不连续聚丙烯酰胺凝胶电泳

合集下载

实验五 聚丙烯酰胺凝胶垂直板电泳分析(实验报告)

实验五  聚丙烯酰胺凝胶垂直板电泳分析(实验报告)

实验五聚丙烯酰胺凝胶垂直板电泳分析小麦幼苗过氧化物酶同工酶生物111班杨明轩1102040128一、研究背景及目的过氧化物酶是以过氧化氢为电子受体催化底物氧化的酶,具有消除过氧化氢和酚类、胺类毒性的双重作用。

它与呼吸作用、光合作用及生长素的氧化等都有关系,在种子萌动以前,它们的过氧化物酶同工酶很少,待幼芽长到0.5 -1 厘米以后,它们的过氧化物酶才得到充分的表达。

这说明植物过氧化物酶同工酶的多寡和有无,与植物不同发育时期,与植物的不同组织、器官的分化形成及特定的生理状态等均有密切关系。

而同工酶是指能催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

大多数基因性同工酶由于对底物亲和力不同和受不同因素的调节,常表现不同的生理功能。

它们存在于生物的同一种属或同一个体的不同发育阶段,或同一发育阶段的不同组织,在细胞发育和代谢调解中起重要作用。

在动、植物中,一种酶的同工酶在各组织、器官中的分布和含量不同,形成各组织特异的同工酶谱,体现各组织的特异功能,这一特点可用于研究物种进化、遗传变异、杂交育种和个体发育、组织分化等。

品种资源工作者借助同工酶分析品种的地理分布与亲缘关系来指导品种资源的收集与鉴定工作。

育种工作者常用同工酶来作为鉴定植物的种间杂交, 特别是远缘杂交的生化指标。

在医学方面,同工酶是研究癌瘤发生的重要手段。

要对同工酶展开研究,首先要实现对它的分离,因此要选择合适的分离技术。

基于“差异转化”的思路,层析和电泳是两种最为常见的大分子分离方法。

但由于二者技术细节上的差异,层析更常用于大分子的分离纯化,而电泳则主要用于大分子的分离检测。

因此在本次实验中,我们采用不连续的聚丙烯酰胺凝胶垂直板电泳分析小麦幼苗中的过氧化物酶同工酶。

同时本实验利用电泳现象对过氧化物同工酶进行分离纯化和分析鉴定,通过电泳技术的实际操作体会电泳技术的原理和特点,比较分析电泳技术和其它分离技术如层析技术的不同,进一步学习应用更为广泛和纯化水平更高的分离技术。

非变性聚丙烯酰胺凝胶电泳实验原理,步骤和结果分析

非变性聚丙烯酰胺凝胶电泳实验原理,步骤和结果分析

非变性聚丙烯酰胺凝胶电泳实验原理,步骤
和结果分析
一、实验原理
非变性聚丙烯酰胺凝胶电泳是一种常用的蛋白质分离和纯化技术,其原理基于蛋白质在凝胶电泳过程中受到凝胶孔隙大小及电场力的影响而发生迁移分离。

