数理统计学课程总结共45页文档

合集下载

数理统计知识小结

数理统计知识小结

数理统计知识小结------缪晓丹 056第五章 统计量及其散布§整体与样本一、 整体与样本在一个统计问题中,把研究对象的全部称为整体,组成整体的每一个成员称为个体。

关于实际问题,整体中的个体是一些实在的人或物。

如此,抛开实际背景,整体确实是一堆数,这堆数中有大有小,有的显现机遇多,有的显现机遇小,因此用一个概率散布去描述和归纳整体是适合的,从那个意义上说:整体确实是一个散布,而其数量指标确实是服从那个散布的随机变量。

例5.1.1考察某厂的产品质量,将其产品分为合格品和不合格品,并以0记合格品,以1记不格品,假设以p 表示不合格品率,那么各整体可用一个二点散布表示:不同的p 反映了整体间的不同。

在有些问题中,咱们对每一研究对象可能要观测两个或更多个指标,现在可用多维随机向量及其联合散布来描述整体。

这种整体称为多维整体。

假设整体中的个体数是有限的,此整体称为有限整体;不然称为无穷整体。

实际中整体中的个体数大多是有限的,当个体数充分大时,将有限整体看做无穷整体是一种合理抽象。

二、样本与简单随机样本 一、样本为了了解整体的散布,从整体中随机地抽取n 个个体,记其指标值为 n x x x ,,,21 , 则n x x x ,,,21 称为整体的一个样本,n 称为样本容量或简称为样本量,样本中的个体称为样品。

当30 n 时,称n x x x ,,,21 为大样本,不然为小样本。

第一指出,样本具有所谓的二重性:一方面,由于样本是从整体中随机抽取的,抽取前无法预知它们的数值,因此样本是随机变量,用大写字母 n X X X ,,,21 表示;另一方面,样本在抽取以后经观测就有确信的观测值,因此样本又是一组数值,现在用小写字母n x x x ,,,21 表示。

简单起见,不管是样本仍是其观测值,本书中均用n x x x ,,,21 表示,从上下文咱们能加以区别。

每一个样本观测值都能测到一个具体的数值,那么称该样本为完全样本,假设样本观测值没有具体的数值,只有一个范围,那么称如此的样本为分组样本。

概率论与数理统计课程的教学总结

概率论与数理统计课程的教学总结

概率论与数理统计课程的教学总结第一篇:概率论与数理统计课程的教学总结关于“概率论与数理统计”课程的教学总结概率论与数理统计无疑是其中最为活跃的分支之一,它既有严密的数学基础,又与各学科联系紧密,在自然科学、社会科学、管理科学、技术科学和工农业生产等各个学科和领域中得到极其广泛的应用,概率论与数理统计也因此成为数学专业和许多其它相关专业的一门重要的必修课程。

但由于随机现象的普遍存在性、研究方法的独特性和教学内容的实用性,很多学生反映这门课程学起来比较困难。

针对这种情况,我们从教学实践出发,进行了大量的教学研究,这学期教的“概率论与数理统计”课程共完成196.8学时的工作量,学生都是经济管理学院的文理兼收的学生,学生学习能力差距很大,这无疑对该门课程的教与学都带来了不同程度的难度。

认为从以下三方面入手,可以有效缓解学生的学习困难,提高教学质量。

一、将数学史渗透于概率统计教学之中在教学中,我们发现学生在概率统计学习中普遍感到入门难。

产生困难的原因主要有两点:一方面,概率统计的研究对象是随机现象所呈现的统计规律性,而不再是确定性现象中量与量之间的关系,学生的思维有一个转变过程;另一方面,概率统计中几乎每个概念都是从实际背景抽象而得到,但我们的学生过去并不习惯于直接从实际问题中进行数学抽象。

针对这些情况,我们在知识教学的过程中穿插了数学史中的历史典故、人物简介以及概念产生的实际背景等,这不但提高了学生的学习兴趣,活跃了课堂气氛,而且还可以使他们在“亲身经历”概念产生的过程中,进一步加深对概念的理解,同时数学家们坚韧不拔的精神也能激发出他们克服困难的积极性。

二、将数学建模的思想渗透到概率统计教学中去在素质教育的背景下,教师不能只重视学生的知识学习,而更应着眼于学生应用能力和创新精神的培养。

“概率统计”是一门应用性很强的学科,因此我们开设“概率统计”课程的中心任务是引导学生从传统的确定性思维模式进入随机性思维模式,使学生掌握处理在工程建设、经济管理、人文社科等研究中出现的随机问题的数学方法。

