折弯段差折弯系数及计算
折弯系数、重量

一般铁板0.5—4MM之内的都是A+B-1.6T。
(A,B代表的是折弯的长度,T就是板厚)例如用2.5mm的铁板折180mm*180mm的直角,那么你下的料长就是180mm+180mm再减去2.5mm*1.6也就是4mm就好了,也就是356mm钣金展开图的计算是要用一个系数来计算的,这个系数一般都用1.645!计算方法是工件的外形尺寸相加,再减去1.645*板厚*弯的个数,例如,折一个40*60的槽钢用板厚3的冷板折,那么计算方法就是40+40+60(外形尺寸相加)—1.645(系数)*3(板厚)*2(弯的个数)=130.13(下料尺寸)一般6毫米之内都是这样计算的了展开的计算法板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示. 展开的基本公式:展开长度=料内+料内+补偿量一般折弯:(R=0, θ=90°)L=A+B+K0.3时, K=0≤T'1. 当02. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等)1.5时, K=0.4T'T'a. 当0.32.5时, K=0.35T'T≤b. 当1.52.5时, K=0.3T/c. 当T3. 对于其它有色金属材料如AL,CU:0.3时,∃当T K=0.5T2.0时, 按R=0处理.≤注: R一般折弯(R≠0 θ=90°)L=A+B+KK值取中性层弧长1.5 时'1. 当T λ=0.5T1.5时/2. 当T λ=0.4T一般折弯(R=0 θ≠90°)L=A+B+K’0.3 时≤1. 当T K’=00.3时∃2. 当T /90)*KυK’=(注: K为90∘时的补偿量一般折弯(R≠0 θ≠90°)L=A+B+K1.5 时'1. 当T λ=0.5T1.5时/2. 当T λ=0.4TK值取中性层弧长2.0, 且用折刀加工时, 则按R=0来计算, A、B依倒零角后的直边长度取值'注: 当RZ折1(直边段差).5T时, 分两次成型时,按两个90°折弯计算/1. 当H5T时, 一次成型, L=A+B+K'2. 当HK值依附件中参数取值Z折2(非平行直边段差).展开方法与平行直边Z折方法相同(如上栏),高度H取值见图示Z折3(斜边段差).2T时'1. 当H当θ≤70∘时,按Z折1(直边段差)的方式计算, 即:ϕ展开长度=展开前总长度+K (此时K=0.2)当θκ>70∘时完全按Z折1(直边段差)的方式计算2T时, 按两段折弯展开(R=0 θ≠90°)./2. 当HZ折4(过渡段为两圆弧相切):1. H≤2T 段差过渡处为非直线段为两圆弧相切展开时,则取两圆弧相切点处作垂线,以保证固定边尺寸偏移以一个料厚处理,然后按Z折1(直边段差)方式展开2. H>2T,请示后再行处理抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;一般抽孔,按下列公式计算, 式中参数见右图(设预冲孔为X, 并加上修正系数–0.1):1. 若抽孔为抽牙孔(抽孔后攻牙), 则S按下列原则取值:T≤0.5时取S=100%T0.5<T<0.8时取S=70%TT≥0.8时取S=65%T一般常见抽牙预冲孔按附件一取值2. 若抽孔用来铆合, 则取S=50%T, H=T+T’+0.4 (注: T’是与之相铆合的板厚, 抽孔与色拉孔之间隙为单边0.10~0.15)3. 若原图中抽孔未作任何标识与标注, 则保证抽孔后内外径尺寸;4. 当预冲孔径计算值小于1.0时, 一律取1.0反折压平L= A+B-0.4T1. 