2017-2018学年浙江省宁波市九校联考高二(上)数学期末试卷[答案版]
【市级联考】浙江省宁波市九校2018-2019学年高二第一学期期末联考数学试题-

绝密★启用前【市级联考】浙江省宁波市九校2018-2019学年高二第一学期期末联考数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.椭圆的短轴长为( )A .8B .10C .5D .42.设复数 满足 ,其中 为虚数单位,则复数 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知 , 是两条不同的直线, , 是两个不同的平面,下列说法正确的是( ) A .若 , , ,则 B .若 , ,则 C .若 , ,则D .若平面 内有不共线的三点到平面 的距离相等,则 4.有下列四个命题:①“相似三角形周长相等”的否命题; ②“若 ,则 ”的逆命题; ③“若 ,则 ”的否命题;④“若 ,则方程 有实根”的逆否命题; 其中真命题的个数是( )A .0个B .1个C .2个D .3个5.已知 , 则“ 且 ”是“抛物线 的焦点在 轴非负半轴……○…………※※请※※不※……○…………A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6.下列命题正确的是( )A . 是向量 , 不共线的充要条件B .在空间四边形 中,C .在棱长为1的正四面体 中,D .设 , , 三点不共线, 为平面 外一点,若,则 , , , 四点共面 7.若椭圆与双曲线有公共的焦点, ,点 是两条曲线的交点,,椭圆的离心率为 ,双曲线的离心率为 ,且 ,则 ( )A .B .C .D .8.已知 为双曲线右支上一点, 为其左顶点, 为其右焦点,满足 , ,则点 到直线 的距离为( ) A .B .C .D .9.如图,四边形 , , 现将 沿 折起,当二面角 的大小在时,直线 和 所成角为 ,则 的最大值为( )A .B .C .D .10.若长方体 中, , , , , 分别为 , , 上的点, , , .分别记二面角 , , 的平面角为 , , ,则( ) A . B . C . D .与 的值有关………外……装…………○…订…………○※※要※※在※※装※※订※内※※答※※题※※………内……装…………○…订…………○第II卷(非选择题)请点击修改第II卷的文字说明二、填空题11.双曲线的焦点坐标是____,渐近线方程是____.12.在空间四边形中,,分别是,的中点,是上一点,且.记,则___,若,,,且,则___.13.设复数,其中为虚数单位,则的虚部是____,___.14.一个空间几何体的三视图如图所示,则其表面积是_____,体积是_____.15.已知是抛物线上的点,则的最大值是_____.16.已知椭圆的左右焦点分别为,,动弦过左焦点.若恒成立,则椭圆的离心率的取值范围是___.17.已知矩形中,,为的中点,,交于点,沿着向上翻折,使点到.若在平面上的投影落在梯形内部及边界上,则的取值范围为____.三、解答题………外……………装…………○……………○…………__姓名:___________班级:_:___________………内……………装…………○……………○…………18.已知 ,设命题 :当 时,函数恒成立,命题 :双曲线的离心率 .(Ⅰ)若命题 为真命题,求实数 的取值范围;(Ⅱ) 若命题 和 中有且只有一个真命题,求实数 的取值范围.19.如图,在四面体 中, , , .(Ⅰ)求点 到平面 的距离; (Ⅱ)求异面直线 与 所成角的大小.20.如图,已知多面体 中, , 平面 , , , , .(Ⅰ)证明: 平面 ;(Ⅱ)求直线 与平面 所成角的正弦值.21.已知点 是圆 上的动点,定点 ,线段 的垂直平分线交 于点 .(Ⅰ)求点 的轨迹 的方程;(Ⅱ)过点 作两条斜率之积为的直线 , , , 分别与轨迹 交于 , 和 , ,……○…………线…………题※※……○…………线…………22.如图,点 在抛物线 外,过点 作抛物线 的两切线,设两切点分别为 , ,记线段 的中点为 .(Ⅰ)求切线 , 的方程;(Ⅱ)证明:线段 的中点 在抛物线 上;(Ⅲ)设点 为圆 上的点,当取最大值时,求点 的纵坐标.参考答案1.A【解析】【分析】利用椭圆的方程,直接求解即可.【详解】解:椭圆,可知焦点在x轴上,b=4,所以椭圆的短轴长为8.故选:A.【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查.2.D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由(1+i)2•z=2+i,得2iz=2+i,∴,∴复数z对应的点的坐标为(,﹣1),位于第四象限.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.A【解析】【分析】在A中,由线面垂直的性质定理得m∥n;在B中,α与β相交或平行;在C中,α⊥β;在D中,α与β相交或平行.【详解】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊥α,n⊥β,α∥β,则由线面垂直的性质定理得m∥n,故A正确;在B中,若m∥α,m∥β,则α与β相交或平行,故B错误;在C中,若m⊥α,m∥β,则α⊥β,故C错误;在D中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故D错误.故选:A.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.4.C【解析】【分析】写出命题的逆命题可判断①;写出逆命题,可判断②;写出命题的否命题,可判断③;由判别式法可判断原命题的真假,进而判断④.【详解】解:①“相似三角形周长相等”的逆命题为“周长相等的三角形相似”不正确,根据逆否命题同真同假,可得其否命题不正确;②“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”正确;③“若x=1,则x2+x﹣2=0”的否命题为“若x≠1,则x2+x﹣2≠0”不正确;④“若b≤0,则方程x2﹣2bx+b2+b=0有实根”由△=4b2﹣4(b2+b)=﹣4b≥0,可得原命题正确,其逆否命题也正确.故选:C.【点睛】本题考查简易逻辑的知识,主要是四种命题的真假和相互关系,考查推理能力,属于基础题.5.A【解析】【分析】求出抛物线的标准方程,结合抛物线的焦点坐标,建立不等式关系进行判断即可.【详解】解:抛物线mx2+ny=0的标准方程为x2y=4()y,对应的焦点坐标为(0,),若焦点在y轴非负半轴上,则>0,即mn<0,则m<0且n>0或n<0且m>0,则“m<0且n>0”是“抛物线mx2+ny=0的焦点在y轴非负半轴上”的充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合抛物线的标准方程以及抛物线的焦点坐标建立不等式关系是解决本题的关键.6.B【解析】【分析】由向量共线和充分必要条件的定义可判断A;由向量的加减和数量积的定义可判断B;由向量数量积的定义计算可判断C;由四点共面的条件可判断D.【详解】解:由||﹣||<||,向量,可能共线,比如共线向量,的模分别是2,3,故A不正确;在空间四边形ABCD中,()••••()•()••0,故B正确在棱长为1的正四面体ABCD中,1×1×cos120°,故C错误;设A,B,C三点不共线,O为平面ABC外一点,若,由1=2≠1,可得P,A,B,C四点不共面,故D错误.故选:B.【点睛】本题考查向量共线和向量数量积的定义、以及四点共面的条件,考查运算能力和推理能力,属于基础题.7.B【解析】【分析】设PF1=s,PF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s﹣t=2a2,运用余弦定理和离心率公式,计算即可得e1的值.【详解】解:不妨设P在第一象限,再设PF1=s,PF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s﹣t=2a2,解得s=a1+a2,t=a1﹣a2,由∠F1PF2,可得.∴,由e1e2=1,即,得:,解得:(舍),或,即.故选:B.【点睛】本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.8.D【解析】【分析】由题意可得△APF为等边三角形,求出P的坐标,利用双曲线的第二定义,列出方程,可得c=4a,由等边三角形的高可得所求值.【详解】解:由题意,A(﹣a,0),F(c,0),右准线方程为x,|AF|=|PF|,∠PF A=60°,可得△APF为等边三角形,即有P(,(a+c)),由双曲线的第二定义可得,化为c2﹣3ac﹣4a2=0,可得c=4a,由c=4,可得a,则点F到P A的距离为(a+c)•5.