三角函数的应用和利用三角函数测高导学案

合集下载

利用三角函数测高(1)教学设计

利用三角函数测高(1)教学设计

利用三角函数测高教学目标(一)知识与技能:能够设计方案、步骤,能够说明测量的理由,能够综合运用直角三角形边角关系的知识解决实际问题。

(二)过程与方法:经历活动设计方案,自制仪器过程;通过综合运用直角三角形边角关系的知识,利用数形结合的思想解决实际问题,提高解决问题的能力。

(三)情感态度与价值观:通过积极参与数学活动过程,培养不怕困难的品质,发展合作意识和科学精神。

教学重点设计活动方案、自制仪器或运用仪器进行实地测量以及撰写活动报告的过程。

教学难点对所得到的数据进行分析,并能够对仪器进行调整和对测量的结果进行矫正。

学情分析本节课为活动课,活动一:测量倾斜角;活动二:测量底部可以到达的物体的高度;活动三:测量底部不可以到达的物体的高度.因此本节课采用活动的形式,先在课堂上讨论、设计方案,然后进行室外的实际测量,活动结束时,要求学生写出活动报告。

综合运用直角三角形的边角关系的知识.解决实际问题,培养学生不怕困难的品质,发展学生的合作意识和科学精神。

教学方法自学辅导法教具测倾器(或经纬仪、测角仪等)、皮尺等测量工具.教学内容及过程教师活动学生活动一、提出问题,引入新课现实生活中测量物体的高度,特别像旗杆、高楼大厦、塔等较高的不可到达的物体的高度,需要我们自己去测量,自己去制作仪器,获得数据,然后利用所学的数学知识解决问题.请同学们思考在物体的高度时,用到哪些仪器? 有何用途? 如何制作一个测角仪?它的工作原理是怎样的?二、小组活动准备活动:设计活动方案,自制仪器首先我们来自制一个测倾器(或测角仪、经纬仪等).一般的测倾器由底盘、铅锤和支杆组成.下面请同学们以组为单位,分组制作如图所示的测倾器.制作测角仪时应注意什么?支杆的中心线、铅垂线、0刻度线要重合,否则测出的角度就不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向.小组讨论:测倾器的制作方法及其使用步骤1下.活动一:测量倾斜角(1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.(2)转动度盘,使度盘的直经对准较高目标M,记下此时铅垂线指的度数.那么这个度数就是较高目标M的仰角.点拨:测倾器的工作原理如图,要测点M的仰角,我们将支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.我们转动度盘,使度盘的直径对准目标M,此时铅垂线指向一个度数.即∠BCA的度数.根据图形我们不难发现∠BCA+∠ECB=90°,而∠MCE+∠ECB=90°,即∠BCA、∠MCE都是∠ECB 的余角,根据同角的余角相等,得∠BCA=∠MCE.因此读出∠BCA的度数,也就读出了仰角∠MCE的度数.和测量仰角的步骤是一样的,测量俯角时,转动度盘,使度盘的直径对准低处的目标,记下此时铅垂线所指的度数,同样根据“同角的余角相等”,铅垂线所指的度数就是低处的俯角.活动二:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)1.在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.2.量出测点A到物体底部N的水平距离AN=l.3.量出测倾器(即测角仪)的高度AC=a(即顶线PQ成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN的高度.活动三:测量底部不可以到达的物体的高度.所为“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.例如测量一个山峰的高度.可按下面的步骤进行(如图所示):1.在测点A处安置测角仪,测得此时物体MN的顶端M的仰角∠MCE=α.2.在测点A与物体之间的B处安置测角仪(A、B与N都在同一条直线上),此时测得M的仰角∠MDE=β. 思考:问题1、测倾器的工作原理是怎样的?为什么读的∠BCA 的度数,也就是仰角∠MCE的度数?问题2、如何用测角仪测量一个低处物体的俯角呢?根据直角三角形的边角关系.求出活动二、活动三中MN的高度。