在非变性条件下,蛋白质保持其原有的构象,通过电泳进行分离。

二、实验步骤
1. 制备凝胶:首先准备非变性聚丙烯酰胺凝胶,通常是通过聚丙烯酰胺单体聚合成凝胶板。

2. 样品加载:将待分离的蛋白样品混合添加载体缓冲液,并加热变性处理,然后加载到凝胶槽中。

3. 电泳分离:将已加载样品的凝胶槽浸入电泳缓冲液中,施加电场进行电泳分离,蛋白质根据其分子大小及电荷迁移至不同的位置,最终形成条带。

4. 凝胶染色:分离完成后,应用染色方法将蛋白质条带可视化。

5. 结果分析:根据蛋白质条带的迁移位置以及染色效果,分析样品中含有的蛋白种类及相对含量。

三、实验结果分析
通过非变性聚丙烯酰胺凝胶电泳实验,我们可以获得样品中蛋白质的分子量信息,并进一步分析样品中可能存在的杂质及纯度。

在电泳过程中,蛋白质根据其分子大小在凝胶中迁移的速度不同,从而实现了蛋白质的分离。

根据蛋白质在凝胶上的位置,我们可以对样品进行定性和定量分析,从而获得关于样品组成和含量的重要信息。

综上所述,非变性聚丙烯酰胺凝胶电泳是一种简单有效的蛋白质分离技术,广泛应用于生物学和生物化学研究中。

通过实验结果的分析和解读,可以更好地了解样品中蛋白质的组成及结构,为进一步的实验研究提供重要参考。

SDS-聚丙烯酰胺凝胶电泳

SDS-聚丙烯酰胺凝胶电泳

三、具体实验操作
9.凝胶板剥离与染色:电泳结束后,撬开玻 璃板,将凝胶板做好标记后放在大培养皿内, 加入染色液,染色1小时左右。 10.脱色:染色后的凝胶板用蒸馏水漂洗数 次,再用脱色液脱色,直到蛋白质区带清晰。 ※剥胶时要小心,保持胶完好无损,染色要 充分.
四、实验结果分析
绘制标准曲线:
按下式计算相对迁移率:
三、具体实验操作
3. 实验步骤
1.将玻璃板用蒸馏水洗净晾干, 准备2个干净的锥形 瓶. 2.把玻璃板在灌胶支架上固定好. ※固定玻璃板时,两边用力一定要均匀,防止夹 坏玻璃板. 3.按比例配好分离胶,用移液管快速加入,大约5厘米 左右,之后加少许蒸馏水,静置40分钟. ※凝胶配制过程要迅速, 催化剂TEMED要在注胶 前再加入,否则凝结无法注胶.注胶过程最好一次性 完成,避免产生气泡.
三、具体实验操作
※水封的目的是为了使分离胶上延平直,并排除气泡 ※凝胶聚合好的标志是胶与水层之间形成清晰的界面. 4.倒出水并用滤纸把剩余的水分吸干,按比例配好浓缩胶, 连续平稳加入浓缩胶至离边缘5mm处,迅速插入样梳,静置 40分钟. ※样梳需一次平稳插入,梳口处不得有气泡,梳底需水平. 5.拔出样梳后,在上槽内加入缓冲液,没过锯齿时可拆去 底端的琼脂糖. ※要使锯齿孔内的气泡全部排出,否则会影响加样效果. 6、加样三个。 (1)取10µ l标准蛋白溶解液于EP管内, 再加入10µ 2倍样品缓冲液,上样量为20µl。 l
相对迁移率 =
蛋白样品距加样端迁移距离(cm) 溴酚蓝区带中心距加样端距离(cm)
以每个蛋白标准的分子量对数对它的相对迁移 率作图得标准曲线,量出未知蛋白的迁移率即 可测出其分于量,这样的标难曲线只对同一块 凝胶上的样品的分子量测定才具有可靠性。

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)

SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)CHANG X C[实验目的](1)掌握SDS-聚丙烯酰胺凝胶电泳原理。

(2)SDS-聚丙烯酰胺凝胶垂直板电泳的操作技术。

[实验原理]电泳是指带电颗粒在电场的作用下发生迁移的过程。

许多重要的生物分子,如氨基酸、多肽、蛋白质、核苷酸、核酸等都具有可电离基团,它们在某个特定的pH值下可以带正电或负电,在电场的作用下,这些带电分子会向着与其所带电荷极性相反的电极方向移动。

电泳技术就是利用在电场的作用下,由于待分离样品中各种分子带电性质以及分子本身大小、形状等性质的差异,使带电分子产生不同的迁移速度,从而对样品进行分离、鉴定或提纯的技术。

电泳过程必须在一种支持介质中进行。

最初的支持介质是滤纸、醋酸纤维素膜和硅胶,这些介质适合于分离小分子物质,操作简单、方便。

但对于复杂的生物大分子则分离效果较差。

凝胶作为支持介质的引入大大促进了电泳技术的发展,使电泳技术成为分析蛋白质、核酸等生物大分子的重要手段之一。

最初使用的凝胶是淀粉凝胶,但目前使用得最多的是琼脂糖凝胶和聚丙烯酰胺凝胶。

蛋白质电泳主要使用聚丙烯酰胺凝胶。

聚丙烯酰胺凝胶电泳(polyacrylamide gel electrophoresis,简称PAGE)分为“连续系统”和“不连续系统”两种电泳系统,在本实验中选用不连续系统。