故选:D.【点睛】本题考查双曲线的定义和性质,考查等边三角形的性质,以及化简运算能力,属于中档题.9.C【解析】【分析】取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD 的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围.【详解】解:取BD中点O,连结AO,CO,∵AB=BD=DA=4.BC=CD,∴CO⊥BD,AO⊥BD,且CO=2,AO,∴∠AOC是二面角A﹣BD﹣C的平面角,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,B(0,﹣2,0),C(2,0,0),D(0,2,0),设二面角A﹣BD﹣C的平面角为θ,则,连AO、BO,则∠AOC=θ,A(,,),∴,,,,,,设AB、CD的夹角为α,则cosα ,∵,∴cos,,∴|1|[0,1+].∴cos的最大值为.故选:C.【点睛】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.10.C【解析】【分析】过G点作GM⊥CD于M点,过M做MN⊥EF于N点,由 β,设θ为,则θ=<,又β,∴<【详解】过G点作GM⊥CD于M点,过M做MN⊥EF于N点,由,可知MN<CE∴ β∴β,设θ为,则θ=<,又β,∴<∴故选:C【点睛】(1)求二面角大小的过程可总结为:“一找、二证、三计算。
2017-2018学年高二上期末数学试卷(含答案解析)

2017-2018学年高二(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题的4个选项中,只有一项是符合题目要求的)1.(5分)在等差数列51、47、43,…中,第一个负数项为()A.第13项 B.第14项 C.第15项 D.第16项2.(5分)在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C. D.或3.(5分)已知命题p:??{0},q:{1}∈{1,2},由它们组成的“p∨q”,“p∧q”形式的复合命题中,真命题有()个.和“?p”A.0 B.1 C.2 D.34.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)在△ABC中,a=8,B=60°,C=75°,则b=()A.B.C.D.6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.7.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.358.(5分)准线方程为x=1的抛物线的标准方程是()A.y2=﹣2x B.y2=﹣4x C.y2=2x D.y2=4x9.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.﹣2 B.2 C.﹣4 D.410.(5分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(5分)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.12.(5分)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.2二、填空题(每题5分,共20分)13.(5分)数列{a n}的通项公式是a n=(n∈N*),则a3=.14.(5分)求y=x3+3x2+6x﹣10的导数y′=.15.(5分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.﹣sinx;③()16.(5分)有下列命题:①(log a x);②(cosx)′=;其中是真命题的有:.(把你认为正确命题的序号都填上)三、解答题(本大题共7小题,满分70分.解答应写出文字说明.证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别是.(1)求sinC的值;(2)求△ABC的面积.18.(12分)命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.19.(12分)已知函数f(x)=ax3﹣3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,求函数f(x)的解析式.20.(12分)已知函数f(x)=x3﹣3x,求函数f(x)在[﹣3,]上的最大值和最小值.21.(12分)设数列{a n}的前n项和为S n,满足S n=2a n﹣2n(n∈N+),令b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.22.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P 在此椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆的方程;(2)若直线l过圆x2+y2+4x﹣2y=0的圆心M且交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.23.(理科)如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B﹣AC﹣D的余弦值.2017-2018学年甘肃省白银市高二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题的4个选项中,只有一项是符合题目要求的)1.(5分)在等差数列51、47、43,…中,第一个负数项为()A.第13项 B.第14项 C.第15项 D.第16项【解答】解:因为数列51、47、43,…为等差数列,所以公差d=47﹣51=﹣4,首项为51,所以通项a n=51+(n﹣1)×(﹣4)=55﹣4n所以令55﹣4n<0解得n>,因为n为正整数,所以最小的正整数解为14,所以第一个负数项为第14项故选B2.(5分)在△ABC中,已知a2=b2+c2+bc,则角A为()A.B.C. D.或【解答】解:由a2=b2+c2+bc,则根据余弦定理得:cosA===﹣,因为A∈(0,π),所以A=.故选C3.(5分)已知命题p:??{0},q:{1}∈{1,2},由它们组成的“p∨q”,“p∧q”和“?p”形式的复合命题中,真命题有()个.A.0 B.1 C.2 D.3【解答】解:因为??{0},所以命题p为真.因为:{1}?{1,2},所以命题q为假.所以p∨q为真,p∧q为假,?p为假.故真命题的个数为1个.故选B.4.(5分)双曲线=﹣1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:化已知双曲线的方程为标准方程,可知焦点在y轴,且a=3,b=2,故渐近线方程为y==故选A5.(5分)在△ABC中,a=8,B=60°,C=75°,则b=()A.B.C.D.【解答】解:由内角和定理得:A=180°﹣60°﹣75°=45°,根据正弦定理得:=,又a=8,sinA=,sinB=,则b===4.故选C6.(5分)设a>0,b>0.若是3a与3b的等比中项,则的最小值为()A.8 B.4 C.1 D.【解答】解:因为3a?3b=3,所以a+b=1,,当且仅当即时“=”成立,故选择B.7.(5分)如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35【解答】解:a3+a4+a5=3a4=12,a4=4,∴a1+a2+…+a7==7a4=28故选C8.(5分)准线方程为x=1的抛物线的标准方程是()A.y2=﹣2x B.y2=﹣4x C.y2=2x D.y2=4x【解答】解:由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=﹣2px将p代入可得y2=﹣4x.故选:B.9.(5分)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A.﹣2 B.2 C.﹣4 D.4【解答】解:由椭圆a=,b=,c2=a2﹣c2=4,则椭圆的焦点右焦点F(2,0),由抛物线y2=2px的焦点,则=2,则p=4,故选:D.10.(5分)”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:将方程mx2+ny2=1转化为,根据椭圆的定义,要使焦点在y轴上必须满足,且,即m>n>0反之,当m>n>0,可得出>0,此时方程对应的轨迹是椭圆综上证之,”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的充要条件故选C.11.