北师大版九年级数学下册:1.5《三角函数的应用》教案

北师大版九年级数学下册:1.5《三角函数的应用》教案

北师大版九年级数学下册:1.5《三角函数的应用》教案一. 教材分析北师大版九年级数学下册第1.5节《三角函数的应用》主要介绍了正弦、余弦函数在实际问题中的应用。

通过本节课的学习,使学生了解三角函数在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对正弦、余弦函数有一定的了解。

但学生在应用三角函数解决实际问题方面还比较薄弱,需要通过本节课的学习,提高学生运用三角函数解决实际问题的能力。

三. 教学目标1.使学生掌握正弦、余弦函数在实际问题中的应用。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对三角函数的兴趣,培养学生的创新意识。

四. 教学重难点1.重点:正弦、余弦函数在实际问题中的应用。

2.难点:如何运用三角函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究三角函数在实际问题中的应用。

2.利用案例分析法,分析实际问题中三角函数的运用。

3.采用小组合作讨论法,培养学生的团队协作能力。

六. 教学准备1.准备相关的实际问题案例。

2.准备三角函数的图像和公式。

3.准备投影仪和教学课件。

七. 教学过程1.导入(5分钟)利用投影仪展示一些实际问题,如测量高度、角度等,引导学生思考如何利用三角函数解决这些问题。

2.呈现(10分钟)呈现三角函数的图像和公式,让学生了解三角函数的基本性质。

同时,结合实际问题案例,讲解如何运用三角函数解决实际问题。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用三角函数进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取几组实际问题,让学生独立解决。

教师及时给予反馈,巩固学生对三角函数应用的掌握。

5.拓展(10分钟)引导学生思考如何将三角函数应用于其他领域,如工程、物理等。

让学生举例说明,培养学生的创新意识。

6.小结(5分钟)总结本节课所学内容,强调三角函数在实际问题中的应用。

《利用三角函数测高》教学设计

《利用三角函数测高》教学设计

《利用三角函数测高》教学设计教学目标:1.了解三角函数的概念和性质;2.学会在实际问题中利用三角函数测量高度;3.培养学生的实际动手操作和数学推理能力。

教学重点:1.三角函数的概念和性质;2.如何利用三角函数测量高度。

教学难点:1.如何在实际问题中应用三角函数进行高度测量。

教学准备:1.幻灯片、小黑板、三角板、直尺等教学工具。

教学步骤:Step 1 引入与导入(10分钟)1.利用幻灯片或小黑板简要介绍三角函数的概念和性质,包括正弦、余弦和正切。

2.引发学生的兴趣,提问:“在测量高度的过程中,是否可以利用三角函数?如果可以,如何进行?”鼓励学生思考并分享自己的观点。

Step 2 实际问题与解决方法(15分钟)1.通过引导学生分析实际问题,如测量建筑物的高度,提醒学生要测量这样一个实际问题,首先需要确定一个已知量和未知量之间的关系。

2.解释三角函数与三角形之间的关系,如正弦函数与三角形内一条边的比例关系,如何将这个比例关系应用到测量高度的过程中。

3.演示利用三角函数测量高度的方法,在室内通过搭建房屋模型进行实际操作,并做出详细的解释。

Step 3 练习与巩固(25分钟)1.将学生分成小组,每组准备一些不同高度的建筑物图片,并使用三角板、直尺等工具进行实际测量,并记录测量结果。

2.引导学生在测量过程中记录相关数据,包括已知量、未知量和等式关系,并在小组内讨论如何利用三角函数计算出高度。

3.学生讨论结束后,进行小组间分享,展示最终的测量结果。

Step 4 拓展与运用(20分钟)1.将学生分成小组,给每组一些实际问题,让他们自行思考并利用三角函数解决问题,例如测量高校校园中一些建筑物的高度、测量一些山峰的高度等。