压平的时候,可视实际的情况考虑是否在折弯前压线,压线位置为折弯变形区中部;2. 反折压平一般分两步进行V折30°反折压平故在作展开图折弯线时, 须按30°折弯线画, 如图所示:N折1. 当N折加工方式为垫片反折压平, 则按L=A+B+K 计算, K值依附件中参数取值.2. 当N折以其它方式加工时, 展开算法参见―一般折弯(R≠0 θ≠90°)‖3. 如果折弯处为直边(H段),则按两次折弯成形计算:L=A+B+H+2K (K=90∘展开系数)备注:a.标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值.b.对于方形抽孔和外部包角的展开,其角部的处理方法参照<产品展开工艺处理标准>,其直壁部分按90°折弯展开1020*1420*10 镀锌钢板密度是多少?尺寸均以毫米计算问题补充:重量是多少最佳答案镀锌钢板密度是:7.85吨/m3也就是说 1.0mm板厚1平米重7.85Kg0.75mm板厚1平米重5.8875Kg。
钣金折弯系数表和计算公式

钣金折弯系数表
钣金折弯系数
钣金折弯跟展平时,材料一侧会被拉长,一侧被压缩,受到的因素影响有:材料类型、材料厚度、材料热处理及加工的状况及折弯的角度。
PROE在进行钣金的折弯和展平时,会自动计算材料被拉伸或压缩的长度。
计算公式如下:
L=0.5π×(R+K系数×T)×(θ/90)
L:钣金展开长度(Developed length)
R:折弯处的内侧半径(Inner radius)
T: 材料厚度
θ:折弯角度
Y系数:由折弯中线(Neurtal bend line)的位置决定的一个常数,其默认值为0.5(所谓的“折弯中线”).可在config中设定其默认值initial_bend_factor 在钣金设计实际中,常用的钣金展平计算公式是以K系数为主要依据的,范围是0~1,表示材料在折弯时被拉伸的抵抗程度。
与Y系数的关系如下Y系数=(π/2)×k系数。
折弯系数完整版

折弯系数中性层:在绘制钣金展开时,板料中有一层既不伸长又不缩短的一层称为中性层,随板厚的不同中性层的位置是不同的,折弯系数是用来表示这一层位置的参数系数:钢板的产地不同及不同的折弯机,系数有差异,要根据实际情况确定系数先说明一下:1.折弯系数的算法通常以90度折弯来计算的,具体数据取决于折弯机刀槽和所应用钣金材料2.折弯系数包括两个定义(折弯扣除ΔΚ、折弯系数ΔΤ)即两种算法,但无论用哪种算法最后展开值是一致的3.具体算法是:折弯扣除ΔΚ等于外档尺寸相加减去展开长度L;折弯系数ΔΤ等于展开长度L减去内档尺寸之和即设折弯形状为L形,两外档尺寸分别为A、B内档尺寸为a、b展开长度为L料厚为T 则:ΔΚ=A+B-L;ΔΤ=L-(a+b) 推出ΔΚ=2T-ΔΤ4.本人上传一个折弯系数表供大家参考(实际是扣除表)具体值可参考实际更改,此格式不是太成熟,由于工作忙等抽空再做个更人性化的给大家,5.只要将表放到其他系统系数表文件夹里就可看到了,也可放一个固定位置浏览一下就行了6.再声明一下,具体的值要根据自己的折弯机和材料进行试验来确定的,不同厚度的材料扣除值是不同的,同厚度不同刀槽折的值也是不同的,不同材料的值也是不同的上模R角大小:未知V槽口尺寸:一般折弯用的V槽口尺寸为板厚的 8倍计算折弯系数跟材质;折弯半径/板材厚度,V口宽度及上模半径有关4m以下算内层的长度,4m到10m之间算中间层的长度,再以上,应该是中间偏上,就有系数了。
两个办法:1、根据实际结果和计算值,得出这种材料的中间层位置系数。
2、根据截面密度计算理论值,再修正。
