,由20,4,x ty x y +=⎧⎨=⎩解得24,4,x ty t ⎧=-⎪⎪⎨⎪=⎪⎩或0,0x y =⎧⎨=⎩(舍).即点244(,)D t t-.因为()22442,,(,)A t t D t t-,所以22242422ADt t t k t t t --==+, 则直线AD 的方程为222(2)2t y t x t t--=-,即()22240t x ty t --+=. 原点到直线AD 的距离d ===2≤=,当且仅当224t t=,即t =,等号成立. 所以原点到直线AD 的距离最大为2,此时点A 坐标为(2)-或(.15.解析:(Ⅰ)设,sin )([0,2))M θθθ∈π是椭圆上任意一点,由(0,1)P ,知222221441144||12cos (1sin )1311sin 2sin 11sin 111111PM θθθθθ⎛⎫=+-=--=-+≤ ⎪⎝⎭, 故||PM即点P(Ⅱ)易知直线AB 的斜率存在,设直线AB :12y kx =+,联立直线AB 与椭圆的方程,整理得22130124k x kx ⎛⎫++-= ⎪⎝⎭, 设()11,A x y ,()22,B x y ,则122112k x x k +=-+,12231412x x k =-⎛⎫+ ⎪⎝⎭.直线PA 的方程为1111y y x x -=+,代入132y x =-+, 整理得111114422(21)1C x x x x y k x ==+-+-. 同理可得,222224422(21)1D x x x x y k x ==+-+-,则||C D CD x =-224(21)1x k x =-+-=====341431kk⨯+≥+=,当且仅当3|4|4k=,即3||16k=时等号成立,所以当3||16k=时,||CD.11。

平面解析几何与圆锥曲线

平面解析几何与圆锥曲线

平面解析几何与圆锥曲线解析几何是数学中的一门学科,它研究的是几何图形在坐标系中的运动和性质。

圆锥曲线是解析几何中的一个重要内容,由直线和圆相交、旋转、平移等方式形成的曲线。

本文将探讨平面解析几何与圆锥曲线的关系及相关概念。

一、平面解析几何基本概念在平面解析几何中,我们常用的坐标系是笛卡尔坐标系,它由两条相互垂直的直线构成。

其中,横轴称为x轴,纵轴称为y轴。

平面上的点可以用有序数对(x, y)表示,x称为横坐标,y称为纵坐标。

根据欧氏距离公式,两点间的距离可以表示为d = √((x₂ - x₁)² + (y₂ - y₁)²)。

在解析几何中,直线是一个基本图形。

根据两点确定一条直线的原理,我们可以通过已知的两个点求解直线的方程。

一般形式为Ax + By + C = 0,其中A、B、C为常数。

二、圆锥曲线的基本类型圆锥曲线可以分为四种基本类型:椭圆、双曲线、抛物线和直线。

1. 椭圆椭圆是圆锥曲线中最简单的一种形式。

它的定义是平面上到两个定点的距离之和等于常数的点组成的图形。

如果两个定点的距离为2a,且椭圆的长轴在x轴上,短轴在y轴上,那么椭圆的标准方程为(x²/a²) + (y²/b²) = 1。

2. 双曲线双曲线是圆锥曲线中另一个重要的类型。

它的定义是平面上到两个定点的距离之差等于常数的点组成的图形。

如果两个定点的距离为2a,双曲线的标准方程为(x²/a²) - (y²/b²) = 1。

3. 抛物线抛物线是圆锥曲线中非常常见的一种形式。

它的定义是平面上到一个定点的距离等于定直线的距离的点组成的图形。

抛物线的标准方程为y² = 2px,其中p是焦点到准线的垂直距离。

4. 直线直线可以看作是圆锥的一种特殊情况,它的标准方程可以表示为Ax + By + C = 0。

直线在平面解析几何中有着重要的应用,如直线的交点和直线与曲线的切点等。

人教A版高考总复习一轮文科数学精品课件 第9章 解析几何 第2课时 圆锥曲线中的定点(或定值)问题

人教A版高考总复习一轮文科数学精品课件 第9章 解析几何 第2课时 圆锥曲线中的定点(或定值)问题
(3y1+6-x1-x2)(y-y2)-(y1-y2)(x-x2)=0.
将 x=0,y=-2 代入上式,整理得 12-2(x1+x2)+3y1y2+6(y1+y2)-x1y2-x2y1=0.(*)
6(+2)
因为 x1+x2=
2
4+3
3(+4)
,x1x2=
2
4+3
,
-8-16
所以 y1+y2=k(x1-1)-2+k(x2-1)-2=
在椭圆上,即 9
2
9(1- 1 )
9
( 1 +3)2