最新 概率论与数理统计课程总结报告

最新  概率论与数理统计课程总结报告

概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。

概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。

本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。

关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式基本知识§1.1 概率的重要性质1.1.1定义设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。

概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)1.1.2 概率的一些重要性质(i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥(iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§1.2 随机变量的数字特征1.2.1 数学期望设离散型随机变量X 的分布律为k k p x X P ==}{,k=1,2,…若级数∑∞=1k k kp x绝对收敛,则称级数∑∞=1k k kp x的和为随机变量X 的数学期望,记为)(X E ,即∑=ik k p x X E )(设连续型随机变量X 的概率密度为)(x f ,若积分⎰∞∞-dx x xf )(绝对收敛,则称积分⎰∞∞-dx x xf )(的值为随机变量X 的数学期望,记为)(X E ,即⎰+∞∞-=dx x xf X E )()(定理 设Y 是随机变量X 的函数Y=)(X g (g 是连续函数)(1)如果X 是离散型随机变量,它的分布律为k p X P ==}x {k ,k=1,2,…若k k kp x g ∑∞=1()绝对收敛则有=)Y (E =))((X g E kk kp x g ∑∞=1()(2)如果X 是连续型随机变量,它的分概率密度为)(x f ,若⎰∞∞-dx x f x g )()(绝对收敛则有=)Y (E =))((X g E ⎰∞∞-dx x f x g )()(数学期望的几个重要性质 (1)设C 是常数,则有C C E =)(;(2)设X 是随机变量,C 是常数,则有)()(X CE CX E =; (3)设X,Y 是两个随机变量,则有)()()(Y E X E Y X E +=+; (4)设X ,Y 是相互独立的随机变量,则有)()()(Y E X E XY E =.1.2.2 方差定义 设X 是一个随机变量,若[]})({2X E X E -存在,则称[]})({2X E X E -为X 的方差,记为D (x )即D (x )=[]})({2X E X E -,在应用上还引入量)(x D ,记为)(x σ,称为标准差或均方差。

概率论与数理统计学习总结

概率论与数理统计学习总结

概率论与数理统计学习报告学院学号:姓名:概率论与数理统计学习报告通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。

我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。

先简单地介绍一下概率论与数理统计这门学科。

概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。

数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。

概率论与数理统计是研究随机现象及其规律性的一门数学学科。

研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的随机因素作用下,发生随机现象。

这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。

至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。

它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。

数理统计知识点梳理总结

数理统计知识点梳理总结

数理统计知识点梳理总结一、统计学简介统计学是一门研究数据收集、处理、分析和解释的学科。

在现代社会中,数据在各个领域都扮演着重要的角色,因此统计学成为了一门不可或缺的科学。

统计学的主要目的是通过对数据的分析和解释,从而得出对整体或者局部的结论。

统计学广泛应用于政治、经济、社会学、医学、环境科学、工程学等各个领域。

二、数据类型在统计学中,数据通常可以分为两种类型:定量数据和定性数据。

1. 定量数据:定量数据是可进行数值量度的数据,通常具有数值意义,可以进行数学运算。

例如,身高、体重、温度、成绩等都属于定量数据。

2. 定性数据:定性数据是指不能进行数值量度的数据,通常表示品质等性质。

例如,性别、颜色、职业等都属于定性数据。

三、描述统计描述统计是统计学中的一项重要内容,它包括了数据的整体描述和规律性分析。

描述统计的主要方法包括:中心趋势度量、离散程度度量和分布形态度量。

1. 中心趋势度量:中心趋势度量是用来描述数据集中趋势的度量。

主要包括均值、中位数和众数。

- 均值:均值是指将所有数据相加后除以数据的个数得到的平均值。

- 中位数:中位数是将数据按大小顺序排列后,处于中间位置的数值。

- 众数:众数是指数据集中出现次数最多的数值。

2. 离散程度度量:离散程度度量是用来描述数据分布的离散程度的度量。

主要包括极差、方差和标准差。

- 极差:极差是指数据的最大值和最小值之间的差距。

- 方差:方差是描述数据分布离散程度的一种度量,它是各个数据与均值之间差的平方和的平均值。

- 标准差:标准差是方差的平方根,它是用来度量数据的分布离散程度的指标。

3. 分布形态度量:分布形态度量是用来描述数据分布形态的度量。

主要包括偏态系数和峰态系数。

- 偏态系数:偏态系数是用来描述数据分布偏斜程度的指标。

- 峰态系数:峰态系数是用来描述数据分布峰态程度的指标。

四、概率概率是统计学中的一个重要概念,它用来描述事件发生的可能性。

概率可以分为主观概率和客观概率。

数理统计与数据分析的总结

数理统计与数据分析的总结

数理统计与数据分析的总结数理统计的数据分析应用实际在于提高数理概念研究能力,通过数理统计内容的完善及统计的科学配置解决数据研究理论问题,为数理统计实践提供更多元的信息分析模块。