2.学生每个小组展示其解决问题的方法与结果,并进行讨论和总结。

Step 5 总结与评价(10分钟)1.教师对学生的学习情况进行评价,鼓励学生积极参与并提出自己的观点。

2.提供一个总结的幻灯片或小黑板,总结本课学习的重点内容,强调学会利用三角函数测量高度的方法,并激发学生对数学的兴趣。

北师大版数学九年级下册《6 利用三角函数测高》教案

北师大版数学九年级下册《6 利用三角函数测高》教案

北师大版数学九年级下册《6 利用三角函数测高》教案一. 教材分析北师大版数学九年级下册《6 利用三角函数测高》这一节主要让学生了解利用三角函数测量物体高度的方法,理解三角函数在实际生活中的应用。

通过这一节的学习,学生能够掌握用三角板和皮尺测量物体高度的基本方法,培养学生的实际操作能力和解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对三角板和皮尺等测量工具也有一定的了解。

但是,学生可能对如何将理论运用到实际问题中还有一定的困难,因此,在教学过程中,教师需要引导学生将所学的知识与实际问题相结合,提高学生的实践能力。

三. 教学目标1.知识与技能:让学生掌握利用三角函数测量物体高度的基本方法。

2.过程与方法:通过实际操作,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:让学生掌握利用三角函数测量物体高度的方法。

2.难点:如何将所学的三角函数知识运用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过实际案例引导学生思考,激发学生的学习兴趣;以小组合作的形式,让学生在实际操作中解决问题,培养学生的实践能力。

六. 教学准备1.准备三角板、皮尺等测量工具。

2.准备相关案例材料。

七. 教学过程1.导入(5分钟)利用一个生活中的实例引入课题,如:如何测量旗杆的高度。

让学生思考如何解决这个问题,引发学生对利用三角函数测高的兴趣。

2.呈现(10分钟)呈现旗杆高度测量案例,引导学生分析问题,提出解决方案。

让学生尝试用所学的三角函数知识解决问题,教师给予指导。

3.操练(10分钟)学生分组进行实际操作,用三角板和皮尺测量旗杆的高度。

教师巡回指导,纠正学生在操作过程中可能出现的问题。

4.巩固(10分钟)让学生总结在测量过程中所用的方法和技巧,教师点评并总结。

让学生复述所学的知识点,加深对利用三角函数测高的理解。

1.3.4三角函数应用(2015年人教A版数学必修四导学案)

1.3.4三角函数应用(2015年人教A版数学必修四导学案)

y A sin x b
1.这一天 6~14 时的最大温差是多少? 2.函数式中 A、b 的值分别是多少? 3.写出这段曲线的函数解析式.
y
30 20
课题:
1.3.4 三角函数应用
班级:
姓名: 备 注
一:学习目标
1. 会用三角函数解决一些简单的问题, 体会三角函数是描述周期变化现象 的重要函数模型。 2. 观察函数图像,学会用待定系数法求解析式,能够将所发现的规律抽象 为恰当的三角函数模型。
二:课前预习
1.如果某种变化着的现象具有 角函数来描述。 2 . y A sin(x ) 是 ,初相是 (性质) ,那么它就可以借助三
y A sin x b
1.这一天 6~14 时的最大温差是多少? 2.函数式中 A、b 的值分别是多少? 3.写出这段曲线的函数解析式.
y
30 20
10
O
6
10
14
x
例 2. 1、如图,点 O 为做简谐运动的物体的平衡位置,取向右的方向为物 体位移的正方向,若已知振幅为 3cm ,周期为 3s ,且物体向右运动到距平 衡位置最远处时开始计时。 (1)求物体对平衡位置的位移 x(cm) 和时间 t ( s ) 的函数关系; (2)求该物体在 t 5s 时的位置。 O
2、一根长 lcm 的线,一端固定,另一端悬挂一个小球,小球摆动时,
离 开 平 衡 位 置 的 位 移 s(cm) 和 时 间 t ( s ) 的 函 数 关 系 式 是
g t ),t [0,) 。 l 3 (1)求小球摆动的周期; (2)已知 g 980cm / s 2 ,要使小球摆动的周期是 1s ,线的长度应 当是多少? (精确到 0.1cm , 取 3.14 ) s 3 cos(