“不连续系统”最大的优点在于大大提高了样品分离的分辨率。

这种电泳的主要特点是:①使用两种不同浓度的凝胶系统;②配制两种凝胶的缓冲溶液成分及pH不同,并且与电泳槽中电泳缓冲液的成分、pH也不相同。

在本实验中,电泳凝胶分为两层:上层胶为低浓度的大孔胶,称为浓缩胶或成层胶,配制此层胶的缓冲液是Tris-HCl,pH6.7;下层胶则是高浓度的小孔胶,称为分离胶或电泳胶,成胶的缓冲液是Tris-HCl,pH8.9;电泳槽中的电极缓冲液则是Tris-甘氨酸,pH8.3。

可见,凝胶浓度、成胶成分、pH与电泳缓冲系统各不相同,形成了一个不连续系统。

生物化学实验-SDS—聚丙烯酰胺凝胶电泳测定蛋白质的分子量

生物化学实验-SDS—聚丙烯酰胺凝胶电泳测定蛋白质的分子量
SDS—聚丙烯酰胺凝胶电泳测 定蛋白质的分子量
实验原理
电泳:是带电颗粒在电场作用下,作定向运动即 向着与其电荷相反的电极移动的现象。 电泳法分离、检测蛋白质混合样品,主要是根据 各蛋白质组分的分子大小和形状以及所带净电荷 多少等因素所造成的电泳迁移率的差别。 区带电泳是样品物质在一惰性支持物上上进行电 泳的过程。因电泳后,样品不同组分形成带状区 间,故称区带电泳。
在聚丙烯酰胺凝胶系统中,加入一定量的SDS时,蛋白质分子 的电泳迁移率主要取决于它的分子量大小,而其他因素对电泳 迁移率的影响几乎可以忽略不计。当蛋白质的分子量在 15,000~200,000之间时,电泳迁移率与分子量的对数呈直线关 系,符合下列方程式:
lg MW=-b·mR+K MW为蛋白质分子量,mR为相对迁移率,b为斜率,k为截 距。在条件一定时,b和K均为常数。 若将已知分子量的标准蛋白质的迁移率对分子量的对数作图, 可获得一条标准曲线。未知蛋白质的相同条件下进行电泳,根 据它的电泳迁移率即可在标准曲线上求得分子量。
实验步骤
凝胶的制备 蛋白质样品的处理 加样:用微量注射器依次在各个样品槽内加样,各加
10~15μl(含蛋白质10~15μg),稀溶液可加20~30μl
电泳凝胶配方:
30.8%Acr-Bis
1.5mol/l Tris(pH8.9)
0.5mol/l Tris(pH6.7) ddH2O水
10%SDS
10%过硫酸铵AP
3、样品处理与加样 ⑴样品制备
取蔗糖酶样品(样品Ⅰ、Ⅱ、Ⅲ、Ⅳ)各50μl,分别放入1.5ml离心管中, 12000r/min离心10分钟,上清即为电泳样品。 ⑵样品处理
将离心后的上清各取20ul,加入等体积“2×蛋白质样品溶解液”,100℃保温 3分钟,取出冷却后,12000r/min离心2min,取上清直接加样。 ⑶加样

