常见的热氧化工艺
硅热氧化工艺

In the integrated circuit technology, high pure water as steam heating source, and with dry wet oxidation is oxygen oxygen through the heating water (commonly used water temperature for 95) by the formation of the oxygen and water vapor mixture formation oxidation atmosphere. With high purity hydrogen and oxygen in quartz tube inlet reaction direct synthesis methods of water vapour water vapor oxidation, by changing the ratio of hydrogen and oxygen, can regulate steam pressure, reduce contamination, help to improve the quality of the silica thermal growth.
硅热氧化工艺,按所用的氧化气氛 可分为:干氧氧化、水汽氧化和湿 氧氧化。干氧氧化是以干燥纯净的 氧气作为氧化气氛,在高温下氧直 接与硅反应生成二氧化硅。水汽氧 化是以高纯水蒸汽为氧化气氛,由 硅片表面的硅原子和水分子反应生 成二氧化硅。水汽氧化的氧化速率 比干氧氧化的为大。而湿氧氧化实 质上是干氧氧化和水汽氧化的混合, 氧化速率介于二者之间。
余明刚 唐波 张芊
硅热氧化工艺
硅(Si)与含有氧化物质的气体,例如水汽 和氧气在高温下进行化学反应,而在硅 片表面产生一层致密的二氧化硅(SiO2) 薄膜。这是硅平面技术中一项重要的工 艺。常用的热氧化装置(图1)将硅片置 于用石英玻璃制成的反应管中,反应管 用电阻丝加热炉加热一定温度(常用的温
热氧化工艺

其中B 其中B为抛物线氧化速率常数
■ 介于(1)、(2)两者之间的情况,Tox ~ t关系要用求根公式表示: 介于(1)、(2)两者之间的情况, 两者之间的情况 t关系要用求根公式表示: 关系要用求根公式表示
两个方程式,但有三个未知量: 两个方程式,但有三个未知量:Cs Co Ci 亨利定律:固体表面吸附元素浓度与固体表面外侧气 亨利定律: 体中该元素的分气压成正比
H—亨利气体常数
理想气体定律
剩下两个未知量:C0和Ci 剩下两个未知量:
+ 两个方程可求解Ci和C0 两个方程可求解 可求解C
定义
则有: 则有:
第一章 热氧化工艺 (Thermal Oxidation) Oxidation)
硅的热氧化工艺(Thermal 硅的热氧化工艺(Thermal Oxidation)
■ ■ ■ ■
二氧化硅的性质和用途 热氧化原理(Deal热氧化原理(Deal-Grove 模型) 模型) 热氧化工艺(方法) 热氧化工艺(方法)和系统 热氧化工艺的质量检测
通过解方程,可以得到 通过解方程,
因此, 因此,有, 将J3与氧化速率联系起来,有 与氧化速率联系起来,
其中N 是形成单位体积SiO 其中N1是形成单位体积SiO2所需的 氧化剂分子数或原子数。 氧化剂分子数或原子数。 N1=2.2×1022cm-3(干氧O2) N1=4.4 × 1022cm-3(水汽H2O) =2.2× 干氧O 水汽H
J3: J3:反应流密度
1、D – G 模型 (1) 氧化剂由气相传输至SiO2的表面,其粒子流密度J1 氧化剂由气相传输至 传输至SiO 的表面,其粒子流密度J (即单位时间通过单位面积的原子数或分子数)为: 即单位时间通过单位面积的原子数或分子数)
热氧化工艺培训

研发中心机密 Confidential
目录
热氧化的作用
热氧化的原理