利用三角函数测高优秀教案

利用三角函数测高优秀教案

利用三角函数测高优秀教案课题名称:利用三角函数测高教学目标:1.理解正弦、余弦和正切的概念及其在三角函数测高中的应用;2.掌握使用正弦定理和余弦定理测量不可直接测量的高度;3.能够灵活运用三角函数测高的方法解决实际问题。

教学重点:1.正弦、余弦和正切的概念及其在三角函数测高中的应用;2.正弦定理和余弦定理的应用。

教学难点:教学准备:教具:直尺、测量工具、投影仪;课件:包含三角函数和其应用的相关知识点。

教学过程:一、导入(5分钟)1.引入三角函数的概念,复习正弦、余弦和正切的定义和计算方法。

2.提问学生:在实际生活中,我们如何使用三角函数来测量高度?二、讲解(15分钟)1.三角函数测高的原理:利用正弦、余弦和正切的性质通过测量已知边长和角度的方式求解未知高度。

2.正弦定理的应用:利用三角形中任意两边的长度和它们夹角的正弦比,求解不可直接测量的高度。

3.余弦定理的应用:利用三角形中三边的长度和它们之间的夹角余弦,求解不可直接测量的高度。

三、示范(15分钟)1.示范测量不可直接测量的高度的步骤,例如使用正弦定理:a.给出一个实际问题,如:如何测量一栋建筑物的高度?b.画出相应的示意图,标注已知边长和角度。

