钢管回转半径表
钢管支撑架计算

钢管支撑架计算钢管支撑架由钢管扣件、底架和调节杆等组成。
钢管选用外径48mm 、壁厚为3.0,长度有2.8、3、4、6等几种。
扣件按用途的不同,有十字扣、旋转扣、接扣三种,其单个重量和容许荷载见表:受力性能较合理,承载能力能充分里利用,支架高度调节灵活,后者荷载直接支承在横杆上,受力性能较差,立杆的承载能力未被充分利用,支架高度调节较困难。
但钢管的支度可不受楼层高度变化的影响。
其计算方式如下:一、 立杆的稳定验算:钢管脚手架的稳定性,可简化为按两端交接的受力杆件来计算:1、 用对接扣件连接的钢管支架,考虑到立杆本身存在弯曲,对接扣件的偏差和荷载不均匀,可按偏心受压杆件来计算:若按偏心1/3的钢管直径,即:=3D =348=16mm ,则Φ48×3mm 钢管的偏差率Σ=e ·W A =16×449424=15.1 长细比:λ=r L =9.15L 式中L —计算长度、取横杆的步距。
立杆的容许荷载[N],(N )可按下式计算:[N]= ·A ·f查表467页表须知:主杆间距为900,横杆步距L=1800,能满足要求。
二、横杆的强度和刚度验算当模板直接放在顶端横杆上时,横杆承受均布荷载。
当顶端横杆上先放檩条,再放模板时,则横杆承受集中荷载。
横杆可规作连续梁,其抗弯强度和挠度的近似计算公式如下:在均布荷载作用下σmax=W M max =wql 10≤f Wmax=EIql 150≤[W] 在两点集中荷载作用下:σmax=W M max =wql 5.3≤f Wmax=EIql 55≤[W] 式中:σmax ─横杆的最大应力(N/m ㎡)w max ─横杆的最大挠度(㎜)max M ─横杆的最大弯矩(N.㎜)W ─ 横杆的截面抵抗矩(㎜3)E ─ 横杆钢材的弹性模量(N/ m ㎡)I ─ 横杆的截面惯性矩(㎜4)q ─ 均布荷载(N /㎜)P ─ 集中荷载(N )─ 立杆的间距(㎜)f ─钢材强度设计值为215N/m ㎡[W] ─ 容许挠度为3㎜另外:钢模板及连接件钢楞自重力750N/㎡钢管支架自重力 250N/㎡计浇混凝土重力 2500N/㎡施工荷载 2500 N/㎡合计: 6000N/㎡钢管立杆间距为900×900,每区格面积为:0.9×0.9=0.81㎡每根立杆承受的荷载为:0.81×6000=4860N采用Φ48×3mm 钢管:A=424 m ㎡钢管回转半径为:γ=41a d +=44248+=15.9㎜ 采用立杆100根,各立柱间布置双向水平撑,扫地杆加纵横杆共计6道,并适当布置垂直剪刀撑。
圆形钢管规格及截面特征表

圆形钢管规格及截面特征表表2-92文案大全文案大全文案大全文案大全注:I ——毛截面惯性矩;W ——毛截面抵抗矩;i ——回转半径;I k ——抗扭惯性矩;Z 0——截面重心到边缘距离。
2-5-3 钢管结构计算1.适用于不直接承受动力荷载,在节点处直接焊接的钢管桁架结构。
钢管外径与壁厚之比,不应超过100(y f 234)。
轴心受压方管或矩形管的最大外缘尺寸与壁厚之比,不应超40yf 234。
2.钢管节点的构造应符合下列要求:(1)主管外径应大于支管外径,主管壁厚不应小于支管壁厚。
在支管与主管连接处不得将支管穿入主管内。
(2)主管和支管或两支管轴线之间的夹角θi 不宜小于30°。
(3)支管与主管的连接节点处,应尽可能避免偏心。
(4)支管与主管的连接焊缝,应沿全周连续焊接并平滑过渡。
(5)支管端部宜用自动切管机切割,支管壁厚小于6mm 时可不切坡口。
文案大全3.支管与主管的连接可沿全周用角焊缝,也可部分用角焊缝、部分用对接焊缝,支管管壁与主管管壁之间的夹角大于或等于120°的区域宜用对接焊缝或带坡口的角焊缝。