1折弯系数确定的重要性在钣金加工中, 对零件展开料计算时, 工艺人员是凭经验确定折弯系数(即消耗量) 的, 不同工艺人员编制的工艺文件, 其确定的折弯系数也不相同。
通过查阅大量的有关钣金加工手册, 也没有查到明确的公式来计算折弯系数, 只能查到不同折弯内圆弧的折弯系数, 而内圆弧与加工工艺方案有关, 使用不同的折弯下模槽宽, 内圆弧也不相同, 从而导致工艺文件上无法确定折弯系数的准确值。
折弯系数最简单的算法

折弯系数最简单的算法折弯系数是用来衡量材料在折弯过程中的变形程度的物理常数。
它是通过测量材料在不同折弯角度下的变形量来计算得出的。
折弯系数通常用于设计和制造过程中,帮助工程师预测材料在折弯操作中的变形情况,以避免不必要的错误和损失。
有很多算法可以用来计算折弯系数,下面我将介绍其中最简单的几种算法。
1.线性插值法:这是最简单的计算折弯系数的方法。
它的基本思想是根据已知的折弯角度和对应的变形量,通过线性插值来估计其他折弯角度的变形量。
具体步骤如下:-收集一组已知的折弯角度和对应的变形量数据。
-根据已知数据,绘制出折弯角度和变形量之间的曲线。
-对未知的折弯角度,通过在曲线上进行线性插值,估计出相应的变形量。
2.多项式拟合法:多项式拟合法是通过将已知的折弯角度和变形量数据拟合成一个多项式函数,然后利用该函数来计算折弯角度的变形量。
具体步骤如下:-收集一组已知的折弯角度和对应的变形量数据。
-将这些数据拟合成一个多项式函数。
可以使用最小二乘法或其他拟合算法来得到拟合函数。
-对未知的折弯角度,通过将其代入拟合函数,得到相应的变形量。
3.数值模拟法:数值模拟法是通过建立材料的数学模型,并使用数值方法来模拟材料在折弯过程中的变形情况。
具体步骤如下:-建立材料的数学模型,包括材料的物理性质、几何形状和应力分布等。
-使用数值方法,如有限元法或其他数值求解方法,求解模型方程,得到材料在不同折弯角度下的应力和变形情况。
-根据模拟结果,计算折弯系数。
这些算法中,线性插值法和多项式拟合法是比较简单和常用的方法,适用于简单的折弯问题。
数值模拟法则更加复杂和耗时,但可以更准确地预测材料的变形情况,适用于复杂的折弯问题。
需要注意的是,计算折弯系数时应该考虑到材料的物理性质、几何形状、应力分布以及折弯过程中可能存在的非线性效应等因素,以避免得出不准确的结果。
此外,折弯系数也可以通过实验来得到,比如使用万能材料试验机进行拉压试验,并根据试验结果计算折弯系数。
折弯参数的计算及相关问题

6.1 展开的计算法板料在弯曲过程中外层受到拉应力,内层受到压应力,从拉到压之间有一既不受拉力又不受压力的过渡层--中性层,中性层在弯曲过程中的长度和弯曲前一样,保持不变,所以中性层是计算弯曲件展开长度的基准.中性层位置与变形程度有关, 当弯曲半径较大,折弯角度较小时,变形程度较小,中性层位置靠近板料厚度的中心处,当弯曲半径变小, 折弯角度增大时,变形程度随之增大,中性层位置逐渐向弯曲中心的内侧移动.中性层到板料内侧的距离用λ表示。
一般情况取λ=t/3。
机柜、机箱应在数控折弯机折弯,当要求精度不高件在普通折弯机上折弯时,质检可按GB/T1804 -92C级验收。