聚丙烯酰胺凝胶电泳结果不正常现象和对策

聚丙烯酰胺凝胶电泳结果不正常现象和对策

聚丙烯酰胺凝胶电泳结果不正常现象和对策
1. 样品迁移不均匀:可能是样品负荷过多或电解液不够,导致电场不均匀。

解决方法是控制样品负荷量,检查电解液是否足够合适。

2. 没有带电:可能是电解液PH 值不正确,或者电压不够。

解决方法是调整PH 值,或电压。

3. 带电过多:可能是电解液PH 值过高,电场过强,或者样品pH 值不正确。

解决方法是调整pH 值,或者降低电场大小。

4. 凝胶板有空隙:可能是凝胶没有完全凝固,导致样品沿着空隙移动。

解决方法是确保凝胶充分凝固。

5. 带电时间过长:可能是电极在样品中时间过长,带电时间过长。

解决方法是缩短带电时间。

6. 样品结晶:可能是样品浓度过高,或者某些溶剂对样品没有溶解度。

解决方法是适当降低浓度或更换合适的溶剂。

不连续聚丙烯酰胺凝胶电泳基本原理

不连续聚丙烯酰胺凝胶电泳基本原理

不连续聚丙烯酰胺凝胶电泳基本原理不连续聚丙烯酰胺凝胶电泳包含了两种以上的缓冲液成分、pH值和凝胶孔径,而且在电泳过程中形成的电位梯度亦不均匀。

由此产生的浓缩效应、电荷效应和分子筛效应。

1.浓缩效应样品在电泳开始时,通过浓缩胶被浓缩成高浓度的样品薄层(一般能浓缩几百倍),然后再被分离。

当通电后,在样品胶和浓缩胶中,解离度最大的Cl—有效迁移率最大,被称为快离子,解离度次之的蛋白质则尾随其后,解离度最小的甘氨酸离子(PI=6.0)泳动速度最慢,被称为慢离子。

由于快离子的迅速移动,在其后边形成了低离子浓度区域,即低电导区。

电导与电势梯度成反比,因而可产生较高的电势梯度。

这种高电势梯度使蛋白质和慢离子在快离子后面加速移动。

因而在高电势梯度和低电势梯度之间形成一个迅速移动的界面,由于样品中蛋白质的有效迁移率恰好介于快、慢离子之间,所以,也就聚集在这个移动的界面附近,逐渐被浓缩,在到达小孔径的分离胶时,已形成一薄层。

2.电荷效应当各种离子进入pH8.9的小孔径分离胶后,甘氨酸离子的电泳迁移率很快超过蛋白质,高电势梯度也随之消失,在均一电势梯度和pH的分离胶中,由于各种蛋白质的等电点不同,所带电荷量不同,在电场中所受引力亦不同,经过一定时间电泳,各种蛋白质就以一定顺序排列成一条条蛋白质区带。

3.分子筛效应由于分离胶的孔径较小,分子量大小或分子形状不同的蛋白质通过分离胶时,所受阻滞的程度不同,因而;迁移率不同而被分离。

此处分子筛效应是指样品通过一定孔径的凝胶时,受阻滞的程度不同,小分子走在前面,大分子走在后面,各种蛋白质按分子大小顺序排列成相应的区带。

SDS-聚丙烯酰胺凝胶电泳(SDS—PAGE)是蛋白分析中最经常使用的一种方法。

它是将蛋白样品同离子型去垢剂十二烷基硫酸钠(SDS)以及巯基乙醇一起加热,使蛋白变性,多肽链内部的和肽链之间的二硫键被还原,肽链被打开。

打开的肽链靠疏水作用与SDS结合而带负电荷,电泳时在电场作用下,肽链在凝胶中向正极迁移。

聚丙烯酰胺凝胶电泳 常遇到的问题

聚丙烯酰胺凝胶电泳 常遇到的问题

聚丙烯酰胺凝胶电泳常遇到的问题
在使用聚丙烯酰胺凝胶电泳时,常遇到的问题可能包括:
1. 凝胶聚合不完全或凝胶反应失败:这可能是由于聚合物配制或反应条件不正确引起的。