角焊缝的焊脚尺寸h f 不宜大于支管壁厚的两倍。
4.支管与主管的连接焊缝为全周角焊缝,按下式计算,但取βf =1:w f f we f f l h N βσ≤= 角焊缝的有效厚度he ,当支管轴心受力时取0.7h f 。
角焊缝的计算长度l w ,按下列公式计算:(1)在圆管结构中取支管与主管相交线长度:式中 d 、d i ——主管和支管外径;θi ——主管轴线与支管轴线的夹角。
(2)在矩形管结构中,支管与主管交线的计算长度,对于有间隙的K 形和N 形节点:文案大全对于T 、Y 、X 形节点ii w h l θsin 2= 式中 h i 、b i ——分别为支管的截面高度和宽度。
5.为保证节点处主管的强度,支管的轴心力不得大于表2-95规定的承载力设计值:支管轴心力的承载力设计值 表2-95文案大全文案大全圆管结构的节点形式见图2-2。
钢支撑稳定实例

3、换乘段800钢支撑验算取标准段4-4验算,取钻孔MBZ3-09-14,最大轴力标准值4233kN执行规范:《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《钢结构设计规范》(GB 50017-2003), 本文简称《钢结构规范》一、钢管支撑材料参数Φ=800mm ,t=16,钢管支撑参数如下:钢管管径:Φ=800mm ;壁厚为t=16mm ;回转半径r=27.72cm ;横截面积:A=39408mm 2;截面惯性矩I :302906cm 4;每延米自重:310.4kg ; 抗弯截面模量:W=7572.7cm 3二、支撑计算长度取设立柱部位最长的钢支撑长度8.3m 。
三、钢管支撑设计承载力本次计算中,标准段轴力标准值为4233 kN 。
支撑轴力设计值应为1.1⨯1.25⨯4233=5820.4kN四、钢管施工荷载钢管支撑工作时考虑不确定情况下,外加1施工集中荷载3 kN ,考虑分项系数1.4,按最不利情况下作用在支撑中心部位考虑,施工荷载产生的弯矩为1.4⨯3⨯11.5/4=12.1 kN.m 。
(设计图纸已要求不允许在钢支撑上外加任何附加荷载) 五、钢管支撑支反力偏心矩根据规范,钢管支撑构件初始偏心矩取4cm 。
支反力产生的偏心矩为5820.4⨯0.04=232.85kN.m六、钢管支撑轴力和弯矩计算值钢管支撑每米自重310.4kg ,考虑安全系数1.25,即3.88kN/m ;自重弯矩G M =1.1⨯3.88⨯8.32 /8=36.8N.m; 弯距计算值:12.1+232.85+36.8=281.75kN.m轴力计算值:5820.4N七、钢管支撑强度、刚度和稳定性验算(1)强度验算:xx x W M A N γ+==175.06MPa<215MPa , 故强度满足要求。
(2)刚度验算λ=L /r=8.3/0.272=29.94<[λ]=150(根据《钢结构设计规范》(GB50017-2003)长细比(刚度)满足规范要求。
(整理)圆形钢管规格及截面特征表

圆形钢管规格及截面特征表表2-92--------------------------注:I ——毛截面惯性矩;W ——毛截面抵抗矩;i ——回转半径;I k ——抗扭惯性矩;Z 0——截面重心到边缘距离。
2-5-3 钢管结构计算1.适用于不直接承受动力荷载,在节点处直接焊接的钢管桁架结构。
钢管外径与壁厚之比,不应超过100(y f 234)。
轴心受压方管或矩形管的最大外缘尺寸与壁厚之比,不应超40yf 234。
-------------2.钢管节点的构造应符合下列要求:(1)主管外径应大于支管外径,主管壁厚不应小于支管壁厚。