(5分)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.【解答】解:由导函数图象可知,f(x)在(﹣∞,﹣2),(0,+∞)上单调递减,在(﹣2,0)上单调递增,故选A.12.(5分)设变量x,y满足约束条件,则目标函数z=4x+2y的最大值为()A.12 B.10 C.8 D.2【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=4x+2y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+的截距最大,此时z最大.由,解得,即C(2,1),代入目标函数z=4x+2y得z=4×2+2×1=10.即目标函数z=4x+2y的最大值为10.故选:B二、填空题(每题5分,共20分)13.(5分)数列{a n}的通项公式是a n=(n∈N*),则a3=.【解答】解:∵a n=(n∈N*),∴a3==,故答案为:.14.(5分)求y=x3+3x2+6x﹣10的导数y′=3x2+6x+6,.【解答】解:函数的导数为y′=3x2+6x+6,故答案为:3x2+6x+6,15.(5分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.【解答】解:由∠A=60°,得到sinA=,cosA=,又b=1,S△ABC=,∴bcsinA=×1×c×=,解得c=4,根据余弦定理得:a2=b2+c2﹣2bccosA=1+16﹣4=13,解得a=,根据正弦定理====,则=.故答案为:﹣sinx;③()16.(5分)有下列命题:①(log a x);②(cosx)′=;其中是真命题的有:②.(把你认为正确命题的序号都填上)【解答】解:①(log a x)′=;故①错误,﹣sinx;故②正确,②(cosx)′=③()′=,故③错误,故真命题为②,故答案为:②三、解答题(本大题共7小题,满分70分.解答应写出文字说明.证明过程或演算步骤)17.(10分)在△ABC中,角A,B,C的对边分别是.(1)求sinC的值;(2)求△ABC的面积.【解答】解:(1)在△ABC中,cosA=.B=则:sinA=,所以:sinC=sin(A+B)=sinAcosB+cosAsinB,=.(2)利用正弦定理得:,由于:B=,b=,sinA=,解得:a=,所以:,=.18.(12分)命题p:方程x2+mx+1=0有两个不等的正实数根;命题q:方程4x2+4(m+2)x+1=0无实数根,若“p或q”为真命题,求m的取值范围.【解答】解:∵“p或q”为真命题,则p,q中至少有一个为真命题,当p为真命题时,则,解得m<﹣2,当q为真命题时,则△=16(m+2)2﹣16<0,得﹣3<m<﹣1.当p真q假时,得m≤﹣3.当q真p假时,得﹣2≤m<﹣1.当p真q真时,﹣3<m<﹣2综上,m<﹣1.∴m的取值范围是(﹣∞,﹣1).19.(12分)已知函数f(x)=ax3﹣3x2+x+b,其中a,b∈R,a≠0,又y=f(x)在x=1处的切线方程为2x+y+1=0,求函数f(x)的解析式.【解答】解:函数f(x)=ax3﹣3x2+x+b,则:f′(x)=3ax2﹣6x+1,由于:y=f(x)在x=1处的切线方程为2x+y+1=0,则:f′(1)=﹣2,即:3a﹣6+1=﹣2,解得:a=1.又:当x=1时,y=﹣3,则(1,﹣3)满足函数f(x)=x3﹣3x2+x+b,解得:b=﹣2.故函数的解析式为:f(x)=x3﹣3x2+x﹣2.20.(12分)已知函数f(x)=x3﹣3x,求函数f(x)在[﹣3,]上的最大值和最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)>0,解得:x>1或x<﹣1,令f′(x)<0,解得:﹣1<x<1,故f(x)在[﹣3,﹣1)递增,在(﹣1,1)递减,在(1,]递增,而f(﹣3)=﹣27+9=﹣18,f(﹣1)=2,f(1)=﹣2,f()=﹣,故函数的最大值是2,最小值是﹣18.21.(12分)设数列{a n}的前n项和为S n,满足S n=2a n﹣2n(n∈N+),令b n=.(1)求证:数列{b n}为等差数列;(2)求数列{a n}的通项公式.【解答】(1)证明:由S n=2a n﹣2n(n∈N+),n=1时,a1=S1=2a1﹣2,解得a1=2.n≥2时,a n=S n﹣S n﹣1=2a n﹣2n﹣(),化为:a n﹣2a n﹣1=2n﹣1,化为:﹣=.令b n=.则b n﹣b n﹣1=,b1==1.∴数列{b n}为等差数列,首项为1,公差为.(2)解:由(1)可得:b n=1+(n﹣1)==.∴a n=(n+1)?2n﹣1.22.(12分)已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点P 在此椭圆上,且PF1⊥F1F2,|PF1|=,|PF2|=.(1)求椭圆的方程;(2)若直线l过圆x2+y2+4x﹣2y=0的圆心M且交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.【解答】解:(Ⅰ)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3.在Rt△PF1F2中,,故椭圆的半焦距c=,从而b2=a2﹣c2=4,所以椭圆C的方程为=1.(Ⅱ)解法一:设A,B的坐标分别为(x1,y1)、(x2,y2).已知圆的方程为(x+2)2+(y﹣1)2=5,所以圆心M的坐标为(﹣2,1).从而可设直线l的方程为y=k(x+2)+1,代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k﹣27=0.因为A,B关于点M对称.所以.解得,所以直线l的方程为,即8x﹣9y+25=0.(经检验,所求直线方程符合题意)(Ⅱ)解法二:已知圆的方程为(x+2)2+(y﹣1)2=5,所以圆心M的坐标为(﹣2,1).设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1≠x2且,①,②由①﹣②得.③因为A、B关于点M对称,所以x1+x2=﹣4,y1+y2=2,代入③得=,即直线l的斜率为,所以直线l的方程为y﹣1=(x+2),即8x﹣9y+25=0.(经检验,所求直线方程符合题意.)23.(理科)如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B﹣AC﹣D的余弦值.【解答】证明:(1)方法一:作AH⊥面BCD于H,连DH.AB⊥BD,HB⊥BD,又AD=,BD=1,∴AB==BC=AC,∴BD⊥DC,又BD=CD,则BHCD是正方形,则DH⊥BC,∴AD⊥BC.方法二:取BC的中点O,连AO、DO,则有AO⊥BC,DO⊥BC,∴BC⊥面AOD,∴BC⊥AD(2)作BM⊥AC于M,作MN⊥AC交AD于N,则∠BMN就是二面角B﹣AC﹣D的平面角,因为AB=AC=BC=,∵M是AC的中点,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cos∠BMN=,∴二面角B﹣AC﹣D的余弦值为.。
最新【word精校版】江省宁波市2017学年第二学期九校联考期末考高二数学试题

解得 或 或 ,………………5分
所以原不等式的解集为 . ………………6分
(Ⅱ) ,
所以 ,解得 . ………………9分
法一:令 ,则 ………………11分
又 ,所以 . ………………14分
法二:因为 ,所以 ,………………11分
则 . ………………14分
19.解:(Ⅰ) , ,
,………………3分
在 上单调递增, ;…………7分
当 时, ,
在 上单调递增,在 上单调递减,在 上单调递增,
所以 , ,
而 ,
当 时, ;
当 时, ;…………10分
当 时, ,
所以 在 上单调递增,在 上单调递减,
此时 ;…………12分
当 时, ,所以 在 上单调递增,
此时 ;…………14分
综上所述,当 时, …………15分
宁波市2017学年第二学期九校联考高二数学试题
一、选择题(每小题4分,共40分)
1.已知集合 , ,则集合 ()
A. B. C. D.
2.下列函数中,在定义域上为增函数的是()
A. B. C. D.
3.已知函数 ,则下列选项错误的是()
A. B. C. D.
4.函数 的零点所在的大致区间是()
A. B. C. D.
(2)求函数 在区间 上的取值范围
21.已知函数 ,
(1)判断函数 的奇偶性;
(2)若 且 ,求函数 在区间 上的最大值
22.已知函数
(1)(ⅰ)讨论函数 的极值点个数;
(ⅱ)若 是函数 的极值点,求证:
(2)若 , 是 的两个零点,证明:
宁波市2017学年期末九校联考高二数学参考答案
一、选择题:本大题共10小题,每小题4分,共40分.