热氧化工艺解析 异常问题汇总和解决方案
安全管理
研发中心机密 Confidential
2
热氧化作用
热氧化作用
通过高温条件下在硅表面通氧气,在硅片表面形成SiO2膜,此SiO2膜有钝化作用,结 合位于顶层的氮化硅薄膜,可以有效地阻止载流子在表面处的复合,提高电池片的转换 效率。 位于底层的氧化硅膜对杂质离子具有阻挡作用,能增强太阳能电池片的抗PID性能。
HEAT UP STABILIZE DEPOSITION
30min 1min 60min
recipe:2 recipe:2 recipe:2
20 20 20
0 0 300
COOLDOWN 温度组 0 1 2
降温
10min zone2 700 550 500
recipe:0 zone3 700 550 500
30 zone4 700 550 550
0 zone5 700 550 550
研发中心机密 Confidential
8
异常问题汇总和解决方案
外观合格
硅片氧化后表面要光洁,无合金点、麻点、蓝点等(一般用目测或在显微镜下可以观察 到)。 影响氧化后硅片外观的主要是洁净度,氧化时必须保证硅片表面干燥清洁,操作时手只 能接触硅片边缘,或者用镊子操作。
步骤 LOAD/UNLOAD LOAD IN LOAD OUT 名称 准备将舟放进炉管 将舟放进炉管 舟放进炉管后,舟浆退 出 升温 稳定 沉积 目的 准备将舟放进炉管 将舟放进炉管 舟放进炉管后,舟浆退出 加热,炉管内温度加热至工艺 需要的温度 待温度达到后稳定 在炉管内通氧气,气体反应在 硅片表面生成SiO2层 将炉管内温度降至800左右, 准备将舟取出 zone1 700 550 500 15min 15min 时间 温度 recipe:0 recipe:1 recipe:1 N2(slm) 10 10 10 O2(sccm ) 0 0 0
常见的热氧化工艺

二.常见的各种氧化工艺1.热氧化工艺热生长氧化法-将硅片置于高温下,通以氧化的气氛,使硅表面一薄层的硅转变为二氧化硅的方法。
①常见的热氧化工艺类别及特点:a 干氧氧化:干氧氧化法-氧化气氛为干燥、纯净的氧气。
氧化膜质量最好,但氧化速度最慢。
b水汽氧化:水汽氧化法-氧化气氛为纯净的水汽。
氧化速度最快,但氧化膜质量最差。
c湿氧氧化:湿氧氧化法-氧化气氛为纯净的氧气+纯净的水汽。
氧化膜质量和氧化速度均介于干氧氧化和水汽氧化之间。
②常见的热氧化工艺:a方法:常采用干氧-湿氧-干氧交替氧化法。
b工艺条件:温度:高温(常见的为1000℃-1200℃)。
时间:一般总氧化时间超过30分钟。
②氧化生长规律:一般热氧化生长的二氧化硅层厚度与氧化时间符合抛物线规律。
原因是:在氧化时存在氧化剂穿透衬底表面已生成的二氧化硅层的事实。
2.热分解淀积法:(工艺中也常称为低温淀积法或低温氧化法)热分解淀积法-在分解温度下,利用化合物的分解和重新组合生成二氧化硅,然后将生成的二氧化硅淀积在衬底(可为任何衬底)表面上,形成二氧化硅层的方法。
①可见的低温氧化工艺类别及特点:a.含氧硅化物热分解淀积法:多采用烷氧基硅烷进行热分解,分解物中有二氧化硅,在衬底上淀积形成二氧化硅层。
b.硅烷(不含氧硅化物)热分解氧化淀积法:硅烷热分解析出硅原子,与氧化剂(氧气)作用生成二氧化硅,在衬底上淀积形成二氧化硅层。
②常见的低温氧化工艺:a.设备:采用低真空氧化淀积炉。
b.条件:Ⅰ含氧硅化物热分解淀积法:对常用的正硅酸乙酯:T=750℃;真空度为托。
Ⅱ硅烷热分解氧化淀积法:T>300 ℃(实际采用420 ℃),淀积时系统中通入氧气,真空度同上。
③低温氧化生长规律:低温氧化(热分解淀积)生长的二氧化硅层厚度与氧化时间符合线性规律。
原因是:在氧化时是在衬底表面上淀积二氧化硅,不存在氧化剂穿透衬底表面已生成的二氧化硅层的问题。