在支管与主管连接处不得将支管穿入主管内。
(2)主管和支管或两支管轴线之间的夹角θi 不宜小于30°。
(3)支管与主管的连接节点处,应尽可能避免偏心。
(4)支管与主管的连接焊缝,应沿全周连续焊接并平滑过渡。
(5)支管端部宜用自动切管机切割,支管壁厚小于6mm 时可不切坡口。
3.支管与主管的连接可沿全周用角焊缝,也可部分用角焊缝、部分用对接焊缝,支管管壁与主管管壁之间的夹角大于或等于120°的区域宜用对接焊缝或带坡口的角焊缝。
角焊缝的焊脚尺寸h f 不宜大于支管壁厚的两倍。
4.支管与主管的连接焊缝为全周角焊缝,按下式计算,但取βf =1:w f f we f f l h Nβσ≤=角焊缝的有效厚度he ,当支管轴心受力时取0.7h f 。
角焊缝的计算长度l w ,按下列公式计算: (1)在圆管结构中取支管与主管相交线长度:式中 d 、d i ——主管和支管外径;θi ——主管轴线与支管轴线的夹角。
-------------(2)在矩形管结构中,支管与主管交线的计算长度,对于有间隙的K 形和N 形节点:对于T 、Y 、X 形节点iiw h l θsin 2=式中 h i 、b i ——分别为支管的截面高度和宽度。
5.为保证节点处主管的强度,支管的轴心力不得大于表2-95规定的承载力设计值:支管轴心力的承载力设计值 表2-95--------------------------圆管结构的节点形式见图2-2。
模板荷载计算

1、楼板支撑用钢管立柱和绗架,布置情况如附图模板支架荷载750N/M2钢模及钢绗架自重250N/M2新浇砼重0.12×25000=3000N/M2施工荷载2500N/M2合计6500N/M2则每区格面积为:1.8×1.8=3.24M2每根立杆承受荷载:3.24×6500=21060NФ48×3.5钢管的截面积:A=489MM2钢管的回转半径:I=(d12+d22)1/2/4=15.78mm用立柱九根,个立柱间隔两米布置双向水平撑,并适当布置斜支撑。
按强度计算立柱的受压压力δ=N/A=21060/489=43.07N/mm2<f=215N/mm2按稳定性计算支柱的受压应力为长细比λ=L/I=1800/15.78=114.07查钢结构设计规范的稳定系数:ψ=0.47δ= N/ψA=21060/0.47×489=91.64N/mm2<f=215 N/mm2故稳定2、梁支撑设计计算梁荷载组合钢模及连接件钢楞自重750×3=2250 N/M2钢管支架自重250×4=1000 N/M2新浇砼重0.3×0.7×25000=5250 N/M2施工荷载2500 N/M2合计:11000 N/M2每一区格面积 0.3×0.8=0.24 M2每立杆支撑荷载11000×0.24=2640NФ48×3.5钢管的截面积:A=489MM2钢管的回转半径:I=(d12+d22)1/2/4=15.78mm按强度计算支柱的受压应力δ=N/A=2640/489=5.40 N/mm2<f=215 N/mm2按稳定性计算支柱的受压应力为长细比λ=L/I=800/15.78=50.70查钢结构设计规范的稳定系数:ψ=0.759δ= N/ψA=2640/0.759×489=7.11N/mm2<f=215 N/mm2故稳定3、柱模支撑设计计算柱截面550×550 mm,最大净高4700 mm,施工温度T=18。
关于钢结构近似回转半径计算的研究

关于钢结构近似回转半径计算的研究前言钢结构在冶金行业广泛地使用,作为结构设计人员需要合理地完成结构设计,并且1算大概确定截面的大小时也要用到长细比,对于一定长度的构件回转半径定了,长细比就定了。
