电磁场与电磁波 第1章
电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。
解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
电动力学电磁场与电磁波课件第1章矢量分析

矢量分析
本课程约定
? 物理量符号上方用“ ? ”或粗斜? 印刷体代表矢量 ,例如电场强度矢量E
? 物理量符号上方用“ ? ”代表单
位矢量,例如e?x,e?y,e?z 分别代表 x,
y,z 方?向的单位矢量, r? 代表位置 矢量 r 的单位矢量
第一章 矢量分析
e??
?
单位圆
x
?e??
??
?
? e?xcos?
? e?ysin?
?
? e?ρ
xy 平面上的投影图
?
矢量表示: A ? e?? A? ? e?? A? ? e?z Az
z
e?z
位置矢
r ? e?? ? ? e??? ? e?z z ???
?
位置矢量 : r ? e?? ? ? e?zz
? P(?, ?, z) r
场物理量随时间变化。本课程主要讨论随 时间正弦或余弦变化的时变场,称时谐场
标量场( Scalar Field )
场物理量是标量,如温度场,电位场等
场矢物量理场量(是矢Ve量c,to如r F电ie场ldE??)r?,t?
2. 三种常用的坐标系
直角坐标系 基本变量: x, y, z
z
? P(x,y,z) r
e?x ? e?x ? e?y ? e?y ? e?z ? e?z ? 0
e?z e?y
e?x ?e?y ? e?y ?e?z ? e?z ?e?x ? 0
e?x
e?x ?e?x ? e?y ?e?y ? e?z ?e?z ? 1
??
? ? e?x e?x e?x
A?B ? AxBx ? AyBy ? Az Bz A ? B ? Ax Ay Az
电磁场与电磁波谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯AB C ;(8)()⨯⨯AB C 和()⨯⨯A B C 。
解 (1)23A x y z+-===+e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e ee (4)y z -+=e e -11(4)由 cos AB θ=14-==⨯A B A B ,得 1cos AB θ-=(135.5=(5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x y z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波公式整理

∫ ∫
s
D ⋅d S = q E ⋅dl = 0
∫
∫
s
E涡 ⋅ d S = 0
∫ ∫
s
B ⋅d S = 0 H ⋅dl = I
∫
s
B涡 ⋅ d S = 0
s
E ⋅ d l = − ∫ s ∂B ⋅ d S L 涡 ∂t
L
∫
L
H涡 ⋅ d l =
∫∫
∂D ⋅ d S = Id ∂t
第二章 表一:电荷和电流的三种密度
Idl
( en 为电流密度的方向)
( en 为电流密度的方向)
∇i J +
∂ρ =0 ∂t
i = ∫ J i dS
S
i = ∫ Jsi(n1 × dl )
l
(电流连续性方程)
整理人:南昌大学通信 092 张奔
表二:电场和磁场
项目 定律
F=
E (r ) =
电场
qq 0 r − r ' (库仑定律) 4πε 0 | r − r ' |3 F 12 = B(r ) = B(r ) = B(r ) =
变化电场和磁场的联 系
∫
L
H ⋅ dl = I + I d = ∫∫ δ ⋅ d S + ∫∫
reθ r sin θ eφ ∂ ∂ ∂θ ∂φ rAθ r sin θ Aφ
∇ u=
2
1 ∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u ( ) + (sin θ ) + r 2 2 ∂θ r 2 sin 2 θ ∂φ 2 r ∂r ∂r r sin θ ∂θ
C:几个定理 散度定理: ∫v ∇i FdV = ∫ s F idS
电磁场与电磁波 课后答案(冯恩信 著)

第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场与电磁波教材

电磁场与电磁波摘要:电磁场与电磁波课程与电气专业息息相关,是我们电气专业学生必须学习的,这学期我们进行了电磁场与电磁波的学习。
主要讲解了矢量分析,电磁场的基本定律,时变电磁场,简述了静态电磁场极其边值问题的解。
第一章:矢量分析是研究电磁场在空间分布和变化规律的基本数学工具之一。
第二章以大学物理(电磁学)为基础,介绍电磁场的基本物理量和基本规律,第三章分别介绍了静电场、恒定电场和恒定磁场的分析方法。
第四章主要讨论时变电磁场的普遍规律。
一、矢量分析电磁场是是分布在三维空间的矢量场,矢量分析是研究电磁场在空间的分布和变化规律的基本教学工具之一。
1:标量和矢量(1) 标量:一个只用大小描述的物理量。
矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。
矢量一旦被赋予“物理单位”,则成为一个具有物理意义的矢量,如:电场强度矢量E 、磁场强度矢量H 、作用力矢量F 、速度矢量v 等。
(2) 两个矢量A 与B 相加,其和是另一个矢量D 。
矢量D=A+B 可按平行四边形法则得到:从同一点画出矢量A 与B ,构成一个平行四边形,其对角线矢量即为矢量D 。