SiO2的制备方法:热氧化法干氧氧化水蒸汽氧化湿氧氧化干氧-湿氧-干氧(简称干湿干)氧化法氢氧合成氧化化学气相淀积法热分解淀积法溅射法化学汽相淀积(CVD)化学汽相淀积(Chemical Vapor Deposition):通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程CVD技术特点:具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点CVD方法几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO2、多晶硅、非晶硅、氮化硅、金属(钨、钼)等常压化学汽相淀积(APCVD)低压化学汽相淀积(LPCVD)等离子增强化学汽相淀积(PECVD)化学汽相淀积(CVD)单晶硅的化学汽相淀积(外延):一般地,将在单晶衬底上生长单晶材料的工艺叫做外延,生长有外延层的晶体片叫做外延片二氧化硅的化学汽相淀积:可以作为金属化时的介质层,而且还可以作为离子注入或扩散的掩蔽膜,甚至还可以将掺磷、硼或砷的氧化物用作扩散源低温CVD氧化层:低于500℃中等温度淀积:500~800℃高温淀积:900℃左右多晶硅的化学汽相淀积:利用多晶硅替代金属铝作为MOS器件的栅极是MOS集成电路技术的重大突破之一,它比利用金属铝作为栅极的MOS器件性能得到很大提高,而且采用多晶硅栅技术可以实现源漏区自对准离子注入,使MOS集成电路的集成度得到很大提高。
第三章-热氧化

2( Si OH ) Si Si 2( Si O Si ) 2H2
④所生成的H2将迅速离开SiO2-Si界面,也可能与氧结合形成 羟基(与干氧氧化不同)。
化学反应:
1 2
H2
O
OH
2019/11/16
18
水汽氧化特点:
①氧化层结构疏松, 质量不如干氧好,水 汽氧化速度快 ;
相当于间 隙式杂质
网络改 变剂
非本征无定形SiO2
2019/11/16
7
网络形成剂:R杂质离子≤ RSi离子 如:B、P、Al等杂质,可在
网络中取代Si原子的位置。(类比硅中的替位杂质)
P:以P2O5形式加入到SiO2中,P取代Si原子位于四面体中心; 由于P2O5比Si2O4多出了一个O原子或者呈非桥联氧,或者 交给网络,使其中一部分桥联氧变为非桥联氧疏松 P加入到SiO2 中会使网络出现富氧状态,使网络的结构变 得更加疏松。含磷的SiO2 称磷硅玻璃; B:以B2O3形式加入到SiO2中,B取代Si原子位于四面体中 心;由于B2O3比Si2O4少一个O原子非桥键氧减少(桥键 氧数目增加)紧密。
掩蔽膜制作采用,干氧(掺氯) -湿氧-干氧交替氧化
2019/11/16
2H2O 2Cl2 4HCl O2
20
4. 掺氯氧化
氯源:氯气(Cl2)、氯化氢(HCl) 、三氯乙烯(C2HCl3或TCE)
或三氯乙烷(TCA)等。
目的:减小SiO2中的Na+污染,改善SiO2层的质量。 掺氯氧化机理:
9
若干杂质的离子半径
2019/11/16
网 络 形 成 剂
网 络 改 变 剂
10
常见的热氧化工艺

低温氧化(热分解淀积)生长的二氧化硅层厚度与氧化时间符合线性规律。原因是:在氧化时是在衬底表面上淀积二氧化硅,不存在氧化剂穿透衬底表面已生成的二氧化硅层的问题。
SiO2的制备方法:
热氧化法
干氧氧化
水蒸汽氧化
湿氧氧化
干氧-湿氧-干氧(简称干湿干)氧化法
氢氧合成氧化
化学气相淀积法
热分解淀积法
低温CVD氧化层:低于500℃
中等温度淀积:500~800℃
高温淀积:900℃左右
多晶硅的化学汽相淀积:利用多晶硅替代金属铝作为MOS器件的栅极是MOS集成电路技术的重大突破之一,它比利用金属铝作为栅极的MOS器件性能得到很大提高,而且采用多晶硅栅技术可以实现源漏区自对准离子注入,使MOS集成电路的集成度得到很大提高。
常压化学汽相淀积(APCVD)
低压化学汽相淀积(LPCVD)
等离子增强化学汽相淀积(PECVD)
化学汽相淀积(CVD)
单晶硅的化学汽相淀积(外延):一般地,将在单晶衬底上生长单晶材料的工艺叫做外延,生长有外延层的晶体片叫做外延片