6.2展开的基本公式:6.2.1外尺寸法展开长度L=料外1+料外2+……+料外n-补偿量KnL=L1+L2+……LN+LR—KnL——展开总尺寸L1、L2……LN——折弯外尺寸LR=πR/2 R——大于板厚的内园角尺寸K——系数(查折弯系数K、K’一览表)n——折弯个数6.2.1.2 板材K系数见“折弯系数K一览表”6.2.1.3折弯尺寸计算范例用展开尺寸经验公式计算机柜立柱展开尺寸:L=L1+L2+…+LN+LR-knL1---L2折弯外尺寸LR=ЛR/2 R为(内缘半径+ t /3)n为折弯半径小于板厚的折弯个数t=板厚k为每折一个弯减去值(查表)L=25+17+42+(50-10-2)+Л×(10+t /3)/2+(47-10-2)+15+25+15-3.34×6=208.71由于折弯刀长期使用造成磨损, 故取r=0.6mm;折弯下模槽宽采用5T(5*板厚);当R=r=0.6mm时,则n=7L=25+17+42+50+47+15+25+15-3.34×7=212.626.2.1.3压死边折弯系数K= 0.43 t6.2.2内尺寸法展开长度=料内+料内+补偿量6.2.2.1折弯尺寸计算范例用展开尺寸经验公式计算机柜立柱展开尺寸:L=L1+L2+…+LN+LR+k’nL1---L2折弯内尺寸LR=ЛR/2 R为(内缘半径+ t /3)n为折弯半径小于板厚的折弯个数t=板厚k’为每折一个弯的补偿值(查表)L=23+13+38+(50-10-2-2)+Л×(10+t /3)/2 +(47-10-2-2)+11+21+13+0.66×6=208.71由于折弯刀长期使用造成磨损, 故取r=0.6mm;折弯下模槽宽采用5T(5*板厚)6.2.2.2各种折弯情况按内尺寸细解表一般折弯1:(R=0, θ=90°)L=A+B+K1. 当0¢T£0.3时, K’=02. 对于铁材:(如GI,SGCC,SECC,CRS,SPTE, SUS等)a. 当0.3¢T¢1.5时, K’=0.4Tb. 当1.5£T¢2.5时, K’=0.35Tc. 当T/2.5时, K’=0.3T3. SUS T>0.3 K’=0.25T4.对于其它有色金属材料如AL,CU:当T$0.3时, K’=0.5T一般折弯2: (R≠0 θ=90°)L=A+B+K’K值取中性层弧长1. 当T¢1.5 时K’=0.5T2. 当T/1.5时K’=0.4T注:当用折弯刀加工时R£2.0, R=0°处理一般折弯3 (R=0 θ≠90°)L=A+B+K’1. 当T£0.3 时K’=02. 当T$0.3时K’=(u/90)*K注: K为90∘时的补偿量一般折弯(R≠0 θ≠90°)L=A+B+ K’1. 当T¢1.5 时K’=0.5T2. 当T/1.5时K’=0.4TK值取中性层弧长注: 当R¢2.0, 且用折刀加工时, 则按R=0来计算, A﹑B依倒零角后的直边长度取值Z折1(直边段差).1. 当H/5T时, 分两次成型时,按两个90°折弯计算2. 当H¢5T时, 一次成型, L=A+B+KK值依附件中参数取值Z折2(非平行直边段差).展开方法与平行直边Z折方法相同(如上栏),高度H取值见图示Z折3(斜边段差).1. 当H¢2T时j当θ≦70∘时,按Z折1(直边段差)的方式计算, 即: 展开长度=展开前总长度+K (此时K’=0.2)k当θ>70∘时完全按Z折1(直边段差)的方式计算2. 当H/2T时, 按两段折弯展开(R=0 θ≠90°).Z折4(过渡段为两圆弧相切):1. H≦2T 段差过渡处为非直线段为两圆弧相切展开时,则取两圆弧相切点处作垂线,以保证固定边尺寸偏移以一个料厚处理,然后按Z折1(直边段差)方式展开2. H>2T,请示后再行处理抽孔抽孔尺寸计算原理为体积不变原理,即抽孔前后材料体积不变;一般抽孔,按下列公式计算, 式中参数见右图(设预冲孔为X, 并加上修正系数–0.1):1. 若抽孔为抽牙孔(抽孔后攻牙), 则S按下列原则取值:T≦0.5时取S=100%T0.5<t< p="" style="word-break: break-all; "></t<>T≧0.8时取S=65%T一般常见抽牙预冲孔按附件一取值2. 