2018年第一学期宁波市九校联考高二数学答案

2018学年第一学期宁波市九校联考高二数学试题参考答案一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分。
11.(0±,,2yx =± 12. 311(,,),82813. 114. ,7215.16.(1⎤⎦17. ⎦三、解答题:本大题共5小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分) 解:(Ⅰ)当1,33x ⎡⎤∈⎢⎥⎣⎦时,因为()f x 在1,13⎡⎤⎢⎥⎣⎦上为减函数,在[]1,3上为增函数,……2分()f x ∴在1,33x ⎡⎤∈⎢⎥⎣⎦上最小值为(1)2f =.………………………4分当1,33x ⎡⎤∈⎢⎥⎣⎦时,由函数11()f x x x a =+>恒成立,得12a >,解得12a >. ……6分 (Ⅱ)若命题q 为真命题,则13a <≤,解得1a ≥, …………………8分 若p 为真命题且q 为假命题,则1201a a ⎧>⎪⎨⎪<<⎩,可得112a <<,……10分若p 为假命题且q 为真命题,则1021a a ⎧<≤⎪⎨⎪≥⎩,此时a φ∈ ,……………12分由上可知,a 的取值范围为112a <<. …………………………14分解:(Ⅰ)作CH OAB H OH ⊥平面于,连,,HE OA E HF OB F CE CF ⊥⊥作于,于连 AO ∴⊥⊥平面CEH,BO 平面CFH ,,,CE OA CF OB CEO ∴⊥⊥∆所以≌CFO ∆,,OE OF OEHF =四边形为正方形,OH AOB ∴∠是的角平分线, ……………3分cos cos cos COE COH EOH ∴∠=∠⋅∠01cos cos 45,2COH COH COH ∴=∠∠=∴∠=即04sin 45CH ∴=⨯= …………………………………………8分(Ⅱ)(方法1),,OA a OB b OC c BC c b a c b θ=记=,=,=,则=-,记- 0()cos ,()=-44cos608,a c b a c b a c b a c a b 又θ⋅-=⋅-⋅⋅-⋅⋅=⨯⨯= 0814,4,cos ,60,442a cb θθ=⋅-=∴===⨯即 所以异面直线OA 与BC 所成角的大小为060. …………………………15分 (方法2)以,,HF HE HC 所在直线分别为,,x y z轴建立如图所示的空间直角坐标系,则(2,2,0),(2,2,0),(2,2,0)C O A B --,则(4,0,0),(OA BC =-=- ………10分 设异面直线OA 与BC 所成角为,θ则cos cos ,OA BC OA BC OA BC θ⋅==⋅12==……………13分 060,θ∴=所以异面直线OA 与BC 所成角的大小为060. ………………15分(用补体法求解同样给分)(Ⅰ)在PBA △中,2PA =,1AB =,60PAB ∠=, 所以22221221cos603PB =+-⨯⨯⨯=,PB = 所以222PB AB PA +=,PB AB ⊥. 因为AD BC ∥,所以,,,A B C D 四点共面. 又AD ⊥平面PAB ,PB ⊂平面PAB , 所以AD PB ⊥.又PB AB ⊥,AD AB A =,所以PB ⊥平面ABCD . ………………………7分 (Ⅱ)(方法一)在Rt PBC △中,PC 在Rt PAD △中,PD =在直角梯形ABCD中,CD =…………………………………………9分 在PDC △中,9cos 10PDC ∠==,sin PDC ∠=所以12PDC S =⨯=△14122ACD S =⨯⨯=△.………………12分 设直线PA 与平面PCD 所成的角为θ,设点A 到平面PCD 的距离为h ,因为A PDC P ACD V V --=,所以1133PDC ACD S h S PB ⨯⨯=⨯⨯△△,即11233h =⨯所以h =,sin h PA θ===,…………………………………………15分 故直线PA 与平面PCD(方法二)由(Ⅰ)知,BC ⊥平面PAB ,BC AB ⊥. 以点B 为坐标原点,以,,BA BC BP 所在直线分别 为,,x y z 轴建立如图的空间直角坐标系,则(0,0,3)P ,(1,0,0)A ,(0,2,0)C ,(140)D ,,, 所以(1,0,PA =,(0,2,PC =,(1,2,0)CD =.……………9分设直线PA 与平面PCD 所成的角为θ, 设平面PCD 的一个法向量为(,,)x y z =n , 由00PC CD ⎧⋅=⎪⎨⋅=⎪⎩n n得2020y x y ⎧-=⎪⎨+=⎪⎩取y则2z =,23x =-,所以(=-n . ………………12分 所以sin |||PA PA θ⋅===⋅n n |, 故直线PA 与平面PCD ………………15分 (方法三)延长,DC AB 相交于点E ,连结PE . 因为AD BC ∥,2AD BC =, 所以BC 为ADE △的中位线,点,B C 分别为,AE DE 的中点. 所以PDE △为等腰三角形. 取PE 中点F ,连,DF AF .所以DF PE ⊥,AF PE ⊥,DF AF F =, 所以PE ⊥平面ADF ,又PE ⊂平面PCD , 所以平面ADF ⊥平面PCD . 作AH D F ⊥于H ,连PH , 所以AH ⊥平面PCD .所以APH ∠就是直线PA 与平面PCD 所成的角.………12分因为AF =4AD =,DF =所以222AF AD DF +=,所以AH =所以sin AH APH AP ∠===, 故直线PA 与平面PCD………………15分 21. (本题满分15分)(Ⅰ)Q PN 点是线段的垂直平分线上的点,QN QP \=,QM QN QP QM MP \+=+==,Q M N \点的轨迹是以为焦点的椭圆,22,a c ==其中1, 1.a c b \==22 1.2x Q y +=因此,点的轨迹方程是 …………5分(Ⅱ)设其中一条直线AB 的方程为(1)y k x =+代入椭圆方程可得:2222(21)4220,k x k x k +++-=AB =…………8分 设1122C(x ,y ),D(x ,y ),则1(1)2x kCD:y=-+ 即x=-2ky-1,代入椭圆方程可得:(4k 222)410,y ky ++-= 设,C D 到直线AB 的距离分别为d 1和d 2,则12d d +====…………………………………12分121()2S AB d d =⋅+===2=≤=22211""2k =当4k =,即k =时取 …………………………………15分 22.(本题满分15分)(Ⅰ)解:切线PA 的方程为y-x 21112(),x x x =-即y=2211,x x x -222.x x x -同理可得,切线PB 的方程为y=2…………4分(另解:211()PA k x x =-设切线的方程为:y-x222112110()y x kx x kx k x x ⎧=⎪--+=⎨=-⎪⎩由消去y 后可得:x y-x 221114402k x kx k x ∆=+-=∴=22111112(),,x x x x x x ∴=--切线PA 的方程为y-x 即y=2 222.x x x -同理可得,切线PB 的方程为y=2)…………4分(Ⅱ) 证明:因为点P 既在切线PA 上,也在切线PB 上,由(1)可得201012y x x x =-,202022y x x x =- ,故1202x x x +=,012y x x =. 又点M 的坐标为221212(,)22x x x x ++ .………………………………………6分 所以点N 的纵坐标为2221212121()()222N x x x x y x x ++=+=, 即点N 的坐标为21212(,())22x x x x ++.故N 在抛物线C 上.……………8分 (Ⅲ)解 由(Ⅰ)知:2||)]A B =,212()||2x x PM -=,所以||||AB PM ===……………………………12分 设041[11,3]t y =+∈--,则022004116162953182918y t y y t t t t+==++++++.当[11,3]t =--时,即当014y =时,||||AB PM 的取最大值.……15分。