联立
=
2
1- 2
9
2
( 2 -3)
9
+
( 2 -3)2
,
22
2
1 =1, 9
+ 22 =1,
,整理得 4x1x2-15(x1+x2)+36=0,
= + ,
2
=
22
+ 2 = 1,
得(1+9k2)x2+18kmx+9m2-9=0,
+ 4
则点 M

= 1,
= 1,
2 6
1,3
2 6
y=- 代入
3
解得
,N
=
2 6
1,
3
2
y= x-2,得
3
2 6或
3
= 1,
=
2 6
- 3 ,
.
x=3- 6,则点 T 3-
2 6
6,3
.
又 = ,所以点 H(5-2

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。

圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。

本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。

一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。

2. 定点:圆锥曲线的两个定点分别称为焦点。

3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。

4. 准线:通过两个焦点的直线段称为准线。

二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。

2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

3. 性质:椭圆具有对称性、渐近线和切线性质等。

4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。

三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。

3. 性质:双曲线具有渐近线和切线性质,且有两个分支。

4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。

四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。

2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。

3. 性质:抛物线具有对称性、渐近线和切线性质等。

4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。

五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。

2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。

3. 性质:圆具有对称性、切线性质和切圆定理等。

4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。

总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。

解析几何中的圆锥曲线

解析几何中的圆锥曲线

解析几何中的圆锥曲线解析几何是数学中的一个重要分支,它研究了几何图形的性质和变换,其中圆锥曲线是解析几何中的重要概念之一。

圆锥曲线由平面与一个双曲面或者一个抛物面相交而产生,包括椭圆、双曲线和抛物线。

本文将对这些圆锥曲线的性质和应用进行一些解析。

椭圆是一种非常常见的圆锥曲线。

它的定义是平面上到两个给定点的距离之和等于常数的点的集合。

这两个给定点称为焦点,而常数称为离心率。

椭圆有很多有趣的性质,比如它的离心率小于1,离心率等于0时,椭圆就变成了一个圆。

椭圆也是一种对称图形,它的两个焦点和中心都在同一条直线上。

椭圆还有一些重要的应用,比如在天文学中,行星的轨道就可以近似看作是椭圆。

双曲线是另一种常见的圆锥曲线。

它的定义是平面上到两个给定点的距离之差的绝对值等于常数的点的集合。

这两个给定点同样称为焦点,而常数则是离心率。

与椭圆不同的是,双曲线的离心率大于1。

双曲线也有很多有趣的性质,比如它的两个焦点和中心不在同一条直线上。

双曲线在物理学和工程学中也有广泛的应用,比如电磁波的传播就可以用双曲线来描述。

抛物线是圆锥曲线中的最后一种形式。

它的定义是平面上到一个给定点的距离等于到一个给定直线的距离的点的集合。

这个给定点称为焦点,给定直线称为准线。

抛物线有很多有趣的性质,比如它是一种对称图形,焦点和准线都在对称轴上。

抛物线在物理学中也有重要的应用,比如抛物线的形状可以用来描述物体的抛射运动。

除了上述三种基本形式的圆锥曲线,解析几何还研究了它们的性质和变换。

例如,圆锥曲线的方程可以用代数的方法来表示,这样就可以通过方程来研究它们的性质。

此外,圆锥曲线还可以进行平移、旋转和缩放等变换,这些变换可以改变圆锥曲线的形状和位置。

在实际应用中,圆锥曲线有着广泛的应用。

比如在工程学中,圆锥曲线可以用来描述光的反射和折射现象,从而帮助设计光学器件。

在航天领域,圆锥曲线可以用来描述行星和卫星的轨道,从而帮助计算它们的运动轨迹。

在计算机图形学中,圆锥曲线可以用来描述曲线和曲面的形状,从而帮助生成逼真的图像。

圆锥曲线的分类及基本方程

圆锥曲线的分类及基本方程

圆锥曲线的分类及基本方程圆锥曲线是解析几何中最为重要的一类曲线,不仅在数学领域有广泛应用,在物理、化学、工程等多个领域中也有着重要的作用。

本文将围绕圆锥曲线的分类及基本方程展开讨论。

一、圆锥曲线的定义圆锥曲线是指由一个固定点F(焦点)和一个固定直线L(直角母线)所确定的点P(动点)的轨迹。

如果点P在直线L同侧与焦点F的距离大于点P到直线L的距离,则称此为椭圆;如果点P在直线L同侧与焦点F的距离等于点P到直线L的距离,则称此为双曲线;如果点P在直线L的另一侧,且距离相等,则称此为圆。