若抽孔用来铆合, 则取S=50%T, H=T+T’+0.4 (注: T’是与之相铆合的板厚, 抽孔与沙拉孔之间隙为单边0.10~0.15)3. 若原图中抽孔未作任何标识与标注, 则保证抽孔后内外径尺寸;4. 当预冲孔径计算值小于1.0时, 一律取1.0反折压平L= A+B-0.43T(K’=0.43 T)1. 压平的时候,可视实际的情况考虑是否在折弯前压线,压线位置为折弯变形区中部;2. 反折压平一般分两步进行V折30°反折压平故在作展开图折弯线时, 须按30°折弯线画, 如图所示:N折1. 当N折加工方式为垫片反折压平, 则按L=A+B+K 计算, K值依附件中参数取值.2. 当N折以其它方式加工时, 展开算法参见“一般折弯(R≠0 θ≠90°)”如果折弯处为直边(H段),则按两次折弯成形计算:L=A+B+H+2K (K=90∘展开系数)备注:a.标注公差的尺寸设计值:取上下极限尺寸的中间值作设计标准值.b.对于方形抽孔和外部包角的展开,其角部的处理方法另行通知,其直壁部分按90°折弯展开附件一:常见展开标准数据1. 直边段差展开系数2. N折展开系数6.3.2.折床的加工工艺参数:折床使用的下模V槽通常为5TV,如果使用5T-1V则折弯系数也要相应加大, 如果使用5T+1V则折弯系数也要相应减见折床折弯系数一览表)折弯系数一览表材质料厚折弯系数5 T V(外尺寸)5T V(内尺寸)5T-1V(内尺寸)5T+1V (内尺寸)(2- k)* T =K k* T=K’k* T=K’k* T =K’A L 1.0 1.62*1.0=1.620.38*1.=0.380.5*1.0=0.50.25*1.0=0.251.5 1.64*1.5=2.460.36*1.5 (7V)=0.540.36*1.5=0.540.347*1.5=0.522.0 1.6*2.0 =3.20.4*2.0(10V)=0.80.47*2.0 (8V)=0.940.4*2.0 (12V)=0.82.5 1.6*2.5 =4.00.4*2.5(12V)=1.00.48*2.5 (10V)=1.20.41*2.5(14V)=1.033.0 1.6*3.0 =4.80.4*3.0(12V)=1.20.48*3.0 (10V)=1.440.41*3.0(14V)=1.23S US 0.6 1.8*0.6 =1.10.2*0.6=0.120.416*0.6=0.250.8 1.8*0.8=1.440.2*0.8=0.160.3*0.8=0.240.05*0.8=0.041.0 1.79*1.0 =1.80.21*1.=0.210.316*1.0=0.320.042*1.0=0.0421.2 1.83*1.2 =2.20.17*1.2=0.20.33*1.2=0.40.1*1.2=0.121.5 1.82*1.5=2.730.18*1.5 (7 V)=0.272.0 1.78*2.0=3.560.22*2.0 (10V)=0.440.36*2.0 (8V)=0.720.07*2.0(12V)=0.14S PCC 0.8 1.6*0.8=1.280.4*0.8=0.320.46*0.8=0.370.25*0.8=0.21.0 1.65*1.0=1.650.35*1.