2018-2019学年浙江省宁波市九校高二上学期期末联考数学试题

2018-2019学年浙江省宁波市九校高二上学期期末联考数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.椭圆的短轴长为()A. 8B. 10C. 5D. 4【答案】A【解析】【分析】利用椭圆的方程,直接求解即可.【详解】解:椭圆,可知焦点在x轴上,b=4,所以椭圆的短轴长为8.故选:A.【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设复数满足,其中为虚数单位,则复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由(1+i)2•z=2+i,得2iz=2+i,∴,∴复数z对应的点的坐标为(,﹣1),位于第四象限.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.已知,是两条不同的直线,,是两个不同的平面,下列说法正确的是()A. 若,,,则B. 若,,则C. 若,,则D. 若平面内有不共线的三点到平面的距离相等,则【答案】A【解析】【分析】在A中,由线面垂直的性质定理得m∥n;在B中,α与β相交或平行;在C中,α⊥β;在D中,α与β相交或平行.【详解】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊥α,n⊥β,α∥β,则由线面垂直的性质定理得m∥n,故A正确;在B中,若m∥α,m∥β,则α与β相交或平行,故B错误;在C中,若m⊥α,m∥β,则α⊥β,故C错误;在D中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故D错误.故选:A.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.4.有下列四个命题:①“相似三角形周长相等”的否命题;②“若,则”的逆命题;③“若,则”的否命题;④“若,则方程有实根”的逆否命题;其中真命题的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】写出命题的逆命题可判断①;写出逆命题,可判断②;写出命题的否命题,可判断③;由判别式法可判断原命题的真假,进而判断④.【详解】解:①“相似三角形周长相等”的逆命题为“周长相等的三角形相似”不正确,根据逆否命题同真同假,可得其否命题不正确;②“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”正确;③“若x=1,则x2+x﹣2=0”的否命题为“若x≠1,则x2+x﹣2≠0”不正确;④“若b≤0,则方程x2﹣2bx+b2+b=0有实根”由△=4b2﹣4(b2+b)=﹣4b≥0,可得原命题正确,其逆否命题也正确.故选:C.【点睛】本题考查简易逻辑的知识,主要是四种命题的真假和相互关系,考查推理能力,属于基础题.5.已知,则“且”是“抛物线的焦点在轴非负半轴上”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】求出抛物线的标准方程,结合抛物线的焦点坐标,建立不等式关系进行判断即可.【详解】解:抛物线mx2+ny=0的标准方程为x2y=4()y,对应的焦点坐标为(0,),若焦点在y轴非负半轴上,则0,即mn<0,则m<0且n>0或n<0且m>0,则“m<0且n>0”是“抛物线mx2+ny=0的焦点在y轴非负半轴上”的充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合抛物线的标准方程以及抛物线的焦点坐标建立不等式关系是解决本题的关键.6.下列命题正确的是()A. 是向量,不共线的充要条件B. 在空间四边形中,C. 在棱长为1的正四面体中,D. 设,,三点不共线,为平面外一点,若,则,,,四点共面【答案】B【解析】【分析】由向量共线和充分必要条件的定义可判断A;由向量的加减和数量积的定义可判断B;由向量数量积的定义计算可判断C;由四点共面的条件可判断D.【详解】解:由||﹣||<||,向量,可能共线,比如共线向量,的模分别是2,3,故A不正确;在空间四边形ABCD中,()••••()•()••0,故B正确在棱长为1的正四面体ABCD中,1×1×cos120°,故C错误;设A,B,C三点不共线,O为平面ABC外一点,若,由1=2≠1,可得P,A,B,C四点不共面,故D错误.故选:B.【点睛】本题考查向量共线和向量数量积的定义、以及四点共面的条件,考查运算能力和推理能力,属于基础题.7.若椭圆与双曲线有公共的焦点,,点是两条曲线的交点,,椭圆的离心率为,双曲线的离心率为,且,则()A. B. C. D.【答案】B【解析】【分析】设PF1=s,PF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s﹣t=2a2,运用余弦定理和离心率公式,计算即可得e1的值.【详解】解:不妨设P在第一象限,再设PF1=s,PF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s﹣t=2a2,解得s=a1+a2,t=a1﹣a2,由∠F1PF2,可得.∴,由e1e2=1,即,得:,解得:(舍),或,即.故选:B.【点睛】本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.8.已知为双曲线右支上一点,为其左顶点,为其右焦点,满足,,则点到直线的距离为()A. B. C. D.【答案】D【解析】【分析】由题意可得△APF为等边三角形,求出P的坐标,利用双曲线的第二定义,列出方程,可得c =4a,由等边三角形的高可得所求值.【详解】解:由题意,A(﹣a,0),F(c,0),右准线方程为x,|AF|=|PF|,∠PFA=60°,可得△APF为等边三角形,即有P(,(a+c)),由双曲线的第二定义可得,化为c2﹣3ac﹣4a2=0,可得c=4a,由c=4,可得a,则点F到PA的距离为(a+c)•5.故选:D.【点睛】本题考查双曲线的定义和性质,考查等边三角形的性质,以及化简运算能力,属于中档题.9.如图,四边形,,,现将沿折起,当二面角的大小在时,直线和所成角为,则的最大值为()A. B. C. D.【答案】C【解析】【分析】取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围.【详解】解:取BD中点O,连结AO,CO,∵AB=BD=DA=4.BC=CD,∴CO⊥BD,AO⊥BD,且CO=2,AO,∴∠AOC是二面角A﹣BD﹣C的平面角,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,B(0,﹣2,0),C(2,0,0),D(0,2,0),设二面角A﹣BD﹣C的平面角为θ,则,连AO、BO,则∠AOC=θ,A(),∴,,设AB、CD的夹角为α,则cosα,∵,∴cos,∴|1|∈[0,1+].∴cos的最大值为.故选:C.【点睛】本题考查异面直线所成角的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.10.若长方体中,,,,,分别为,,上的点,,,.分别记二面角,,的平面角为,,,则()A. B.C. D. 与的值有关【答案】C【解析】【分析】过G点作GM⊥CD于M点,过M做MN⊥EF于N点,由=1,所以,设为,则=,又则,即可比较的大小.【详解】过G点作GM⊥CD于M点,过M做MN⊥EF于N点,由,可知MN<CE∴∴,设为,则=,又,∴∴故选:C【点睛】(1)求二面角大小的过程可总结为:“一找、二证、三计算。
