基于Matlab的牛顿迭代法解非线性方程组

合集下载

非线性方程求解

非线性方程求解

⾮线性⽅程求解基于MATLAB的⾮线性⽅程的五种解法探讨摘要:本⽂利⽤matlab软件对⾮线性⽅程解法中的⼆分法、简单迭代法、⽜顿法、割线法以及Steffensen法的数值分析⽅法的算法原理及实现⽅法进⾏了探讨。

对f x x x=+-()2ln2的零点问题,分别运⽤以上五种不同的⽅法进⾏数值实验,⽐较⼏种解法的优缺点并进⾏初步分析评价。

关键词:⼆分法、简单迭代法、⽜顿法、割线法、Steffensen法1、引⾔在很多实际问题中,经常需要求⾮线性⽅程f(x) =0的根。

⽅程f(x) =0的根叫做函数f(x)的零点。

由连续函数的特性知:若f(x)在闭区间[a,b ]上连续,且()()0f a f b<.则f(x) =0在开区间(a,b)内⾄少有⼀个实根。

这时称[a,b]为⽅程f(x) =0的根的存在区间。

本⽂主要对⾮线性⽅程的数值解法进⾏分析,并介绍了⾮线性⽅程数值解法的五种⽅法。

并设=+-.f x x x()2ln2f x在[1,2]上的图形,如图1:. 显然,函数在[1,2]之间有⼀个零点。

⾸先画出()2、计算机配置操作系统Windows 7 旗舰版内存2GB处理器AMD 4核 A6-3400M APU 1.4GHz图.13、⼆分法⼆分法的基本思想是将⽅程根的区间平分为两个⼩区间,把有根的⼩区间再平分为两个更⼩的区间,进⼀步考察根在哪个更⼩的区间内。

如此继续下去,直到求出满⾜精度要求的近似值。

设函数()f x 在区间[a,b ]上连续,且f(a)·f(b) <0,则[a,b ]是⽅程f(x) =0的根的存在区间,设其内有⼀实根,记为x*。

取区间[a,b ]的中点()2k a b x +=并计算1()f x ,则必有下列三种情况之⼀成⽴: (1) 1()f x =0,x1就是⽅程的根x*;(2)()f a .1()f x <0,⽅程的根x*位于区间[a, 1x ]之中,此时令111,a a b x ==; (3)1()f x .()f b <0,⽅程的根x*位于区间[1x ,b ]之中,此时令11a x =,1b b =。

matlab fsolve 算法

matlab fsolve 算法

matlab fsolve 算法Matlab是一种常用的科学计算软件,其中的fsolve算法是用于求解非线性方程组的一种方法。

本文将介绍fsolve算法的原理和使用方法,并通过实例展示其在实际问题中的应用。

一、fsolve算法原理fsolve算法是一种数值方法,用于求解非线性方程组。

它基于牛顿迭代法,通过不断迭代逼近方程组的解。

具体原理如下:1. 假设要求解的方程组为F(x) = 0,其中x为未知向量,F为非线性函数。

2. 首先,我们需要对方程组进行线性化,即将其转化为形如J(x)Δx = -F(x)的线性方程组,其中J(x)为方程组F(x)的雅可比矩阵,Δx为x的增量。

3. 初始时,我们给定一个初始解x0。

4. 然后,利用初始解和雅可比矩阵,通过求解线性方程组J(x0)Δx = -F(x0),得到增量Δx。

5. 将增量Δx加到初始解x0上,得到新的解x1 = x0 + Δx。

6. 重复步骤4和步骤5,直到满足终止准则,即F(x)的范数小于某个给定的容差。

二、fsolve算法使用方法在Matlab中,可以使用fsolve函数调用fsolve算法来求解非线性方程组。

其基本语法如下:x = fsolve(fun,x0,options)其中,fun为一个函数句柄,表示要求解的方程组F(x) = 0,x0为初始解向量,options为求解选项。