=0.350.46*1.0=0.460.28*1.0=0.281.2 1.65*1.2=2.0.35*1.2=0.420.466*1.2=0.560.23*1.2=0.281.5 1.65*1.5 =2.50.353*1.5 (7V)=0.530.453*1.5=0.680.24*1.5=0.362.0 1.67*2.0=3.340.33*2.0 (10V)=0.660.5*2.0 (8V)=1.00.19*2.0(12V)=0.382.3 1.7*2.3=3.910.3*2.3(12V)=0.692.5 1.65*2.5 =4.10.35*2.5 (12V)=0.886.3.3 折弯的加工范围:6.3.3.1折弯线到边缘的距离大于V槽的一半.如1.0mm的材料使用4V的下模则最小距离为2mm.下表为不同料厚的最小折边:料厚折弯角度90°料厚折弯角度90°最小折边V槽规格最小折边V槽规格0.1~0.4 3.5 4V1.5~1.65.5 8V0.4~0.6 3.5 4V1.7~2.6.5 10V0.7~0.9 3.5 4V2.1~2.57.5 12V0.9~1.0 4.5 6V2.6~3.29.5 16V1.1~1.2 4.5 6V3.3~3.514.5 25V1.3~1.4 5 7V3.5~4.516.0 32V注:①如折边料内尺寸小于上表中最小折边尺寸时,折床无法以正常方式加工,此时可将折边补长至最小折边尺寸,折弯后再修边,或考虑模具加工。
折弯系数完整版

折弯系数中性层:在绘制钣金展开时,板料中有一层既不伸长又不缩短的一层称为中性层,随板厚的不同中性层的位置是不同的,折弯系数是用来表示这一层位置的参数系数:钢板的产地不同及不同的折弯机,系数有差异,要根据实际情况确定系数先说明一下:1.折弯系数的算法通常以90度折弯来计算的,具体数据取决于折弯机刀槽和所应用钣金材料2.折弯系数包括两个定义(折弯扣除ΔΚ、折弯系数ΔΤ)即两种算法,但无论用哪种算法最后展开值是一致的3.具体算法是:折弯扣除ΔΚ等于外档尺寸相加减去展开长度L;折弯系数ΔΤ等于展开长度L减去内档尺寸之和即设折弯形状为L形,两外档尺寸分别为A、B内档尺寸为a、b展开长度为L料厚为T 则:ΔΚ=A+B-L;ΔΤ=L-(a+b) 推出ΔΚ=2T-ΔΤ4.本人上传一个折弯系数表供大家参考(实际是扣除表)具体值可参考实际更改,此格式不是太成熟,由于工作忙等抽空再做个更人性化的给大家,5.只要将表放到其他系统系数表文件夹里就可看到了,也可放一个固定位置浏览一下就行了6.再声明一下,具体的值要根据自己的折弯机和材料进行试验来确定的,不同厚度的材料扣除值是不同的,同厚度不同刀槽折的值也是不同的,不同材料的值也是不同的上模R角大小:未知V槽口尺寸:一般折弯用的V槽口尺寸为板厚的8倍计算折弯系数跟材质;折弯半径/板材厚度,V口宽度及上模半径有关4m以下算内层的长度,4m到10m之间算中间层的长度,再以上,应该是中间偏上,就有系数了。
两个办法:1、根据实际结果和计算值,得出这种材料的中间层位置系数。
2、根据截面密度计算理论值,再修正。
1折弯系数确定的重要性在钣金加工中, 对零件展开料计算时, 工艺人员是凭经验确定折弯系数(即消耗量) 的, 不同工艺人员编制的工艺文件, 其确定的折弯系数也不相同。
通过查阅大量的有关钣金加工手册, 也没有查到明确的公式来计算折弯系数, 只能查到不同折弯内圆弧的折弯系数, 而内圆弧与加工工艺方案有关, 使用不同的折弯下模槽宽, 内圆弧也不相同, 从而导致工艺文件上无法确定折弯系数的准确值。
折弯系数最简单的算法

三种最简单的弯曲系数算法在计算钣金展开材料或cad钣金展开的长度时,我们总是希望提高效率,并且计算越简单越好。
弯曲系数的计算公式是最简单,最好的。
实际上,如果不需要精确的钣金误差,则可以通过一种简单的方法来计算弯曲系数。
总结前几篇文章的内容,发现最简单的弯曲系数计算方法属于90度弯曲系数经验公式:材料厚度的1.7倍。