二、圆锥曲线的分类根据圆锥曲线的定义,可以将它们分为三类:椭圆、双曲线和圆。

下面分别进行讲解。

1. 椭圆椭圆是指在平面直角坐标系中,到空间内两个定点F1、F2距离之和为定值2a、固定数e小于1的点P所形成的轨迹。

其中,a为椭圆的半长轴,b为椭圆的半短轴,c为椭圆的焦距,e为椭圆的离心率,有以下基本方程:(x^2 / a^2) + (y^2 / b^2) = 1其中,如果椭圆的中心在坐标系原点上,则方程为:x^2 / a^2 + y^2 / b^2 = 12. 双曲线双曲线是指在平面直角坐标系中,到空间内两个定点F1、F2距离之差为定值2a、固定数e大于1的点P所形成的轨迹。

其中,a为双曲线的半轴,b为双曲线的次轴,c为双曲线的焦距,e为双曲线的离心率,有以下基本方程:(x^2 / a^2) - (y^2 / b^2) = 1其中,如果双曲线的中心在坐标系原点上,则方程为:x^2 / a^2 - y^2 / b^2 = 13. 圆圆是指在平面直角坐标系中离空间内一个固定点O距离相等的点P所组成的轨迹,该固定点称为圆心,离圆心最远的点称为圆的周围。

圆的方程为:(x - a)^2 + (y - b)^2 = r^2其中,(a,b)为圆心坐标,r为圆的半径。

三、圆锥曲线的性质1. 椭圆的离心率小于1,且对称轴平行于 y 轴,故对称于 x 轴的部分也是椭圆。

圆锥曲线课件

圆锥曲线课件

标准方程:x^2/a^2 - y^2/b^2 = 1 (a > 0, b > 0)
1. 范围:双曲线在x轴上的范围是[±a, ±∞],在y轴上 的范围是[0, b]。
3. 渐近线:双曲线有两条渐近线,斜率分别为y=±b/a 。
抛物线
定义:抛物线是指由平面内 与一个固定点F和一条直线l
的距离相等的点的轨迹。
极坐标系的基本概念
01
极坐标系是平面坐标系的一种形式,由极点、极轴和极径等构
成。
圆锥曲线在极坐标系中的表示
02
将圆锥曲线置于极坐标系中,探究其在极坐标系中的形式及其
性质。
极坐标与直角坐标的转换
03
掌握极坐标与直角坐标的转换公式,能够将极坐标方程转化为
直角坐标方程。
圆锥曲线在实际问题中的优化方案
实际问题的数学建模
折射定律
折射定律也是光学原理中的重要内容之一,它描述了 光线在不同介质之间传播时的偏转规律。在一些复杂 的光学系统中,如望远镜、显微镜等,需要对多个曲 面进行精确的设计和加工,而这些曲面常常是按照圆 锥曲线的形状进行设计和加工的。通过对这些曲面的 精确设计和加工,我们可以更好地控制光线的折射方 向和强度,从而制造出更好的光学器材和设备。
计算坐标
根据圆锥曲线的方程,计算出各个点的坐标 。
确定圆锥曲线的形状和大小
根据圆锥曲线的性质和特点,确定形状和大 小,选择合适的参数。
绘制图形
使用绘图软件或手绘,根据计算出的坐标绘 制圆锥曲线。
焦点半径法
01
02
03
确定焦点
根据圆锥曲线的类型和方 程,确定焦点位置。
计算半径
根据圆锥曲线的方程和焦 点的位置,计算出曲线的 半径。