本文将以数理统计的数据分析为基础,对数理统计的数据分析应用发展及内容等做逐一阐述,以此为数理统计的数理分析科学运用提供部份参考性研究建议。

伴有着社会的不断进步和科学技术的飞速发展,数理统计也在完善和进步,并逐渐应用于众多不同的领域。

作为统计工作中一项非常重要的内容,数理统计的方法和研究数理统计问题的理念在社会企业发展过程中发挥着巨大的作用,这些都可以通过数理统计工作体现出来。

本文通过对数理统计内容、统计方法及数据分析发展的历程等不同方面,对数理统计进行研究,阐述了现在统计学的发展和统计学对于社会政治经济生活中各个领域的重要性。

数理统计的发展背景及现状:数理统计有着非常悠久的历史,最开始以“统而计之”这个简单的理念浮现,经过几千年的积累和发展,加之科技的进步和社会生产力以及经济的不断进步,当代数理统计分析的应用范围也逐渐扩大,不单单局限于“统而计之”的方面,其在人文科学、社会科学和自然科学等众多领域均有涉及。

在统计内容、统计方法及数据统计的思想发展中,数理统计占领着非常重要的地位,其作用不可小觑。

在进行科学研究的过程中,时常会遇到描述两个或者多个随机变量的关系、描述随机变量的分布特征、离散性质或者变量的大小等类似的问题,而数理统计这一数学工具的浮现,能够特定的描述随机变量间的关系和随机变量,成功的解决了这些问题,促进科学领域的进步。

因此,如何将数理统计方法更好地应用于科学研究工作,有效的利用运用数理统计分析解决具体的科学研究问题,成为数据分析过程中非常关键的部份,也是研究现代数理统计过程中迫切需要解决的问题。

数理统计的研究内容:基于数据分析及数理统计的基本定义和概念,以数据分析中数理统计的广泛应用为重点,对数据统计的相关理论进行论述,总结出数据统计的特点,突出体现了数据统计在统计学中发挥着不可替代的作用。

数理统计知识点总结

数理统计知识点总结

1.学习统计学都要掌握哪些知识点我是厦门大学一名大二的学生,在修WISE(厦门大学王亚南经济学院)的统计双学位,希望我的回答能帮助到你。

与其说学统计需要学习哪些知识点,不如说说统计在本科阶段主要涵盖了哪些课程吧。

必须要说明的是,此处谈论的是统计(经济)而非统计(数学)。

前者与经济金融的关系更加紧密,是放在经济学院的,后者更加学术,是放在数学学院的。

本校的统计双学位课程主要有商务沟通与文化交流,经济学原理,概率论,数理统计,金融经济学/资产定价,随机过程,计算数据分析——使用统计软件,时间序列分析,微观经济学及其应用,回归分析,保险与精算,应用金融计量,多元统计分析,数据挖掘,金融衍生品分析,属性数据分析,金融风险管理,数理金融学,公司金融,实验设计与方差分析。