该公式如何使用?在90个钣金件弯曲工艺中使用,一个直角弯曲减少了材料厚度的1.7倍。
例如,如果材料是1mm的铁板,弯曲角度为90度,弯曲尺寸分别为100和50,则计算和扩展方法为100 + 50-1.7 = 148.3 mm。
计算扩展长度。
有人说这1.7是1.6或1.65倍,这是正确的,可以稍作调整。
因为每个钣金工厂中使用的折弯模具并不完全相同,所以存在一些轻微的误差,可以不经调整就使用,如果要求很高,可以稍作调整。
弯曲系数最简单的计算公式钣金弯曲不仅是90度弯曲,还包括非90度弯曲。
有最简单的计算方法吗?这不是真的。
有一个公式可以精确计算非90度弯曲系数,即使用中性层的概念,计算弯曲弧的弧长,最后找到弯曲系数。
互联网上有很多示例,并且前面的文章中也有计算方法。
在此,可以通过简单的方法从特殊角度计算弯曲系数。
当金属板的弯曲角度为135度时,可以将弯曲系数减小到材料厚度的0.5倍。
例如,如果材料是1mm的铁板,弯曲角度为135度,弯曲尺寸分别为100和50,则计算和扩展方法为100 + 50-0.5 = 149.5 mm。
其他钣金厚度也可以通过此方法计算。
仅在135度时,其他角度不可用。
135度钣金弯曲系数的最简单算法钣金折弯中还有一个特殊的角度折弯,即钣金折边,也称为死角,可以通过简单的方法来计算。
弯曲系数等于钣金厚度的0.4倍。
例如,如果材料是1mm的铁板,弯曲是死角,弯曲尺寸分别是100和10,则计算和扩展方法是100 + 10-0.4 = 109.6 mm。
该计算是一个经验公式,非常准确。
折弯系数折弯扣除K因子值的计算方法

折弯系数折弯扣除K因子值的计算方法一、钣金的计算方法概论钣金零件的工程师和钣金材料的销售商为保证最终折弯成型后零件所期望的尺寸,会利用各种不同的算法来计算展开状态下备料的实际长度。
其中最常用的方法就是简单的“掐指规则”,即基于各自经验的算法。
通常这些规则要考虑到材料的类型与厚度,折弯的半径和角度,机床的类型和步进速度等等。
另一方面,随着计算机技术的出现与普及,为更好地利用计算机超强的分析与计算能力,人们越来越多地采用计算机辅助设计的手段,但是当计算机程序模拟钣金的折弯或展开时也需要一种计算方法以便准确地模拟该过程。
虽然仅为完成某次计算而言,每个商店都可以依据其原来的掐指规则定制出特定的程序实现,但是,如今大多数的商用CAD和三维实体造型系统已经提供了更为通用的和强大功能的解决方案。
大多数情况下,这些应用软件还可以兼容原有的基于经验的和掐指规则的方法,并提供途径定制具体输入内容到其计算过程中去。
SolidWorks也理所当然地成为了提供这种钣金设计能力的佼佼者。
总结起来,如今被广泛采纳的较为流行的钣金折弯算法主要有两种,一种是基于折弯补偿的算法,另一种是基于折弯扣除的算法。
SolidWorks软件在2003版之前只支持折弯补偿算法,但自2003版以后,两种算法均已支持。
为使读者在一般意义上更好地理解在钣金设计的计算过程中的一些基本概念,同时也介绍SolidWorks中的具体实现方法,本文将在以下几方面予以概括与阐述:1、折弯补偿和折弯扣除两种算法的定义,它们各自与实际钣金几何体的对应关系2、折弯扣除如何与折弯补偿相对应,采用折弯扣除算法的用户如何方便地将其数据转换到折弯补偿算法3、K因子的定义,实际中如何利用K因子,包括用于不同材料类型时K因子值的适用范围二、折弯补偿法为更好地理解折弯补偿,请参照图1中表示的是在一个钣金零件中的单一折弯。
图2是该零件的展开状态。
图1折弯补偿算法将零件的展开长度(LT)描述为零件展平后每段长度的和再加上展平的折弯区域的长度。