解析几何与圆锥曲线

解析几何与圆锥曲线

解析几何与圆锥曲线解析几何是数学中的一个分支,研究的是几何图形在坐标系中的性质和关系。

而圆锥曲线是解析几何中的一个重要概念,指的是在平面上由一个定点(焦点)和一个定直线(直角平分线)确定的几何图形。

本文将详细解析解析几何与圆锥曲线之间的关系。

一、解析几何基础解析几何的基础是坐标系,通常使用直角坐标系来描述平面上的点和几何图形。

在直角坐标系中,每个点都可以用两个坐标表示,分别表示该点在横轴和纵轴上的位置。

我们可以利用坐标系来描述线段、直线、曲线等几何图形,并通过代数的方法来研究它们的性质和关系。

二、圆锥曲线的定义与分类圆锥曲线是指在平面上由一个定点(焦点)和一个定直线(直角平分线)确定的几何图形。

根据焦点和直角平分线的相对位置,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。

1. 椭圆:焦点到直角平分线的距离之和是一个常数,称为椭圆的离心率。

当离心率小于1时,椭圆是闭合曲线,当离心率等于1时,椭圆是一个线段,当离心率大于1时,椭圆是两个分离的曲线。

2. 双曲线:焦点到直角平分线的距离之差是一个常数,称为双曲线的离心率。

当离心率小于1时,双曲线是两个分离的曲线,当离心率等于1时,双曲线是两条渐进线,当离心率大于1时,双曲线是两个分离的曲线。

3. 抛物线:焦点到直角平分线的距离等于一个常数,称为抛物线的离心率。

抛物线有两种形式,一种是开口向上的抛物线,一种是开口向下的抛物线。

三、解析几何与圆锥曲线的关系解析几何主要研究的是几何图形在坐标系中的性质和关系,而圆锥曲线可以通过解析几何的方法进行研究和描述。

通过引入坐标系,我们可以将焦点和直角平分线的位置用代数的方式表示,从而推导出圆锥曲线的方程和各种性质。

以椭圆为例,假设焦点为F(a,0),直角平分线为x=k,其中a和k为常数。

根据椭圆的定义,点P(x,y)到焦点和直角平分线的距离之和等于常数,即PF1+PF2=2a,可以得到以下方程:(x-a)^2+y^2+(x-a)^2+y^2=4a^2化简后即为椭圆的标准方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 解析几何 第二节 圆锥曲线第二节 圆锥曲线2009年高考数学试题分类汇编——圆锥曲线课堂练习一、选择题1.(2009全国卷Ⅰ理)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于( )【解析】设切点00(,)P x y ,则切线的斜率为0'0|2x x y x ==.由题意有002y x x =又2001y x =+解得: 201,2,b x e a =∴===【答案】C2.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )D. 3【解析】过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得2||233BF =⋅=||AF ∴=故选A 【答案】A3.(2009浙江理)过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C .若12AB BC =,则双曲线的离心率是 ( ) A .2 B .3 C .5 D .10 【答案】C4.(2009浙江文)已知椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( )A .32 B .22 C .13 D .12【答案】D5.(2009北京理)点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【解析】本题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能力. 属于创新题型.本题采作数形结合法易于求解,如图, 设()(),,,1A m n P x x -, 则()2,22B m x n x ---, ∵2,A B y x =在上,∴2221(2)n m n x m x ⎧=⎨-+=-⎩消去n ,整理得关于x 的方程22(41)210x m x m --+-= (1) ∵222(41)4(21)8850m m m m ∆=---=-+>恒成立, ∴方程(1)恒有实数解,∴应选A .【答案】A6.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2c e a a ====故选D.【答案】D【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.7.(2009山东卷文)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ).A.24y x =±B.28y x =±C. 24y x = D. 28y x =【解析】 抛物线2(0)y ax a =≠的焦点F 坐标为(,0)4a ,则直线l 的方程为2()4a y x =-,它与y 轴的交点为A (0,)2a -,所以△OAF 的面积为1||||4242a a⋅=,解得8a =±.所以抛物线方程为28y x =±,故选B.【答案】B【命题立意】:本题考查了抛物线的标准方程和焦点坐标以及直线的点斜式方程和三角形面积的计算.考查数形结合的数学思想,其中还隐含着分类讨论的思想,因参数a 的符号不定而引发的抛物线开口方向的不定以及焦点位置的相应变化有两种情况,这里加绝对值号可以做到合二为一.8.(2009全国卷Ⅱ文)双曲线13622=-y x 的渐近线与圆)0()3(222>=+-r r y x 相切,则r = ( )A.3B.2C.3D.6【解析】本题考查双曲线性质及圆的切线知识,由圆心到渐近线的距离等于r ,可求r =3. 【答案】A9.(2009全国卷Ⅱ文)已知直线)0)(2(>+=k x k y 与抛物线C:x y 82=相交A 、B 两点,F 为C 的焦点。

若FB FA 2=,则k = ( )A.31 B.32 C.32D.322【解析】本题考查抛物线的第二定义,由直线方程知直线过定点即抛物线焦点(2,0),由2FA FB =及第二定义知)2(22+=+B A x x 联立方程用根与系数关系可求k=223. 【答案】D10.(2009安徽卷理)下列曲线中离心率为62的是A.22124x y -= B.22142x y -= C.22146x y -= D.221410x y -=【解析】由62e =得222222331,1,222c b b a a a =+==,选B.【答案】B11.(2009福建卷文)若双曲线()222213x y a o a -=>的离心率为2,则a 等于( )A. 2B.3C.32D. 1 【解析】 由22223123x y a a a+-===c 可知虚轴b=3,而离心率e=a ,解得a =1或a =3,参照选项知而应选D.【答案】D12.(2009安徽卷文)下列曲线中离心率为的 是(. ( )A. B. C. D.【解析】依据双曲线22221x y a b -=的离心率ce a=可判断得.62c e a ==.选B 。