二氧化硅的化学汽相淀积:可以作为金属化时的介质层,而且还可以作为离子注入或扩散的掩蔽膜,甚至还可以将掺磷、硼或砷的氧化物用作扩散源
氮化硅的化学汽相淀积:中等温度(780~820℃)的LPCVD或低温(300℃) PECVD方法淀积
物理气相淀积(PVD)
蒸发:在真空系统中,金属原子获得足够的能量后便可以脱离金属表面的束缚成为蒸汽原子,淀积在晶片上。按照能量来源的不同,有灯丝加热蒸发和电子束蒸发两种
溅射:真空系统中充Байду номын сангаас惰性气体,在高压电场作用下,气体放电形成的离子被强电场加速,轰击靶材料,使靶原子逸出并被溅射到晶片上
第一章热氧化工艺解读

D-G干氧模型中给出一个值,来补偿初始阶段的过度生长。
湿氧工艺的氧化速率常数
干氧工艺的氧化速率常数
4、参数B和B/A的温度依赖关系 在各种氧化工艺条件下,参数B和B/A都可以确定下来, 并且是扩散系数、反应速率常数和气压等工艺参数的函数。 参数B和B/A可写成Arrhenius函数形式。
B和B/A
■ 参数B的激活能EA取决于氧化剂的扩散系数(D0)的激活能;
物线速率常数
B/A:线性速率常数
图4.2 氧化系数B的阿列尼乌斯图, 湿氧氧化参数取决于水汽浓度(进而 取决于气流量和高温分解条件)
图4.3 氧化系数B/A的阿列尼乌斯图
以干氧氧化为例
TCE:三氯乙烯
4、不同氧化方法的特点 (1) 干氧氧化:氧化速率慢,SiO2膜结构致密、干燥(与光 刻胶粘附性好),掩蔽能力强。 (2) 湿氧氧化:氧化速率快,SiO2膜结构较疏松,表面易有缺 陷,与光刻胶粘附性不良。 (湿氧环境中O2和
H2O的比例是关键参数)
(3) 氢氧合成氧化:氧化机理与湿氧氧化类似,SiO2膜质量取 决于H2,O2纯度(一般H2纯度可达99.9999%,O2纯度
一、二氧化硅(Si02)的性质和用途
(一)SiO2的结构
密度:~2.27g/cm3 分子量:60.09 热氧化方法制备的二氧化硅是无定形结构 (硅的密度:~2.33g/cm3) (硅的原子量:28.09)
分子数密度:2.2 1022 /cm3 (硅的原子数密度:5 1022 /cm3) 4个O原子位于四面体的顶点, Si位于四面体中心。 桥位O原子与2个Si原子键合; 其它O原子只与1个Si键合
5、影响氧化速率的因素 (1) 温度对氧化速率的影响:
温度 B和B/A 氧化速率
(4)热氧化

x j xSiO2
掩蔽条件: DSi>>DSiO2
杂质的 DSi T 关系曲线
DSiO2
22
SiO2掩蔽层厚度的确定
硅衬底上的SiO2要能够单做掩膜来实现定域扩散, 需要SiO2满足:
1、 SiO2有一定的厚度;2、 DSi>>DSiO2; 3、且SiO2表面杂质浓度(CS)与Si/SiO界面杂质
二氧化硅膜用途
作为掩蔽膜
离子注入掩蔽 11
二氧化硅膜用途
互连 层间 绝缘 介质
12
二氧化硅膜用途
作为电隔离膜
隔离工艺
13
14
二氧化硅膜用途
作为掩膜; 作为芯片的钝化和保护膜; 作为电隔离膜; 作为元器件的组成部分。
15
SiO2与Si之间完美的界面特性是成就硅 时代的主要原因
TEM照片——单晶硅表面热氧化所得非晶二氧化硅薄膜
生长速率常数 (m2/min)
1.48×10-4
6.2×10-4
38.5×10-4 117.5×10-4 43.5×10-4
133×10-4
生长0.5 微米SiO2 所需时间 (min)
1800
360
63 22 58 18
SiO2的密度 (g/mm)
备注
2.27
2.15
2.21 2.12 2.08 2.05
SiO2 形成
氧化剂流动方向 (如 O2或 H2O)
气流滞流层
SiO2 Si衬底
39
40
热氧化动力学(迪尔-格罗夫模型)
氧化剂输运---气体输运流密度用F1表 主流 粘滞层
Ga; 3. Au在SiO2中扩散系数很小,但由于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低温CVD氧化层:低于500C