以上学科一部分是选修,一部分是必修,按照时间先后排序。

可以看出来,因为经济学院的原因,里面很多选修课程都与经济关系相当之大,事实上,很多经济学科就是需要运用到统计的知识。

必修的基础课程莫过于概率论和数理统计两门,别的理工学科4个课时上完的概率论与数理统计,统计学的孩子们要花两个学期各4个课时。

主要涵盖了概率论(各种概型与分布),抽样分布,参数估计,假设检验等等。

希望我的回答能够对你有所帮助。

2.概率论与数理统计复习提纲及常用公式,跪求概率论与数理统计复习提纲一,事件的运算如果A,B,C为三事件,则A+B+C为至少一次发生,ABC为同时发生,AB+BC+AC为至少两次发生,为恰有两次发生.为恰有一次发生,等等,要善于将语言翻译成事件运算公式以及将公式翻译成语言..如果A,B为对立事件,则,因此,二,加法法则如A与B互不相容,则P(A+B)=P(A)+P(B) 而对于任给的A与B有P(A+B)=P(A)+P(B)-P(AB) (1) 因此, P(A+B),P(A),P(B),P(AB)这四个概率只要知道三个,剩下一个就能够求出来.因将B分解为AB与两个互不相容事件,则(2)将这两个式子分别代入到(1)式,可以得因此P(A+B),P(A)及这三个概率只要知道两个,剩下那个就能求出来,同样,P(A+B),P(B)及只要知道两个,剩下那个就能求出来.例如,在已知P(A+B),A与B只有一件发生的概率为由(2)式可知因此A与B只有一件发生的概率为三,全概率公式和贝叶斯公式设A1,A2,…,构成完备事件组,则任给事件B有(全概率公式),及(贝叶斯公式)其中,最常用的完备事件组,就是一个事件A与它的逆,即任给事件A,B有通常是将试验想象为分为两步做,第一步的结果将导致A或者之一发生,而这将影响到第二步的结果的事件B是否发生的概率. 如果是已知第一步的各事件概率及第一步各事件发生条件下第二步事件B发生的概率,并要求B发生的概率,就用全概率公式. 而如果是要求在第二步事件B已经发生条件下第一步各事件的概率,就用贝叶斯公式.四,随机变量及分布 1. 离散型随机变量一元: P(ξ=xk)=pk (k=1,2,…),二元:P{ξ=xk,η=yj)=pij (i,j=1,2,…) 边缘分布与联合分布的关系:要注意二元随机变量的函数的计算中,要合并计算后的值有重合的情况.2. 连续型随机变量,,性质:分布函数为,且有如ξ~φ(x),η=f(ξ),则求η的概率密度函数的办法,是先求η的分布函数Fη(x),,然后对Fη(x)求导即得η的概率密度函数.五,随机变量的数字特征数学期望:离散型:连续型:方差:离散型:先计算,则连续型:先计算则六,几种常用的分布二项分布ξ~B(n,p)是指 . 它描述了贝努里独立试验概型中,事件A发生k次的概率. 试验可以同时进行,也可以依次进行. 均匀分布ξ服从[a,b]上的均匀分布,是指如ξ服从[0,1]上的均匀分布,η=kξ+c,则η服从[c, k+c]上的均匀分布.七,无偏估计对参数的估计是无偏估计,是指,一般来讲,是Eξ的无偏估计,而S2是Dξ的无偏估计. 但是,在是的无偏估计时,不能肯定f( )是f( )的无偏估计,须另作分析.八,最大似然估计对于n个样本值x1,x2,…,xn 如总体ξ为连续型随机变量,ξ~φ(x;θ),则似然函数而如总体ξ为离散型随机变量, P(ξ=xi)=p(xi;θ),则似然函数则解似然方程解得θ的最大似然估计值九,区间估计在正态总体下,即总体ξ~N(μ,σ2)时,如果σ2为已知,则,则在给定检验水平α时,查正态分布表求uα使,则置信度为1-α的置信区间为如果σ2为未知,则,其中S为样本方差的开平方(或者说测得的标准差. 查t-分布表求tα使,则置信度为1-α的置信区间为 .十,假设检验在正态总体下,即总体ξ~N(μ,σ2)时,在σ2为已知条件下,检验假设H0:μ=μ0,选取统计量,则在H0成立的条件下U~N(0,1),对于给定的检验水平α,查正态分布表确定临界值uα,使,根据样本观察值计算统计量U的值u与uα比较,如|u|>uα则否定H0,否则接收H0. 如σ2为未知,则选取统计量,在H0假设成立时T~t(n-1),对于给定的检验水平α和样本容量n,查t-分布表确定临界值tα使P(|T|>tα)=α,根据样本观察值计算统计量T的值t与tα比较,如|t|>tα则否定H0,否则接收H0. 如果是大样本情况下,t-分布接近标准正态分布,因此又可以查正态分布表。

概率论与数理统计学习总结

概率论与数理统计学习总结

概率论与数理统计学习报告学院学号:姓名:概率论与数理统计学习报告通过短短一学期的学习,虽然学习、研究地并不深入,但该课程的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角色充满遐想;它将我带入了一个由随机变量为桥梁,通过表面偶然性找出其内在规律性,从而与其它的数学分支建立联系的世界,让我对这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程产生了极大地兴趣。

我很喜欢这门课程,但也不得不说课后在它上面花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我一定会找时间进一步深入地学习它。

先简单地介绍一下概率论与数理统计这门学科。

概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。

数理统计是以概率论为基础,基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现象,进而对所观察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议。

概率论与数理统计是研究随机现象及其规律性的一门数学学科。

研究随机现象的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法研究随机现象,而是承认在所研究的问题中存在一些人们不能认识或者根本不知道的随机因素作用下,发生随机现象。

这样,人们既可以通过试验来观察随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况找出随机现象的规律,作出决策。

至今,概率论与数理统计的理论与方法已经广泛应用于自然科学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概率论与数理统计已成为处理信息、制定决策的重要理论和方法。

它们不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、神经网络统计分析、统计计算等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档