【答案】B13.(2009江西卷文)设1F 和2F 为双曲线22221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为A .32 B .2 C .52D .3 【答案】B14.(2009江西卷理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为A .2 B .3 C .12 D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a=从而可得3c e a ==,故选B【答案】B15.(2009天津卷文)设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为( )A.x y 2±= B .x y 2±= C .x y 22±= D.x y 21±= 【解析】由已知得到2,3,122=-===b c a c b ,因为双曲线的焦点在x 轴上,故渐近线方程为x x a b y 22±=±=【答案】C【考点定位】本试题主要考查了双曲线的几何性质和运用。

考察了同学们的运算能力和推理能力。

16.(2009湖北卷理)已知双曲线22122x y -=的准线过椭圆22214x y b +=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是( )A. 11,22K ⎡⎤∈-⎢⎥⎣⎦ B. 11,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭C. 22,22K ⎡⎤∈-⎢⎥⎣⎦ D. 22,,22K ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭【答案】A17.(2009四川卷文、理)已知双曲线)0(12222>=-b by x 的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点),3(0y P 在双曲线上.则1PF ·2PF =( ) A. -12 B. -2 C. 0 D. 4 【答案】C18.(2009全国卷Ⅱ理)已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =( )A.13B.23C.23D. 223【解析】设抛物线2:8C y x =的准线为:2l x =-直线()()20y k x k =+>恒过定点P ()2,0- .如图过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , 由||2||FA FB =, 则||2||AM BN =,点B 为AP 的中点.连结OB ,则1||||2OB AF =, ||||OB BF ∴= 点B 的横坐标为1, 故点B 的坐标为22022(1,22)1(2)3k -∴==--, 故选D. 【答案】D19.(2009全国卷Ⅱ理)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为 ( ) A .65 B. 75 C. 58 D. 95【解析】设双曲线22221x y C a b-=:的右准线为l ,过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , BD AM D ⊥于,由直线AB 的斜率为,知直线AB 的倾斜角16060,||||2BAD AD AB ︒∴∠=︒=, 由双曲线的第二定义有1||||||(||||)AM BN AD AF FB e -==-11||(||||)22AB AF FB ==+.又15643||||25AF FB FB FB e e =∴⋅=∴= .【答案】A20.(2009湖南卷文)抛物线28y x =-的焦点坐标是( )A .(2,0)B .(- 2,0)C .(4,0)D .(- 4,0) 【解析】由28y x =-,易知焦点坐标是(,0)(2,0)2p-=-,故选B. 【答案】B21.(2009宁夏海南卷理)双曲线24x -212y =1的焦点到渐近线的距离为( )A.B.2D.1【解析】双曲线24x -212y =1的焦点(4,0)到渐近线y =的距离为d ==【答案】A22.(2009陕西卷文)“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件【解析】将方程221mx ny +=转化为 22111x y m n+=, 根据椭圆的定义,要使焦点在y 轴上必须满足110,0,m n>>所以11n m >.【答案】C23.(2009全国卷Ⅰ文)设双曲线()222200x y a b a b-=1>,>的渐近线与抛物线21y =x +相切,则该双曲线的离心率等于( )B.2【解析】由题双曲线()222200x y a b a b-=1>,>的一条渐近线方程为a bx y =,代入抛物线方程整理得02=+-a bx ax ,因渐近线与抛物线相切,所以0422=-a b ,即5522=⇔=e a c ,故选择C.【答案】C24.(2009湖北卷文)已知双曲线1412222222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b =( )A.3B.5C.3D.2【解析】可得双曲线的准线为21a x c=±=±,又因为椭圆焦点为(所以有1=.即b 2=3故b.故C.【答案】C27.(2009天津卷理)设抛物线2y =2x 的焦点为F ,过点M0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的面积之比BCFACFS S ∆∆=( )12又323221||-=⇒=⇒=+=B B B y x x BF 由A 、B 、M 三点共线有B M B M A M A M x x y y x x y y --=--即23330320-+=--AA x x ,故2=A x ,∴5414131212=++=++=∆∆A B ACF BCF x x S S ,故选择A 。

相关文档
最新文档