宁波市2017学年第一学期期末九校联考 高二化学试题

宁波市一7201学年第学期期末九校联考 高二化学参考答案一、选择题(本题包括22小题,1-17题每小题2分,18-22每小题3分,共49分。
每小题只有一个正确选项,不选、多选、错选均不得分) 12 3 4 5 6 7 8 9 10 BC AD B D C C C A 1112 13 14 15 16 17 18 19 20 BC BD A D D B D C 2122 B D二、非选择题23. (8分)(1)2,2-二甲基戊烷 (2分)(2)+ H 2催化剂(2分)(3)CH 3CHO + 2Cu(OH)2+NaOH △CH 3COONa + Cu 2O↓+3H 2O (2分) “写成CH 3CHO + 2Cu(OH)2△CH 3COOH + Cu 2O↓+2H 2O 不扣分” (3)H O C O O H催化剂n O C O n + n H 2O (2分) 24. (10分)(1)CH 3COOHH + + CH 3COO - (2分) 1%(2分) (2))1010(214−−−aa (2分)(3)CH 3COONa (1分) NaOH (1分)c (Na +) > c (OH -) > c (CH 3COO -) > c (H +) (2分)25. (11分)(1)AD (2分)(2) C H O +COOC H 2C H 3COOC H 2C H 3C H C COOC H 2C H 3COOC H 2C H 3+H 2O N (2分) (3)NHO COOC H 2C H 3(2分) (4)COO H COO HCOO H COO H COOH (3分)(少写一个扣一分) (5)C H O CH 3Cl 光照CH 2Cl H 化CH 2Cl N a O H /H 2O CH 2OH O ,C u或C H O CH 3Cl 光照CH 2Cl H 化CH 2OH N a O H /H2O CH 2OH O ,Cu(2分)若写成下面,扣一分CH 3Cl 光照CH 2Cl N a O H /H2O CH 2OH C H O O ,C u H 化C H O26. (12分)(1)①CH 3CH 2OH+H 2O 2CO+4H 2 (2分)熵效应大于焓效应(1分)(△S>0也给分)②上升 (1分) 恒压充入N 2,相当于体系压强减小,平衡正向移动(2分)(2)③ < (1分)④ 经计算,A 、E 、G 三点平衡常数相同,故反应温度相同(2分) ⑤进气比越高,反应温度越低(1分)⑥趋势正确(1分),且必须穿过F 、G 之间(1分)C O 的平衡转化率/%n (CO ):n (H 2O )27. (10分)I. (1)10-3.0或1/1000 (2分)(2)1000:1或103.0:1(2分)II. (3)FeCl 3溶液(1分)(4)① A (1分)②1122180c c %V V m−()(2分) ③BD . (2分) 少选一个扣一分。
2017-2018学年宁波市九校联考高二(上)期末数学试卷解析

为 1,俯视图为等腰直角三角形,该多面体的各个面中有若干个是三角形,则这些三角形的面积之和为
A.1
B.
3 2
C.
1
2
3
D.
3
2
3
答案:C
7.已知双曲线
x2 a2
y2 b2
1a
0, b
0 的右支与焦点为 F
的抛物线y2 Nhomakorabea2 px p
0
交于
A,B
两点.
若 AF BF 3 OF ,则该双曲线的渐近线方程为
(Ⅱ)若直线 A1O 与平面 ABB1 A1 所成角为 30 ,求线段 A1E 的长.
解析:(Ⅰ)取 B1D1 中点 O1 ,连结 CO1 , A1O1 ,
∵ ABCD A1B1C1D1 为四棱柱,
∴ A1O1 ∥ CD , A1O1 CO ,
∴四边形 A1OCO1 为平行四边形,
∴ A1O∥ O1C ,
70cm .在容器中注入水,水深为 8cm .现有一根金属棒 l ,其长度为 30cm .(容器厚度、金属棒粗细
均忽略不计)将 l 放在容器中, l 的一端置于点 E 处,另一端在棱台的侧面上移动,则移动过程中 l 浸
入水中部分的长度的最大值为
A.18 2
B. 24
C.12 2
D.15
答案:B
二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分.
2017-2018 学年宁波市九校联考高二(上)期末数学试卷解析
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题
目要求.
2019-2020学年浙江省宁波市九校2018级高二上学期期末联考数学试卷及解析

2019-2020学年浙江省宁波市九校2018级高二上学期期末联考数学试卷★祝考试顺利★(解析版)选择题部分:共40分一、选择题:本大题共10小题,每小题4分,共40分.在每个题给出的四个选项中只有一项是符合题目要求的.1.抛物线24y x =的焦点坐标是( )A. ()1,0B. ()0,1C. 1,016⎛⎫ ⎪⎝⎭D. 10,16⎛⎫ ⎪⎝⎭ 【答案】D【解析】将抛物线化简成标准形式再分析即可.【详解】24y x =即214x y =,故抛物线焦点在y 轴上,11248p p =⇒=,焦点纵坐标为1216p =. 故焦点坐标为10,16⎛⎫ ⎪⎝⎭故选:D2.若复数z 满足()1234i z i -=+,则z虚部为( ) A. 2i -B. 2iC. 2D. 2- 【答案】C【解析】 先计算出345i +=,再整理得512z i =-即可得解.【详解】345i +==即()125i z -=, ∴()25125121214i z i i i+===+--. 故选:C.3.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( )A. 若l m ⊥,m α⊂,则l α⊥B. 若//l α,//m α,则//l mC. 若//l m ,m α⊂,则//l αD. 若l α⊥,m α⊥,则//l m【答案】D【解析】在A 中,l 与α相交、平行或l α⊂;在B 中,l 与m 相交、平行或异面;在C 中,//l α或l α⊂;在D 中,由线面垂直的性质定理得//l m .【详解】由l ,m 是两条不同的直线,α是一个平面,知:在A 中,若l m ⊥,m α⊂,则l 与α相交、平行或l α⊂,故A 错误; B 中,若//l α,//m α,则l 与m 相交、平行或异面,故B 错误;在C 中,若//l m ,m α⊂,则//l α或l α⊂,故C 错误;在D 中,若l α⊥,m α⊥,则由线面垂直的性质定理得//l m ,故D 正确.故选D .4.设()1,1,2OA =-,()3,2,8OB =,()0,1,0OC =,则线段AB 的中点P 到点C 的距离为( )A. 2B. 2C. 4D. 534 【答案】A【解析】根据空间中中点的公式与点到点的距离公式求解即可.【详解】由()1,1,2OA =-,()3,2,8OB =可知AB 的中点1312283,,2,,32222P P ++-+⎛⎫⎛⎫⇒⎪ ⎪⎝⎭⎝⎭. 故P 到点C 2==. 故选:A5.已知A ,B ,C ,D 是空间四个不同的点,则“AC 与BD 是异面直线”是“AD 与BC 是异面直线”的( )A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年浙江省宁波市九校联考高二(上)数学期末试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.