三、fsolve算法应用实例下面通过一个实际问题来演示fsolve算法的应用。

假设有一个非线性方程组:sin(x) + cos(y) = 1exp(x) + y = 2我们的任务是求解方程组的解。

我们需要将方程组转化为函数形式。

在Matlab中,我们可以定义一个函数文件,例如:function F = equations(x)F(1) = sin(x(1)) + cos(x(2)) - 1;F(2) = exp(x(1)) + x(2) - 2;然后,我们可以使用fsolve函数来求解方程组:x0 = [0,0]; % 初始解向量options = optimoptions('fsolve','Display','iter'); % 设置求解选项x = fsolve(@equations,x0,options); % 调用fsolve算法求解方程组我们可以将求解的结果打印出来:disp(['x = ', num2str(x(1))]);disp(['y = ', num2str(x(2))]);通过运行上述代码,我们可以得到方程组的解x = 0.7854,y = 1.2146。

牛顿迭代法解非线性方程组(MATLAB版)

牛顿迭代法解非线性方程组(MATLAB版)

⽜顿迭代法解⾮线性⽅程组(MATLAB版)⽜顿迭代法,⼜名切线法,这⾥不详细介绍,简单说明每⼀次⽜顿迭代的运算:⾸先将各个⽅程式在⼀个根的估计值处线性化(泰勒展开式忽略⾼阶余项),然后求解线性化后的⽅程组,最后再更新根的估计值。

下⾯以求解最简单的⾮线性⼆元⽅程组为例(平⾯⼆维定位最基本原理),贴出源代码:1、新建函数fun.m,定义⽅程组1 function f=fun(x);2 %定义⾮线性⽅程组如下3 %变量x1 x24 %函数f1 f25 syms x1 x26 f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17);7 f2 = sqrt(x1^2 + (x2-4)^2)-5;8 f=[f1 f2];2、新建dfun.m,求出⼀阶微分⽅程1 function df=dfun(x);2 f=fun(x);3 df=[diff(f,'x1');diff(f,'x2')]; %雅克⽐矩阵3、建⽴newton.m,执⾏⽜顿迭代过程1 clear;clc2 format;3 x0=[0 0]; % 迭代初始值4 eps = 0.00001; % 定位精度要求5for i = 1:106 f = double(subs(fun(x0),{'x1''x2'},{x0(1) x0(2)}));7 df = double(subs(dfun(x0),{'x1''x2'},{x0(1) x0(2)})); % 得到雅克⽐矩阵8 x = x0 - f/df;9if(abs(x-x0) < eps)10break;11 end12 x0 = x; % 更新迭代结果13 end14 disp('定位坐标:');15 x16 disp('迭代次数:');17 i结果如下:定位坐标:x =0.0000 -1.0000迭代次数:i =4。

牛顿迭代法求解非线性方程组的解

牛顿迭代法求解非线性方程组的解

10 简化牛顿法 简化牛顿法又称平行弦法,其迭代公式为
xk1 xk Cf (xk ),C 0, k 0,1,
(4-7)
从不动点迭代法的角度看,简化牛顿法的迭代函数(x) x Cf (x) ,下面讨论简
化牛顿法的收敛性。
若| '(x) ||1 Cf '(x) | 1 ,即取 0 Cf ' (x) 2 .在根 x* 附近成立,则迭代法
x k 的点 Pk 引切线,并将该切线与 x 轴的交点的横坐标 x k1 作为 x* 的新的近似值。 注意到切线方程为
y f (xk ) f '(xk )(x xk )
(4-4)
这样求得的值 x k1 比满足 f (xk ) f '(xk )(x xk ) 0 ,从而就是牛顿公式
x
k 1
| f (xk1) || f (xk ) |
(4-8)
满足此要求的算法称为下山法。
将牛顿法和下山法一起使用时,即在下山法保证函数值稳定下降的前提下,
用牛顿法加快收敛速度。为此,为此将牛顿法的计算结果
xk 1
xk
f (xk ) f ' (xk )
(4-9)
与前一步的近似值 xk 的适当加权平均作为新的改进值
代法中所遇到的 jacobi 矩阵难求的问题。
关键词:非线性方程组、牛顿迭代法、MATLAB、 jacobi 矩阵
一、前言 非线性方程组在实际问题中经常出现,并且在科学与工程计算中的地位越来
越来重要,很多常见的线性模型都是在一定条件下由非线性问题简化得到的,为 得到更符合实际的解答,往往需要直接研究非线性模型,然而从线性到非线性是 一个质的飞跃,方程的性质的不同,所以求解方法也有很大差别。本文主要介绍 关于非线性方程及方程组的数值解法,先分析非线性方程的数值解法,然后再延 伸到方程组的解法。