c.利用正弦定理的公式,求解未知的高度。

d.明确解题思路和计算步骤,进行计算。

2.呈现示范的解题过程,详细讲解每一步骤的计算方法和答案。

四、练习(20分钟)1.分发练习题,让学生独立完成。

2.讲解练习题答案,帮助学生纠正错误,巩固和理解三角函数测高的方法。

五、应用(15分钟)1.提供一些实际问题,要求学生运用三角函数测高的方法解决。

2.分组讨论并呈现解决方案,交流思路和讨论结果。

六、总结(10分钟)1.对本节课的要点进行总结,强调正弦、余弦和正切的应用。

2.核对课程目标,评估学生的学习情况。

七、作业(5分钟)布置作业:完成课后练习题,巩固三角函数测高的知识。

教学延伸:可以引导学生使用三角函数测高解决其他实际问题,并探究其他测高方法的应用。

1.6 利用三角函数测高 教案

一、情境导入如图所示,站在离旗杆BE 底部10米处的D 点,目测旗杆的顶部,视线AB 与水平线的夹角∠BAC 为34°,并已知目高AD 为1.5米.现在若按1∶500的比例将△ABC 画在纸上,并记为△A ′B ′C ′,用刻度直尺量出纸上B ′C ′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?实际上,我们利用图①中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本节要探究的内容.二、合作探究探究点:利用三角函数测高【类型一】 测量底部可以到达的物体的高度如图,在一次测量活动中,小华站在离旗杆底部B 处6米的D 处,仰望旗杆顶端A ,测得仰角为60°,眼睛离地面的距离ED 为1.5米.试帮助小华求出旗杆AB 的高度(结果精确到0.1米,3≈1.732).解析:由题意可得四边形BCED 是矩形,所以BC =DE ,然后在Rt △ACE 中,根据tan ∠AEC =ACEC ,即可求出AC 的长.解:∵BD =CE =6m ,∠AEC =60°,∴AC =CE ·tan60°=6×3≈6×1.732≈10.4(米),∴AB =AC +DE =10.4+1.5=11.9(米).所以,旗杆AB 的高度约为11.9米.方法总结:本题借助仰角构造直角三角形,并结合图形利用三角函数解直角三角形,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解题.变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 测量底部不可到达的物体的高度如图,放置在水平桌面上的台灯的灯臂AB 长为30cm ,灯罩BC 长为20cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少厘米(结果精确到0.1cm ,参考数据:3≈1.732)?解析:首先过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G ,进而求出FC 的长,再求出BG 的长,即可得出答案.解:过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G .∴四边形BFDG 矩形,∴BG =FD .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin30°=20×12=10(cm).在Rt △ABG 中,∠BAG =60°,∴BG =AB ·sin60°=30×32=153(cm).∴CE =CF +FD +DE =10+153+2=12+153≈37.98≈38.0(cm).所以,此时灯罩顶端C到桌面的高度CE约是38.0cm.方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形,转化为解直角三角形问题.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型三】利用三角板测量物体的高度如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离AB是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离CD是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度(参考数据:3≈1.7,结果保留整数).解析:过点A作AE⊥MN于点E,过点C作CF⊥MN于点F,由△AEM是等腰直角三角形得出AE=ME,设AE=ME=x m,根据三角函数列方程求出x的值即可求解.解:过点A作AE⊥MN于点E,过点C作CF⊥MN于点F,则EF=AB-CD=1.7-1.5=0.2(m),在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,∴AE=ME.设AE=ME=x m,则MF=(x+0.2)m,FC=(28-x)m.在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF·tan∠MCF,∴x+0.2=3 3(28-x),解得x≈10.1,∴MN=ME+EN=10.1+1.7≈12(米).所以,旗杆MN的高度约为12米.方法总结:解决问题的关键是作出辅助线构造直角三角形,设出未知数列出方程.三、板书设计利用三角函数测高1.测量底部可以到达的物体的高度2.测量底部不可到达的物体的高度3.利用三角板测量物体的高度1.下表是小明同学填写活动报告的部分内容:AB 太阳 光 线 C D E (1)在你设计的方案中,选用的测量工具是__________. (2)在图(2)中画出你的测量方案示意图;(3)你需要测得示意图中哪些数据,并分别用a,b,c,α,β等表示测得的数据____. (4)写出求树高的算式:AB=___________.6.在1:50000的地图上,查得A 点在300m 的等高线上,B 点在400m 的等高线上, 在地图上量得AB 的长为2.5cm,若要在A 、B 之间建一条索道,那么缆索至少要多长? 它的倾斜角是多少?(说明:地图上量得的AB 的长,就是A,B 两点间的水平距离AB′,由B 向过A 且平行于地面的平面作垂线,垂足为B′,连接AB′,则∠A 即是缆索的倾斜角.)7、为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践一:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB )8.7米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7米,观察者目高CD =1.6米,请你计算树(AB )的高度.(精确到0.1米)实践二:提供选用的测量工具有:①皮尺一根;②教学用三角板一副;③长为2.5米的标杆一根;④高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架。

初中数学_2.6 利用三角函数测高教学设计学情分析教材分析课后反思

2.6利用三角函数测高教学内容:教育出版社·五四学制初中数学,九年级上册第51页—53页。

教学目标:1.会利用三角函数的知识测量物体的高度.2.在制作仪器、设计方案、测量计算、撰写报告的过程中,分析问题,解决问题,发展数学思维.3.培养学生认真、细致、严谨的科学态度.教学准备:学生自制测倾器,皮尺等测量工具,测量报告教学过程:一、复习回顾,引入新课我们学习了利用全等三角形测高,利用相似三角形测高,今天我们来学习利用三角函数测高。