中等温度淀积:500〜800C
高温淀积:900C左右
多晶硅的化学汽相淀积:利用多晶硅替代金属铝作为MOS器件的栅极是MOS集成电路技术的 重大突破之一,它比利用金属铝作为栅极的MOS器件性能得到很大提高,而且采用多晶硅栅 技术可以实现源漏区自对准离子注入,使MOS集成电路的集成度得到很大提高。
氮化硅的化学汽相淀积:中等温度(780〜820C)的LPCVD或低温(300C)PECVD方法淀积
物理气相淀积(PVD)
蒸发:在真空系统中, 金属原子获得足够的能量后便可以脱离金属表面的束缚成为蒸汽原子, 淀积在晶片上。按照能量来源的不同,有灯丝加热蒸发和电子束蒸发两种 溅射:真空系统中充入惰性气体,在高压电场作用下,气体放电形成的离子被强电场加速, 轰击靶材料,使靶原子逸出并被溅射到晶片上
化剂穿透衬底表面已生成的二氧化硅层的事实。
2.热分解淀积法: (工艺中也常称为低温淀积法或低温氧化法)
热分解淀积法-在分解温度下, 利用化合物的分解和 重新组合生成二氧化硅, 然后将生 成的二氧化硅淀积在衬底(可为任何衬底)表面上,形成二氧化硅层的方法。
1可见的低温氧化工艺类别及特点:
a.含氧硅化物热分解淀积法: 多采用烷氧基硅烷进行热分解,分解物中有二氧化硅,在衬底上淀积形成二氧化硅层。
二.常见的各种氧化工艺
1.热氧化工艺
热生长氧化法-将硅片置于高温下,通以氧化的气氛,使硅表面一薄层的硅转变为二氧 化硅的方法。
1常见的热氧化工艺类别及特点:
a干氧氧化: 干氧氧化法-氧化气氛为干燥、纯净的氧气。氧化膜质量最好,但氧化速度最慢。
b水汽氧化:
水汽氧化法-氧化气氛为纯净的水汽。氧化速度最快,但氧化膜质量最差。
3低温氧化生长规律:
低温氧化 (热分解淀积)生长的二氧化硅层厚度与氧化时间符合线性规律。原因是:在氧
化时是在衬底表面上淀积二氧化硅,不存在氧化剂穿透衬底表面已生成的二氧化硅层的问 题。
SiO2的制备方法:
热氧化法
干氧氧化
水蒸汽氧化
湿氧氧化
干氧-湿氧-干氧(简称湿干)氧化法
氢氧合成氧化
化学气相淀积法
b.硅烷(不含氧硅化物)热分解氧化淀积法: 硅烷热分解析出硅原子,与氧化剂(氧气)作用生成二氧化硅,在衬底上淀积形成二氧化 硅层。
2常见的低温氧化工艺:
a.设备:采用低真空氧化淀积炉。
b.条件:
I含氧硅化物热分解淀积法:
对常用的正硅酸乙酯:
T=750C;真空度为托。
H硅烷热分解氧化淀积法:
T>300C(实际采用420C),淀积时系统中通入氧气,真空度同上。
硅、非晶硅、氮化硅、金属(钨、钼)等
常压化学汽相淀积(APCVD)
低压化学汽相淀积(LPCVD)等离子增强化学汽相淀积(PECVD)
化学汽相淀积(CVD)
单晶硅的化学汽相淀积(外延):一般地, 将在单晶衬底上生长单晶材料的工艺叫做外延, 生 长有外延层的晶体片叫做外延片
二氧化硅的化学汽相淀积: 可以作为金属化时的介质层, 而且还可以作为离子注入或扩散的 掩蔽膜,甚至还可以将掺磷、硼或砷的氧化物用作扩散源
c湿氧氧化:
湿氧氧化法-氧化气氛为纯净的氧气+纯净的水汽。 氧化膜质量和氧化速度均介于干氧氧化和 水汽氧化之间。
2常见的热氧化工艺:
a方法:常采用干氧-湿氧-干氧交替氧化法。
b工艺条件:
温度:高温(常见的为1000C-1200C)。
时间:一般总氧化时间超过30分钟。
② 氧化生长规律:
一般热氧化生长的二氧化硅层厚度与氧化时间符合抛物线规律。原因是: 在氧化时存在氧
热分解淀积法
溅射法
化学汽相淀积(CVD)
化学汽相淀积(Chemical Vapor Deposition):通过气态物质的化学反应在衬底上淀积一层
薄膜材料的过程
CVD技术特点:
具有淀积温度低、薄膜成分和厚度易于控制、 均匀性和重复性好、 台阶覆盖优良、 适用范围 广、设备简单等一系列优点
CVD方法几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO2、多晶