matlab牛顿迭代法求方程

matlab牛顿迭代法求方程

一、引言在数值计算中,求解非线性方程是一项常见的任务。

牛顿迭代法是一种常用且有效的方法,它通过不断逼近函数的零点来求解方程。

而在MATLAB中,我们可以利用其强大的数值计算功能来实现牛顿迭代法,快速求解各种非线性方程。

二、牛顿迭代法原理与公式推导1. 牛顿迭代法原理牛顿迭代法是一种利用函数的导数信息不断逼近零点的方法。

其核心思想是利用当前点的切线与x轴的交点来更新下一次迭代的值,直至逼近方程的根。

2. 公式推导与迭代过程假设要求解方程f(x)=0,在初始值x0附近进行迭代。

根据泰勒展开,对f(x)进行一阶泰勒展开可得:f(x) ≈ f(x0) + f'(x0)(x - x0)令f(x)≈0,则有:x = x0 - f(x0)/f'(x0)将x带入f(x)的表达式中,即得到下一次迭代的值x1:x1 = x0 - f(x0)/f'(x0)重复以上过程,直至达到精度要求或者迭代次数上限。

三、MATLAB中的牛顿迭代法实现1. 编写函数在MATLAB中,我们可以编写一个函数来实现牛顿迭代法。

需要定义原方程f(x)的表达式,然后计算其一阶导数f'(x)的表达式。

按照上述推导的迭代公式,编写循环语句进行迭代计算,直至满足精度要求或者达到最大迭代次数。

2. 调用函数求解方程在编写好牛顿迭代法的函数之后,可以通过在MATLAB命令窗口中调用该函数来求解具体的方程。

传入初始值、精度要求和最大迭代次数等参数,即可得到方程的近似根。

四、牛顿迭代法在工程实践中的应用1. 求解非线性方程在工程领域,很多问题都可以转化为非线性方程的求解问题,比如电路分析、控制系统设计等。

利用牛顿迭代法可以高效地求解这些复杂方程,为工程实践提供了重要的数值计算手段。

2. 优化问题的求解除了求解非线性方程外,牛顿迭代法还可以应用于优化问题的求解。

通过求解目标函数的导数等于0的方程,可以找到函数的极值点,从而解决各种优化问题。

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。

假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。

我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。

为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。

雅可比矩阵是由方程组的偏导数组成的矩阵。

对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。

在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。

以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。

下一步是实现牛顿迭代法。

牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。

在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。

matlab实验一:非线性方程求解-牛顿法

matlab实验一:非线性方程求解-牛顿法

实验一:非线性方程求解程序1:二分法:syms f x;f=input('请输入f(x)=');A=input('请输入根的估计范围[a,b]='); e=input('请输入根的误差限e='); while (A(2)-A(1))>ec=(A(1)+A(2))/2;x=A(1);f1=eval(f);x=c;f2=eval(f);if (f1*f2)>0A(1)=c;elseA(2)=c;endendc=(A(1)+A(2))/2;fprintf('c=%.6f\na=%.6f\nb=%.6f\n',c,A)用二分法计算方程:1.请输入f(x)=sin(x)-x^2/2请输入根的估计范围[a,b]=[1,2]请输入根的误差限e=0.5e-005c=1.404413a=1.404411b=1.4044152.请输入f(x)=x^3-x-1请输入根的估计范围[a,b]=[1,1.5]请输入根的误差限e=0.5e-005c=1.324717a=1.324715b=1.324718程序2:newton法:syms f x;f=input('请输入f(x)=');df=diff(f); x0=input('请输入迭代初值x0=');e1=input('请输入奇异判断e1=');e2=input('请输入根的误差限e2=');N=input('请输入迭代次数限N=');k=1;while (k<N)x=x0;if abs(eval(f))<e1fprintf('奇异!\nx=%.6f\n迭代次数为:%d\n',x0,k)breakelsex1=x0-eval(f)/eval(df);if abs(x1-x0)<e2fprintf('x=%.6f\n迭代次数为:%d\n',x1,k)breakelsex0=x1;k=k+1;endendendif k>=Nfprintf('失败\n')end用newton法计算方程:1.