1.仰角、俯角;2.直角三角形边角间的关系;3.特殊角的三角函数值。

二、探究活动活动一:展示自制的测倾器支杆的中心线、铅垂线、0刻度线要重合,否则测出的角度就不准确.度盘的顶线PQ与支杆的中心线、铅垂线、0刻度线要互相垂直,并且度盘有一个旋转中心是铅垂线与PQ的交点.当度盘转动时,铅垂线始终垂直向下.活动二:测量倾斜角(1)把测角仪的支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置M,记下此时铅垂线指的度数.那么这个度数就是较高目标M的仰角.它的依据是什么?如图,要测点M的仰角,我们将支杆竖直插入地面,使支杆的中心线、铅垂线和度盘的0°刻度线重合,这时度盘的顶线PQ在水平位置.我们转动度盘,使度盘的直径对准目标M,此时铅垂线指向一个度数.即∠CAD的度数.根据图形我们不难发现∠BAD+∠CAD=90°,而∠BAD+∠PAB=90°,即∠CAD、∠PAB都是∠BAD的余角,根据同角的余角相等,得∠CAD =∠PAB.因此读出∠CAD的度数,也就读出了仰角∠PAB的度数.活动三:测量底部可以到达的物体的高度.“底部可以到达”,就是在地面上可以无障碍地直接测得测点与被测物体底部之间的距离.要测旗杆MN的高度,可按下列步骤进行:(如下图)(1)在测点A处安置测倾器(即测角仪),测得M的仰角∠MCE=α.(2)量出测点A 到物体底部N 的水平距离AN =l .(3)量出测倾器(即测角仪)的高度AC =a (即顶线PQ 成水平位置时,它与地面的距离).根据测量数据,就能求出物体MN 的高度.在Rt△MEC 中,∠MCE =α,AN =EC =l ,所以tan α=ECME ,即ME =tan a·EC =l ·tan α.又因为NE =AC =a ,所以MN =ME +EN =l ·tan α+a .活动四:测量底部不可以到达的物体的高度.所为“底部不可以到达”,就是在地面上不能直接测得测点与被测物体的底部之间的距离.例如测量一个山峰的高度.可按下面的步骤进行(如图所示):(1)在测点A 处安置测角仪,测得此时物体MN 的顶端M 的仰角∠MCE =α.(2)在测点A 与物体之间的B 处安置测角仪(A 、B 与N 都在同一条直线上),此时测得M 的仰角∠MDE =β.(3)量出测角仪的高度AC =BD =a ,以及测点A ,B 之间的距离AB =b 根据测量的AB 的长度,AC 、BD 的高度以及∠MCE 、∠MDE 的大小,根据直角三角形的边角关系.即可求出MN 的高度.在Rt△MEC 中,∠MCE =α,则tan α=ECME ,EC =a ME tan ;在Rt△MED 中,∠MDE =β则tan β=ED ME ,ED =βtanME ; 根据CD =AB =b ,且CD =EC -ED =b .所以a ME tan -βtan ME =b ,ME =βαtan 1tan 1-bMN =βαtan 1tan 1-b+a 即为所求物体MN 的高度.二、巩固练习1.以测“围墙内东原阁的高度”为例,若测得∠α和∠β的度数分别人300和600,AB 的长度为14米,求阁楼的高度MN.2.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,求建筑物MN 的高度.(保留根号)第2题图第3题图3.变式练习将问题分解为: ①我们在建筑物前方的热气球A 处,利用所学知识说明,需要测出哪几个数据,便可计算出BC高度?②从热气球的探测器显示,从热气球A处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A处与高楼的水平距离为60m,这栋高楼有多高?三、课堂小结我们这节课学习了什么?有什么收获? 给同学分享一下。

1.6 利用三角函数测高 -九年级下册数学教案教学设计(北师大版)