精确的回转半径是很难计算的,现在提出回转半径的近似计算方法以及各种不同截面的回转半径之间的相互关系,以及其中的奥秘。
1.1矩形截面的回转半径回转半径为:(其中b为矩形截面的宽度,h为矩形截面的高度,)在计算时,我们可以得出这样的一个规律,对于矩形截面而言,回转半径与宽度无关,而且只与高度有关,而且是高度的0.3倍,从公式上看,我们可以发现惯性矩I与高度h的三次方成正比与宽度b的一次方成正比,也就是说高度对回转半径影响比宽度影响大得多,由于面积A与b和h都是一次方关系,两者相除,则宽度b对回转半径没有影响,此规律应用在确定钢管的回转半径时,可以这样处理,将钢管截面微分并向中1.21.2.11.2.21.2.3垂直于对称轴的回转半径处理方法是将截面微分并向对称轴进行投影,则可以转化为一个近似的矩形,则可以利用上面的结论进行计算。
由于回转半径与宽度无关,故:总而言之:角钢的三个回转半径有这样的规律,绕平行于肢长的轴的回转半径是,绕对称轴的回转半径是,垂直于对称轴的回转半径是。
从上面的推导我们可以知道,角钢的回转半径只与肢长有关,与厚度几乎无关。
通过与精确回转半径对比我们可以发现,上面计算与精确回转半径差别很微小。
1.3工字钢、H型钢、槽钢、十字形截面的近似回转半径1.3.1设,令值(关,0.42h。
1.3.2关于工字形截面绕弱轴的回转半径的推导(其中,为较小量)由于,与差别不大,则比小很多,是一个较小量,可以忽略。
忽略较小量并将,代入其中可以得到当,时,当,时,又由于工程上实际的截面不可能出现同时满足以上极值条件,故可以取平均值:1.3.3十字形截面的回转半径的推导(其中,为较小量)令,并将两者代入上式中,可以得到:故:1230.1,0.4,又在原来的基础上升高0.1,这只是一个近似的规律,并且有一定的实用条件,但是对于我们通常所见的截面一般都能满足一上规律。
无缝钢管回转半径表

无缝钢管回转半径表
摘要:
一、无缝钢管回转半径的概念与意义
二、无缝钢管回转半径的计算方法
三、无缝钢管回转半径的应用分析
四、总结
正文:
一、无缝钢管回转半径的概念与意义
无缝钢管回转半径是指无缝钢管在回转过程中,管壁上任何一点到回转中心的距离。
在钢结构中,无缝钢管回转半径对于计算柱子的容许长细比、构件的稳定性以及柱承载力等方面具有重要的意义。
二、无缝钢管回转半径的计算方法
无缝钢管回转半径的计算方法主要包括以下两种:
1.根据长细比计算回转半径
长细比是构件的长度与其回转半径的比值,用公式表示为:L0/i。
在钢结构中,构件的长细比应控制在一定范围内,以确保构件的稳定性。
根据长细比计算回转半径的公式为:i = sqrt(L0/A),其中L0 为构件长度,A 为构件截面面积。
2.根据截面类型计算回转半径
无缝钢管的截面类型包括圆形、矩形和异形等。
根据不同的截面类型,可采用相应的公式计算回转半径。
例如,对于圆形截面的无缝钢管,回转半径可计算为:i = d/2,其中d为管径。
三、无缝钢管回转半径的应用分析
在实际工程中,无缝钢管回转半径的计算结果可用于以下方面的分析和应用:
1.判断构件的稳定性:根据计算得到的回转半径,可以判断构件在回转过程中是否稳定,以确保结构安全。
2.计算柱承载力:根据截面类型和长细比,可以计算出构件的回转半径,进而计算柱承载力。
3.确定管件的尺寸:在设计管件时,需要根据无缝钢管的回转半径确定管件的尺寸,以确保管件与钢管的连接性能。
四、总结
无缝钢管回转半径对于计算构件的稳定性和承载力具有重要意义。
钢管脚手架计算书