请输入f(x)=x*exp(x)-1请输入迭代初值x0=0.5请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.567143迭代次数为:42.请输入f(x)=x^3-x-1请输入迭代初值x0=1请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=1.324718迭代次数为:53.1:请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.45请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.500000迭代次数为:43.2:请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.65请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.500000迭代次数为:93.3:请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10x=0.500000迭代次数为:4程序3:改进的newton法:syms f x;f=input('请输入f(x)=');df=diff(f);x0=input('请输入迭代初值x0=');e1=input('请输入奇异判断e1=');e2=input('请输入根的误差限e2=');N=input('请输入迭代次数限N=');k=1;while (k<N)x=x0;if abs(eval(f))<e1fprintf('奇异!\nx=%.6f\n迭代次数为:%d\n',x0,k)breakelsex1=x0-2*eval(f)/eval(df);if abs(x1-x0)<e2fprintf('x=%.6f\n迭代次数为:%d\n',x1,k)breakelsex0=x1;k=k+1;endendendif k>=Nfprintf('失败\n')end用改进的newton法计算方程:1.请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=10失败2.请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=20失败3.请输入f(x)=(x-1)^2*(2*x-1)请输入迭代初值x0=0.55请输入奇异判断e1=0.1e-010请输入根的误差限e2=0.5e-005请输入迭代次数限N=100失败。

牛顿法解非线性方程(MATLAB和C++)

牛顿法解非线性方程(MATLAB和C++)

41 end
42 time = toc;
43
44 fprintf('\nIterated times is %g.\n', times);
45 fprintf('Elapsed time is %g seconds.\n', time);
46
47 root = x_iter;
48
49 % subfunction
5
6 // 功能描述:求解非线性方程根,并输出最终解 7 // 迭代式:x(k+1) = x(k) - f(x(k))/df(x(k)). 8 // 使用:修改标出的“修改”部分即可自定义参数
9
10 // 输入:函数 fun,函数导数 dfun,初值 x0,
4
11 // 最大迭代次数 maxiter,停止精度 tol 12 // 输出:迭代数值解 x_iter2
2
Listing 1: MATLAB EXAMPLE 1 % 2013/11/20 15:14:38
2
3 f = @(x)x^2 − 2; 4 df = @(x)2*x; 5 x0 = 3; 6 root = newton(f, df, x0);
C++ 以 C++ 实现的方法并未编写成为一般可调用的方法,而作为一个独立的 文件(包含一个实例),修改部分即可求解对应的方程。具体参照 cpp 文件内 注释。
A 附录
A.1 MATLAB
Listing 2: MATLAB CODE 1 function root = newton(f, df, x0, maxiter, tol) 2 %NEWTON Newton's method for nonlinear equations. 3% 4 % NEWTON's method: x(k+1) = x(k) - f(x(k))/f'(x(k)). 5% 6 % Inputs 7 % f - nonlinear equation. 8 % df - derivative of f(x). 9 % x0 - initial value. 10 % maxiter - maximum iterated times. 11 % tol - precision. 12 % 13 % Outputs 14 % root - root of f(x) = 0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档