两个矢量A 与B 的点积是一个标量,定义为矢量A 与B 的与它们之间较小的夹角的余弦之积。
(3) 两个矢量A 与B 的叉积是一个矢量,它垂直于包含矢量A 和B 的平面,大小定义为矢量A 与B 的与它们之间较小的夹角的正弦之积,方向为当右手四个手指从矢量A 到B 旋转时大拇指的方向。
2:标量场的梯度(1)等值面: 标量场取得同一数值的点在空间形成的曲面,形象直观地描述了物理量在空间的分布状态。
对任意给定的常数C ,方程C z y x u ),,(就是等值方程。
(2)梯度的概念:标量场u 在点M 处的梯度是一个矢量,它的方向沿场量u 变化率最大的方向,大小等于其最大变化率,并记作grad u,即 grad u= e l |max直角坐标系中梯度的表达式为grad u=,标量场u 的梯度可用哈密顿算符表示为grad u=().u =(3)标量场的梯度具有以下特性:①标量场u 的梯度是一个矢量场,通常称▽u为标量场u 所产生的梯度场;②标量场u (M )中,再给定点沿任意方向l 的方向导数等于梯度在该方向上的投影;③标量场u (M )中每一点M 处的梯度,垂直于过该点的等值面,且指向u (M )增加的方向。
电磁场与电磁波(第四版)谢处方 第一章习题解答
1 2 又在球坐标系中, r (r r ) 3 ,所以 r 2 r
S
求(1)矢量 A ex x 2 e y x 2 y 2 ez 24 x 2 y 2 z 3 的散度; (2)求 A 对中心在原点的 一个单位立方体的积分; (3)求 A 对此立方体表面的积分,验证散度定理。 解 (1) A
( x 2 ) ( x 2 y 2 ) (24 x 2 y 2 z 3 ) 2 x 2 x 2 y 72 x 2 y 2 z 2 x y z
12 12
1 1 2 x ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2
2
12 12
12 12
1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
AB 1 1 11 11 , 得 AB c o ) 135.5 s1 ( A B 1 4 1 7 238 238 AB 11 (5) A 在 B 上的分量 AB A c o s AB B 17
(4) 由
cos AB
ex
(6) A C 1
1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。 设 A 为一已知矢量, p A X 而 P A X , p 和 P 已知,试求 X 。 解 由 P A X ,有
A P A ( A X ) ( A X ) A ( A A) X pA ( A A) X pA A P 故得 X AA 2 1.8 在圆柱坐标中,一点的位置由 (4, ,3) 定出,求该点在: (1)直角坐标中的坐标; 3
电磁场与电磁波(版)课后答案谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波基础知识总结
电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。
电磁场与电磁波复习重点
梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。
:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。
散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。
斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。
3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波
第1章 三种坐标系与场
8
A B en AB sin
用坐标分量表示为 A B ex ( Ay Bz Az By ) ey ( Az Bx Ax Bz ) ez ( Ax By Ay Bx )
写成行列式形式为 ex e y A B Ax Ay
dx
ey
o
d y dS e x x dydz
O
y
x
y
x
x x1平面
y y1 平面
直角坐标系的长度元、面积元、体积元
图1-1 直角坐标系
电磁场与电磁波
第1章 三种坐标系与场
13
2. 圆柱坐标系
坐标变量
坐标单位矢量 位置矢量 线元矢量
dl er dr e rd ez dz
ez Az Bz
A B
A B B A 若 A B ,则 A B AB
若 A // B ,则 A B 0
Bx
By
B
AB sin
矢量A 与B 的叉积
A
电磁场与电磁波
第1章 三种坐标系与场
9
面元矢量
体积元
dV rdrddz
电磁场与电磁波
第1章 三种坐标系与场
14
z
z z1 平面
r1 ez
M
z
ez
rd
dr
eφ
er
O
dz r
r r1 柱面
r1
M
eφ
O
y
1
x
x
1半平面
d
y
er
图1-3 圆柱坐标系
图1-4 圆柱坐标系中的单位矢量、 长度元、面积元和体积元
电磁场与电磁波
4
矢量用坐标分量表示
A ex Ax e y Ay ez Az
Ax A cos Ay A cos
Az
Ax O
A
Ay
y
x Az A cos A A(ex cos ey cos ez cos )
eA ex cos e y cos ez cos
电磁场与电磁波
第1章 三种坐标系与场
11
1. 直角坐标系 坐标变量
x, y, z
(取值范围)