一、钢管脚手架计算书钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130)、《钢结构设计规范》(GB50017)、《冷弯薄壁型钢结构技术规范》(GB50018)、《建筑地基基础设计规范》(GB 50007)、《建筑结构荷载规范》(GB 50009)等编制。
(一)参数信息:1.脚手架参数il•算的脚手架为双排脚手架,横杆与立杆采用单扣件方式连接,搭设高度为26. 4米,3.0米以下采用双管立杆,3.0 米以上采用单管立杆。
搭设尺寸为:立杆的纵距1.60米,立杆的横距1.05米,立杆的步距1.80米。
内排架距离墙长度为0.30米。
横向杆计算外伸长度为0. 10米。
小横杆在上,搭接在大横杆上的小横杆根数为1根。
采用的钢管类型为648X3.5。
连墙件采用2步3跨,竖向间距3. 60米,水平间距4. 80米,采用扣件连接。
2.荷载参数脚手板自重标准值0. 30kN/m2,栏杆、挡脚板自重为0. llkN/m2,安全设施及安全网、挡风板自重为0. OlOkN/m2,同时施工2层,第一层施工均布荷载为3. OkN/m2,苴它层施工均布荷载为2. OkN/m2,脚手板共铺设2层。
脚手架用途:混凝上、砌筑结构脚手架。
严00 |落地式脚手架正立面彦落地架侧立面图(二)小横杆的计算:小横杆按照简支梁进行强度和挠度计算,小横杆在大横杆的上而。
按照小横杆上而的脚手板和活荷载作为均布荷载讣算小横杆的最大弯矩和变形。
考虑活荷载在横向水平杆上的最不利布苣(验算弯曲正应力和挠度不计入悬挑荷载)。
1•作用小横杆线荷载(1)作用小横杆线荷载标准值qk=(3. 00+0. 30) X 1. 60/2=2. 64kN/m(2)作用小横杆线荷载设计值q= (1.4X3. 00+1. 2X0. 30) XI. 60/2=3. 648kN/mq;荷载山立杆横距1悬挑长度小横杆计算简图2.抗弯强度计算最大弯矩考虑为简支梁均布荷载作用下的弯矩Mmax二qlb2/8二3. 648X1. 051 2/8=0. 503kN. mo 二Mmax/W二0. 503 X 106/5080. 0=98. 96N/"mm2小横杆的il•算强度小于205. OX/mm2,满足要求!3.挠度计算最大挠度考虑为简支梁均布荷载作用下的挠度V=5qklb4/384EI=5. 0X2. 64X1050. 0°/(384X2. 06 X105X12.19X104)=l. 66mm小横杆的最大挠度小于1050. 0/150与10mm,满足要求!(三)大横杆的计算:大横杆按照三跨连续梁进行强度和挠度il•算,小横杆在大横杆的上而。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢管回转半径表
"钢管回转半径"通常是指在弯曲或加工钢管时使用的回转半径。
回转半径是指在弯曲过程中的弯曲轴上,钢管的弯曲半径。
这个值取决于许多因素,包括管道直径、管壁厚度、材料强度等。
对于常规的管道弯曲,一般来说,回转半径可以通过以下几种方式之一来确定:
1.弯管标准:行业标准或规范通常规定了特定管道尺寸和厚度的
弯曲标准,其中包含了推荐的回转半径。
2.材料供应商信息:管道材料的供应商通常会提供有关推荐回转
半径的信息。
这些信息可能包含在技术规格书或产品文档中。
3.工程设计:在进行工程设计时,工程师可能会根据具体的应用
和要求确定最适合的回转半径。
需要注意的是,回转半径的选择影响到管道的性能、强度以及可能的应力集中情况。
在选择回转半径时,需要确保符合适用的标准和规范,以及满足具体工程的需求。
如果你有特定的管道尺寸和要求,最好的方式是查阅相应的标准、规范或与管道供应商、制造商联系以获取准确的回转半径信息。