(4分)椭圆的长轴长、焦距分别为()A.2,1B.4,2C.,1D.2,22.(4分)下列各式的运算结果为纯虚数的是()A.i(1+i)B.i2(1+i)C.i(1+i)2D.i2(1+i)2 3.(4分)设为两个非零的空间向量,则“存在正数λ,使得=”是“>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,下列说法正确的是()A.若m⊥l,则m⊥αB.若m∥l,则m∥αC.若β⊥l,则β⊥αD.若β∥l,则β∥α5.(4分)已知双曲线,四点P1(2,1),P2(1,0),P3(﹣2,),P4(2,)中恰有三点在双曲线上,则该双曲线的离心率为()A.B.C.D.56.(4分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为1,俯视图为等腰直角三角形.该多面体的各个面中有若干个是三角形,这些三角形的面积之和为()A.1B.C.D.7.(4分)双曲线的上支与焦点为F的抛物线y2=2px(p>0)交于A,B两点,若|AF|+|BF|=3|OF|,则该双曲线的渐近线方程为()A.y=±x B.y=±2x C.y=±x D.y=±x 8.(4分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=1,BC=CC1=2,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.9.(4分)已知椭圆+y2=1的右顶点为A,直线l:x=﹣2上有两点P,Q关于x轴对称(P在Q下方),直线AP与椭圆相交于点B(B异于A),若直线BQ经过坐标原点,则直线AP的斜率为()A.B.C.D.10.(4分)如图,水平放置的正四棱台形玻璃容器的高OO1为30cm,两底面边长EF,E1F1的长分别为10cm和70cm.在容器中注入水,水深为8cm.现有一根金属棒l,其长度为30cm.(容器厚度、金属棒粗细均忽略不计)将l放在容器中,l的一端置于点E处,另一端在棱台的侧面上移动,则移动过程中l浸入水中部分的长度的最大值为()A.18B.24C.12D.15二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4分)已知复数z=,则它的共轭复数=.12.(6分)抛物线x2=y的焦点F的坐标为,若该抛物线上有一点P满足|PF|=,且P在第一象限,则点P的坐标为.13.(6分)某四棱锥的三视图如图所示,则该几何体的体积为,表面积为.14.(6分)已知椭圆=1与双曲线=1的离心率分别为e1,e2,且有公共的焦点F1,F2,则﹣=,若P为两曲线的一个交点,则PF1|•|PF2|=.15.(6分)已知空间向量的模长分别为1,2,3,且两两夹角均为60°.点G为△ABC的重心,若,则x+y+z=,=.16.(4分)a,b为空间中两条互相垂直的直线,等边三角形ABC的边AC所在直线与a,b 都垂直,边AB以直线AC为旋转轴旋转,有下列四个命题:①直线AB与a所成角的最小值为30°;②直线AB与a所成角的最大值为60°;③当直线AB与a成60°角时,AB与b成45°角;④当直线AB与a成60°角时,AB与b成60°角;其中为真命题的是.(填写所有真命题的编号)17.(4分)双曲线x2﹣y2=1的左、右焦点分别为F1,F2.点P在双曲线上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2,若直线l1,l2的交点Q在双曲线上,则点P的坐标为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14分)已知命题p:椭圆=1的离心率e∈(,1),命题q:复数z=(m ﹣1)+i,m∈R的模|z|≥.(Ⅰ)若命题p为真命题,求m的取值范围;(Ⅱ)若命题p和q中至少有一个为假命题,求m的取值范围.19.(15分)由四棱柱ABCD﹣A1B1C1D1截去三棱锥C1﹣B1CD1后得到的几何体如图所示,四边形ABCD是边长为2的正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(Ⅰ)证明:A1O∥平面B1CD1;(Ⅱ)若直线A1O与平面ABB1A1所成角为30°,求线段A1E的长.20.(15分)已知抛物线C:y2=2px过点P(1,2),C在P处的切线交y轴于点Q,过Q 作直线l与抛物线C交于不同的两点A,B,直线OA,OB,OP分别与抛物线的准线交于点M,N,R,其中O为坐标原点.(Ⅰ)求抛物线C的方程及其准线方程,并求出点Q的坐标;(Ⅱ)求证:R为线段MN的中点.21.(15分)如图,在四棱锥P﹣ABCD中,△P AD为等边三角形,四边形ABCD为等腰梯形,且AB=BC=CD=4,AD=2.(Ⅰ)若△PBC为等边三角形,证明:平面P AD⊥平面PBC;(Ⅱ)若∠PBA=∠PCD=30°,求平面PBA与平面PCD所成钝二面角的余弦值.22.(15分)已知椭圆的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EF A的面积为.过点E的动直线l被椭圆C所截得的线段MN 长度的最小值为.(Ⅰ)求椭圆C的方程;(Ⅱ)B是椭圆C上异于顶点的一点,且直线OB⊥l,D是线段OB延长线上一点,且|BD|=|MN|,⊙D的半径为|DB|,OP,OQ是⊙D的两条切线,切点分别为P,Q,求∠POQ的最大值,并求取得最大值时直线l的斜率.2017-2018学年浙江省宁波市九校联考高二(上)数学期末试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.【解答】解:椭圆,可得a=2,b=,c=1,所以椭圆的长轴长为:4;焦距为:2.故选:B.2.【解答】解:∵i(1+i)=i+i2=﹣1+i,i2(1+i)=﹣1﹣i,i(1+i)2=i•2i=2i2=﹣2,i2(1+i)2=﹣1×2i=﹣2i,∴为纯虚数的是i2(1+i)2.故选:D.3.【解答】解:设为两个非零的空间向量,存在正数λ,使得=”则向量,共线且方向相同,可得>0.反之不成立,非零向量,的夹角为锐角,满足得>0.而=”不成立.∴为两个非零的空间向量,则“存在正数λ,使得=”是“>0”的充分不必要条件.故选:A.4.【解答】解:∵l⊂α,由线面垂直的判定定理知:若m⊥l,则m⊥α不一定成立,故A错误;由线面平行的判定定理知:若m∥l,则m∥α,或m⊂α,故B错误;由面面垂直的判定定理知:若β⊥l,则β⊥α,故C正确;由面面平行的判定定理知:若β∥l,则β∥α不一定成立,故D错误;故选:C.5.【解答】解:根据双曲线的性质可得P3(﹣2,),P4(2,)中在双曲线上,则P1(2,1),一定不在双曲线上,则P2(1,0)在双曲线上,∴a=1,,解得b2=,∴c2=a2+b2=,∴c=,∴e==,故选:A.6.【解答】解:由三视图可画出直观图,该立体图中只有2个三角形的面,S三角形=+=,故选:C.7.【解答】解:把y2=2px(p>0)代入双曲线,可得:b2x2﹣2pa2y﹣a2b2=0,∴x A+x B=,∵|AF|+|BF|=3|OF|,∴x A+x B+2×=3×,∴=,∴=2.∴该双曲线的渐近线方程为:y=±2x.故选:B.8.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角,MN=AB1=,NP=BC1=,作BC中点Q,则△PQM为直角三角形;∵PQ=2,MQ=AC,△ABC中,由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=,在△MQP中,MP==在△PMN中,由余弦定理得:cos∠MNP===﹣,又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.