坐标单位矢量 ex , e y , ez r ex x e y y ez z 位置矢量 线元矢量 dl ex dx ey dy ez dz 面元矢量 dS x exdl y dlz exdydz
电磁场与电磁波
第1章 三种坐标系与场
18
y
eφ
ey
O
er ex
O
单位圆
x
图1-8 直角坐标系和圆柱坐标系中的坐标单 位矢量及其关系
电磁场与电磁波
第1章 三种坐标系与场
19
ex er cos e sin e y er sin ecos ez ez
电磁场与电磁波
第1章 三种坐标系与场
1
电磁场与电磁波
第1章 三种坐标系与场
2
本章内容
1.1 矢量代数 1.2 三种常用的正交曲线坐标系 1.3 场及场的特性
电磁场与电磁波
第1章 三种坐标系与场
3
1.1 矢量代数
1. 标量和矢量 标量:一个只用大小描述的物理量。 矢量:一个既有大小又有方向特性的物理量,常用黑体字 母或带箭头的字母表示。
er球
er柱
e
e
e
sin cos 0
0 0 1
ez cos sin 0
电磁场与电磁波
第1章 三种坐标系与场
21
z
ez
er球 er柱
O
O
eθ
单位圆
r柱
图1-9 圆柱坐标系和球坐标系 的坐标单位矢量及其关系
电磁场与电磁波
第1章 三种坐标系与场
22
第1章 三种坐标系与场
0(圆锥面)
15
3. 球坐标系 坐标变量
坐标单位矢量 er , e , e
位置矢量 线元矢量 面元矢量
r , , (取值范围)
(球面)
r r0
M (r0 ,0 ,0 )
r er r dl er dr e rd e rsind 2 dS r er dl dl er r sindd
电磁场与电磁波
第1章 三种坐标系与场
24
v(r,t) T(r,t) p r r p
O 温度场
O 流速场
(a) (b) 图1-10 空间任一点P位置和场量表示 (a)标量场 (b)矢量场
为了形象和直观地描述标ห้องสมุดไป่ตู้场在空间的分布或沿空间坐 标的变化情况,常借助于画出其一系列等值间隔的等值面方 法,不同等值面的形状及其间隔能较直观地表现标量场的空 间分布情况。(在第二章详细介绍)
x r cos r x y
2 2
y r sin z z y arctg z z x
(2)直角坐标系与球坐标系的坐标变量之间的转换 x r sin cos y r sin sin z r cos
r x y z
2 2 2
2
r柱 arctg z
4.2三种坐标系的单位矢量之间的转换 (1)直角坐标系与圆柱坐标系单位矢量之间的转换
er ex cos e y sin e ex sin e y cos ez ez
用图表表示为:
er
e
ex cos
sin
ey
sin
ez
cos
0
0
ez 0 0 1
电磁场与电磁波
第1章 三种坐标系与场
20
(2)圆柱坐标 与 球坐标系单位矢量之间的转换 er er sin e z cos 球 柱 e e r柱 cos ez sin e e e e sin e r柱 r球 cos e e ez er球 cos e sin 用图表表示为:
dS r er dlφdl z er rdφdz dSφ eφdlr dl z eφdrdz dS z ez dlr dlφ ez rdrdφ
r er r ez z
r, , z er ,e ,ez
(取值范围)
电磁场与电磁波
第1章 三种坐标系与场
25
为了形象和直观地描述矢量场在空间的分布或沿空间坐标的变化 情况,则常借助于画出其力线(或称为场线、流线)的方法。力线 是一簇空间有向曲线,矢量场较强处力线稠密,矢量场较弱处力线 稀疏,力线上的切线方向代表该处矢量场的方向。
电磁场与电磁波
第1章 三种坐标系与场
dS e dlr dl ez rsindrd dS e dlr dl e rdrd
0(半平面)
球坐标系
体积元
dV r 2sindrdd
球坐标系中的线元、面元和体积元
电磁场与电磁波
第1章 三种坐标系与场
16
4. 三种坐标系之间的转换 4.1三种坐标系坐标变量之间的转换 (1)直角坐标系与圆柱坐标系的坐标变量之间的转换
ex e y e y ez ez ex 0 ex ex e y e y ez ez 1
(4)矢量的矢积(叉积) 两矢量的叉积是一个矢量,其大小为两个矢量的大小与它们之
用单位矢量 en 表示。
间夹角 的正弦之积,它的方向垂直于包含两个矢量的平面,
矢量的加减符合交换律和结合律 交换律 A B B A 结合律 A ( B C ) ( A B) C
B B
A B
矢量的减法
A
电磁场与电磁波
第1章 三种坐标系与场
6
(2)标量乘矢量
B sA ex sAx e y sAy ez sAz
(3)直角坐标系和球坐标系之间单位矢量的转换,可根据上面的 推导得出,用图表表示如下。
-
eθ eφ
er
ex
sin cos
cos cos
ey
ez
sin sin
cos sin
cos
sin
0
sin
cos
电磁场与电磁波
第1章 三种坐标系与场
(5)矢量的混合运算
—— 分配律 ( A B) C A C B C ( A B) C A C B C —— 分配律 A ( B C ) B (C A) C ( A B) —— 标量三重积 A ( B C ) ( A C ) B ( A B)C —— 矢量三重积
矢量的几何表示:一个矢量可用一条有方向的线段来表示 A eA A eA A 矢量的代数表示: A A A 矢量的大小或模: A 矢量的单位矢量: e A A 矢量的几何表示 常矢量:大小和方向均不变的矢量。
注意:单位矢量不一定是常矢量。
电磁场与电磁波