1.6 利用三角函数测高 -九年级下册数学教案教学设计(北师大版)一、教学目标1.了解三角函数的定义和性质。

2.学会使用正弦、余弦、正切函数测量高度。

3.掌握解决与高度和角度相关的实际问题的方法和步骤。

二、教学内容1.三角函数的定义和性质。

2.正弦、余弦、正切函数的用法。

3.利用三角函数测量高度的实际问题。

三、教学重点1.理解三角函数的定义和性质。

2.掌握正弦、余弦、正切函数的用法。

3.运用三角函数解决实际问题。

四、教学难点1.学习如何应用三角函数测量高度。

2.解决与高度和角度相关的实际问题。

五、教学方法1.讲解与演示相结合的教学方法。

2.视频和实物模型展示三角函数测高的应用。

3.组织学生进行实际操作和练习。

六、教学过程1. 导入新知识通过提问和引导,导入三角函数的概念和性质,引起学生的兴趣,并激发学生对测量高度的需求。

2. 讲解三角函数的定义和性质利用教材和课件,详细讲解正弦、余弦、正切函数的定义和性质,并与实际问题联系起来,解释三角函数与高度的关系。

3. 演示三角函数测高的方法通过播放视频或展示实物模型,演示如何使用三角函数测量高度的方法和步骤,并让学生观察和思考。

4. 实际操作和练习将学生分成小组,配备测量工具,进行实际操作和练习,例如利用三角函数测量树木高度、建筑物高度等。

教师和助教进行指导和解答疑惑。

5. 总结与归纳让学生整理笔记,总结三角函数测高的方法和步骤,并与实际问题进行对比,并解答学生的问题。

七、教学评价1.在实际操作中,观察学生是否能正确使用三角函数测量高度。

2.组织小组讨论,评价学生对三角函数测高方法的理解和应用能力。

3.布置练习题,检查学生对三角函数测高的掌握情况。

八、教学延伸利用三角函数测高的方法,引出其他与高度和角度相关的实际问题,如建筑物的倾斜角度、塔吊的工作范围等。

并鼓励学生进行独立思考和解答。

九、板书设计1.6 利用三角函数测高- 三角函数的定义和性质- 正弦、余弦、正切函数的用法- 测量高度的实际问题十、教学反思本节课将数学知识与实际问题相结合,培养了学生的测量和解决问题的能力。

北师大版数学九年级下册《6 利用三角函数测高》教学设计

北师大版数学九年级下册《6 利用三角函数测高》教学设计一. 教材分析北师大版数学九年级下册《6 利用三角函数测高》这一节主要介绍了利用三角函数测量物体高度的方法。

通过本节课的学习,学生能够理解利用三角函数测高的原理,掌握用三角板和尺子测量物体高度的方法,并能够运用到实际生活中。

二. 学情分析九年级的学生已经掌握了初中阶段的三角函数知识,对三角板和尺子的使用也有一定的了解。

但是,学生可能对实际应用三角函数测量高度的方法还不够熟悉,需要通过实例的讲解和操作来加深理解。

三. 教学目标1.理解利用三角函数测高的原理。

2.学会使用三角板和尺子测量物体高度的方法。

3.能够将三角函数知识应用到实际生活中。

四. 教学重难点1.教学重点:利用三角函数测高的原理和方法。

2.教学难点:如何将三角函数知识应用到实际测量中。

五. 教学方法采用讲授法、演示法、实践法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,提高解决问题的能力。

六. 教学准备1.准备三角板、尺子等测量工具。

2.准备相关的多媒体教学课件。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容:如何测量学校旗杆的高度?让学生思考如何利用三角函数来解决这个问题。

2.呈现(10分钟)讲解利用三角函数测高的原理,并通过多媒体课件展示具体的测量方法和步骤。

同时,引导学生理解三角函数在测量中的作用。

3.操练(10分钟)学生分组进行实际操作,使用三角板和尺子测量教室内的物体高度。

教师巡回指导,解答学生遇到的问题。

4.巩固(10分钟)学生汇报测量结果,并交流在操作过程中遇到的问题和解决方法。

教师总结测量的高度计算公式,并强调注意事项。

5.拓展(10分钟)引导学生思考:除了测量物体高度,三角函数还可以应用到哪些实际问题中?让学生举例说明,并进行讨论。

6.小结(5分钟)教师总结本节课的主要内容,强调利用三角函数测高的方法和注意事项。

7.家庭作业(5分钟)布置一道实际问题作业:测量家里电视的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的应用导学案 审核人:九年级数学备课组 2014年______月_____日 学习目标:运用三角函数解决与直角三角形有关的简单的实际问题 学习重点:能够把实际问题转化为数学问题, 能进行有关三角函数的计算 学习难点:能够把实际问题转化为数学问题 一、 知识回顾 1.偏向角:如图,点B 在点A 的 位置,点A 在点B 的 位置。