故选:D.9.【解答】解:设Q(﹣2,y1),则P(﹣2,﹣y1),y1>0,直线BQ为:,即y=﹣,联立,得=4,解得,∴B(,﹣),∵k AB=k AP,∴=,解得y1=2,(舍负),∴直线AP的斜率为k AP==.故选:D.10.【解答】解:作出棱台的截面图如图,设金属棒在GG1上的点为M,金属棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,由已知可得,EG=,,EQ=30,NP=8,则,由勾股定理得=.∴,则sin,cos∠EGM=.在三角形EGM中,由正弦定理可得:,可得sin∠EMG=,则cos∠EMG=.∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGM•cos∠EMG+cos∠EGM•sin∠EMG ==.在Rt△NPE中,得EN=.故选:B.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.【解答】解:∵z==,∴.故答案为:2+i.12.【解答】解:抛物线x2=y的焦点F的坐标为(0,),该抛物线上有一点P满足|PF|=,且P在第一象限,可得y+=,解得y=1,则x=1,所以P的坐标(1,1).故答案为:(0,);(1,1).13.【解答】解:由三视图知几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,高为h,四棱锥的底面是正方形,边长为2,棱锥的高为2,∴几何体的体积V==.表面积为:2×2+2××2×2+2××2×2 =8+4.故答案为:;8+4.14.【解答】解:由题意可知双曲线的焦点在x轴上,故而椭圆的焦点在x轴上,∴4﹣m=1+n,即m+n=3.椭圆的离心率e1=,双曲线的离心率e2=,∴﹣=4﹣m﹣(1+n)=3﹣m﹣n=0.∵P在椭圆上,∴|PF1|+|PF2|=4,又P在双曲线上,∴||PF1|﹣|PF2||=2,不妨设|PF1|>|PF2|,则|PF1|=3,|PF2|=1,∴|PF1|•|PF2|=3.故答案为:0,3.15.【解答】解:根据题意得,点G为△ABC的重心,设BC中点为D,则==(+)∴﹣=(﹣+﹣)∴=++,∴x=y=z=,∴x+y+z=1;2=()2×(12+22+32+2×1×2×+2×1×3×+2×2×3×)=,∴=,故答案为1,,16.【解答】解:由题意知,a、b、AC三条直线两两相互垂直,以a,b,AC所在直线分别为x,y,z轴,画出图形如图:不妨设图中所示等边三角形ABC的边长为2,由题意可得B的运动轨迹为以AC的中点为圆心,为半径的圆面,设A(0,0,2),=(2,0,0),=(0,2,0),B(cosα,sinα,1),即有=(cosα,sinα,﹣1),可得直线AB与直线a所成角的余弦为||=||=|cosα|≤,可得直线AB与a所成角的最小值为30°,故①正确;直线AB与a所成角的最大值为90°,故②错误;当直线AB与a成60°角时,即有cosα=,可得cosα=,sinα=,直线AB与直线b所成角的余弦为sinα=,AB与b成45°角,故③正确,④错误.故答案为:①③.17.【解答】解:双曲线x2﹣y2=1的左、右焦点分别为F1,F2.点P在双曲线上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2,若直线l1,l2的交点Q在双曲线上,可知F1,F2,P,Q,四点共圆,F1P⊥PF2.设P(m,n),m>0,n>0;F1(﹣1,0),F2(1,0),可得,解得m=,n=,所以P(,).故答案为:(,).三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.【解答】解:(Ⅰ)椭圆方程为=1,当m>4时,e==∈(,1),解得m>8;当0<m<4时,e==∈(,1),解得0<m<2;综上可知,椭圆的离心率e∈(,1)时,m的取值范围是0<m<2或m>8;(Ⅱ)命题p和q中至少有一个为假命题时,有p真q假,p假q真,p假q假三种情况;考虑其反面,即p真q真;q为真时,复数z=(m﹣1)+i,m∈R的模|z|≥,∴≥,解得m≤﹣2或m≥4;∴当命题p、q为真命题时,m的取值范围是m>8;∴命题p和q中至少有一个为假命题时,m的取值范围是m≤8.19.【解答】证明:(Ⅰ)取B1D1中点O1,连结CO1,A1O1,∵ABCD﹣A1B1C1D1为四棱柱,∴A1O1∥CD,A1O1=CO,∴四边形A 1OCO为平行四边形,∴A1O∥O1C,又O1C⊂平面B1CD1,A1O⊄平面B1CD1,∴A1O∥平面B1CD1.解:(Ⅱ)如图,建立空间直角坐标系,设A1E=a,则A(0,0,0),B(2,0,0),O(1,1,0),A1(0,1,a),=(﹣1,0,1),=(2,0,0),=(0,1,a),设平面ABB1A1的法向量=(x,y,z),则,取z=1,得=(0,﹣a,1),由题意得sin30°=|cos<,>|==,解得a=1,∴线段A1E的长为1.20.【解答】解:(Ⅰ)由抛物线C:y2=2px过点P(1,2),得p=2,所以抛物线的方程y2=4x,准线方程为x=﹣1,设切线PQ的方程为x﹣1=m(y﹣2),由,得y2﹣4my+8m﹣4=0,△=0,即16m2﹣4(8m﹣4)=0,解得m=1,从而PQ的方程为y=x+1,得Q(0,1),证明:(Ⅱ)设直线l的方程为x=t(y﹣1),l与抛物线C的交点为A(x1,y1),B(x2,y2),由,得y2﹣4ty+4t=0,则y1+y2=4t,y1y2=4t,因为点P的坐标为(1,2),所以点R的坐标为(﹣1,﹣2),直线OA的方程为y=x,结合y12=4x1,从而直线OA:y=x,可得点M的坐标为(﹣1,﹣),同理点N的坐标为(﹣1,﹣),因为﹣﹣==﹣=﹣4=2×(﹣2),故R为线段MN的中点.21.【解答】(Ⅰ)证明:取AD中点E,BC中点F,连接PE,PF,EF,由于△P AD,△PBC均为等边三角形,可得PE=,PF=2,又四边形ABCD为等腰梯形,可得EF=,从而PE2+PF2=EF2,故PE⊥PF,又由PE⊥AD,AD∥BC,得PE⊥BC,从而PE⊥平面PBC,因此,平面P AD⊥平面PBC;(Ⅱ)解:延长CD,BA交于点G,连接PG,可得PG为平面PBA与平面PCD的交线,在△PBA中,由正弦定理可得∠BP A=90°,从而PB=,同理可得∠CPD=90°,PC=,又在底面ABCD中,可计算得CG=BG=8,结合∠PBA=∠PCD=30°,可知△PBG≌△PCG,作CH⊥PG于H,连接BH,可得BH⊥PG,从而∠BHC为二面角B﹣PG﹣C的平面角,由余弦定理可得,PG=2,从而可计算出BH=CH=,∴cos∠BHC=.∴平面PBA与平面PCD所成钝二面角的余弦值为.22.【解答】解:(Ⅰ)由已知可得c(c+a)=b2,由b2=a2﹣c2,可得2c2+ca﹣a2=0,可得a=2c,b=c,设椭圆方程为+=1,当直线l的斜率不存在时,|MN|=2c,当直线l的斜率存在时,可设l:y=kx+c,代入椭圆方程可得(3+4k2)x2+8kcx﹣8c2=0,|MN|=•=4c•=2c•<2c,可得k=0时,|MN|取得最小值c,由c=,解得c=1,则椭圆方程为+=1;(Ⅱ)由(Ⅰ)可得|MN|=4•,圆D的半径r=|MN|=•4•,直线OB的方程为y=﹣x,代入椭圆方程可得x B2=,可得|OB|=•=2•,由题意可得sin==,要求∠POQ的最大值,即求的最小值,=•=•,可令u=3+4k2,则u>3,∈(0,),可得=•=•=≥1,当且仅当=2,即u=,k=±时,上式取得等号,可得sin≤,即≤,即∠POQ的最大值为,综上可得,∠POQ的最大值为,此时直线l的斜率为±.析,能在头脑里形成生动而清晰的物理情景,找到解决问题的简捷办法,才能顺利地、准确地完成解题的全过程。