2.角 从高处观察低处目标时,视线与水平线所成的锐角称为_____角 二、知识探究 ★知识点一:古塔有多高? 例1、小明想测量塔CD 的高度.他在A 处仰望塔顶
,测得仰角为300,再往塔的方向前进50m 至B 处,测得仰角为600,那么该塔有多高?(小明的身高忽略不计, 结果精确到1m) ★知识点二:船有触礁的危险吗? 例2、海中有一个小岛A,该岛四周10海里内暗礁.今有货轮四由西向东航行,开始在A 岛南偏西600的B 处,往东行驶20海里后到达该岛的南偏西300的C 处.之后,货轮继续向东航行.你认为货轮继续向东航行途中会有触礁的危险吗? 三、达标检测 1、如图飞机从一高射炮C 的正上方D 点6000m 经过,沿水平方向飞行,稍后到达B 点,测得此时仰角45°,5分钟后飞机到达A 点,测得此时的仰角为30°,求飞机从B 到A 的速度
0为450,那么该塔有多高?(小明的身高忽略不计, 结果精确到0.1m)
3、我舰在A 处接到紧急情报,在A 处南偏西60°方向上的B 处有一艘可疑船只,正以24海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,我舰立刻沿南偏西45°方向迅速前进,经过1h 的航行,正好在C 处截住可疑船只,求我舰航速是多少( 结果精确到0.1)。

4、海岛A 的四周12海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 处测得海岛A 位于北偏东60°,
航行12海里到达C 处,又测得海岛A 位于北偏东30°,如果渔船不改变航向继续向东航行,那么它有
没有触角危险?( )
5.一艘轮船每小时36海里的速度向正北航行到A 处, 发现它的东北方向有灯塔B ,船继续向北航行40min 到达C 处,发现灯塔B 在它的北偏东75°方向,求此时船与灯塔的距离。

( 结果精确到0.01)
D _ A
A
C P 732
.13≈732.13≈732.13≈732.13≈414.12≈60° 30° 732.13≈
利用三角函数测高导学案 2014年______月_____日 学习目标:1、在实际应用题中学会构造直角三角形; 2、熟练运用解直角三角形及锐角三角函数的知识解决实际问题; 学习重难点:熟练运用解直角三角形及锐角三角函数的知识解决实际问题;并培养学生数学学习能力。

学习过程: 一.问题情境 问题1 学校操场上的国旗杆要更换,要求新旗杆与旧旗杆一样高,学校决定把测量旧旗杆高的任务交给我们,为了课后顺利完成测量任务,今天请同学们设计出一套切实可行的测量方案。

(1)测量工具:皮尺(长度用a 、 b 、c……表示) 测倾器(角度用
γ ……表示) (2)要求:1、设计测量方案 2、计算 三.自主探究 问题1、若旗杆在在操场上,如何在操场上测得旗杆的高度呢?
问题2
、若旗杆不在操场上,而在教学楼顶,如何在操场上测得旗杆的高度呢?
问题3、若旗杆的底部不能直接到达,假设中间隔一条河,又如何测得旗杆的高度呢?五.课后作业 1、现要利用侧倾器测量可以直接到达的物体AB 底部的高度,现在C 点安置侧倾器,测得
B 的仰角为30°,测得
C 到物体底部A 的水平距离为8m,侧倾器的高度为1m,求物体AB
的高度(结果保留根号)
2.如图,在一次数学课外实践活动中,要求测教学楼的高度AB .小刚在D 处用高1.5m 的测角仪CD ,测
得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求
这幢教学楼的高度AB ( 结果精确到0.1)。

3、某哨兵在高出海平面100米的山顶A 处,测得正东与正西两艘船的俯角分别为30°和45°,求两艘船之间的距离
间的距离为300米,求山顶A 到海平面的垂直高度
5.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o
33711sin37tan37sin 48tan48541010
≈≈≈≈,,,
6、如图,大楼高30米,远处有一塔BC,某人在楼底A 处测得塔顶的仰角为60°爬到楼顶D 处测得塔顶
的仰角为30°,求塔高BC 和大楼与塔之间的距离AC ( 结果精确到0.1)。

C D E B A 732.13≈732.13≈B C B C。

相关文档
最新文档