解决方法可以是重新制备凝胶或调整反应条件。

2. 凝胶致密度不一致:这可能是由于凝胶配制不均匀或注射不均匀引起的。

解决方法可以是确保凝胶配制均匀,并使用均匀的注射装置。

3. 凝胶断裂或脱离支架:这可能是由于凝胶制备过程中操作不当或支架等部件损坏引起的。

解决方法可以是重新制备凝胶,注意操作细节,并确保使用良好的支架。

4. 电流过大或过小:这可能是由于电流设置不正确或电泳条件不合适引起的。

解决方法可以是调整电流设置或优化电泳条件。

5. 样品加载和分离不理想:这可能是由于样品加载量不恰当或主动力和分辨率不合适引起的。

解决方法可以是调整样品加载量,优化主动力和分辨率条件。

6. 染色结果不清晰或不均匀:这可能是由于染色时间不足或染色剂使用不当引起的。

解决方法可以是延长染色时间或重新选择染色剂。

7. 结果重复性差:这可能是由于实验过程中存在误差或操作不
一致引起的。

解决方法可以是标准化实验流程,注意操作细节,并进行必要的质量控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液的离子强度 电渗现象 环境因素
聚丙烯酰胺凝胶电泳
聚丙烯酰胺凝胶
两单体构成的人工合成凝胶 丙烯酰胺(Acr) N,N-亚甲基双丙烯酰胺(Bis)
作为电泳介质的优点 自由调节孔径;韧性好;性质稳定; 无电渗作用;无色透明。
合成聚丙烯酰胺凝胶的两种方法
化学合成系统 过硫酸铵(AP) 四甲基乙二胺(TEMED)
实验结果的分析
相关理论
表-1 血清中各蛋白质的相关特性
种类
分子量(万) PI
分 布(%)
清蛋白
6.9
6.1
55
1-球蛋白 2.1~30.8 7.3
5.0
2-球蛋白 4.1~72.5 6.8
9.0
-球蛋白
1.2~25 7.6
13.0
-球蛋白
15.6
8.0
11.0
-球蛋白
-球蛋白 2-球蛋白 1-球蛋白 清蛋白 前清蛋白
光学合成系统 核黄素 四甲基乙二胺(TEMED)
聚丙烯酰胺凝胶浓度与交联度
凝胶总浓度T=[(a+b)/m]×100% 交联剂百分比C=[b/(a+b)] ]×100%
a为Acr克数,b为Bis克数, m为缓冲液体积(ml) a:b<10 凝胶变脆、硬、呈乳白色 a:b>100易断裂 (一般a:b=30左右,根据T可适当调整))
蛋白质聚丙烯胺凝胶电泳
不连续聚丙烯酰胺凝胶电泳(圆盘电泳)
电泳的概念
带电粒子(胶体颗粒、离子等)在电场 的作用下在特定的介质中向与其电荷性 质相反的电极方向定向泳动的现象。
广泛应用于生物大分子的分离和鉴定
电泳的基本原理
利用物质的两个差异来分离物质
电荷差异
电荷性质 电荷数量
分子差异
分子大小 分子形状
电泳分离蛋白质的原理
蛋白质两性解离与等电点 溶液pH与蛋白质PI决定蛋白质电荷性质
与数量 不同蛋白质分子大小和分子形状的差异
实验室中常用到的电泳方法 (以介质分类)
纸电泳 醋酸纤维膜电泳 凝胶电泳
琼脂糖凝胶电泳 聚丙烯酰胺凝胶电泳
电泳的影响因素
带电粒子的性质 电场强度 溶液的pH
倒掉正丁醇 灌浓缩胶
封正丁醇3mm(观察界面,判断凝固时间)
安装电泳槽(结构、原理、电流及电极的方向、不漏 水、除气泡)
样品处理并加样(20ul) 加buffer
电泳(浓缩胶时3mA/管,分离胶时2mA/管, 或8~15V/cm, 距底1cm时停止) 剥胶
固定(时间5min) 染色(时间2min) 漂洗脱色至背景透亮



认清试剂(试剂和吸管对号、量器的使用)



封管


分离胶配制与灌胶(浓度为6%,化学聚合,每组总体积为
10ml,灌胶高度为7~8cm)
封正丁醇3mm(手法、高度、观察界面变化和判断凝固、时 间掌握15min)
浓缩胶配制(浓度为3%,光聚合,每组总体积为4ml, 灌胶高度为1.5cm,留1cm空加样)
聚丙烯酰胺凝胶分离蛋白质的原理
不连续聚丙烯酰胺凝胶电泳的三个不连续 凝胶孔径不同 缓冲液pH不同 缓冲液离子成分不同聚丙烯酰胺凝胶电泳的三个效应浓缩效应 电荷效应 分子筛效应
快离子Cl -
慢离子Gly -
Gly - Pro - ClGly -
Pro -
Cl-
Gly -
Gly -
Gly -
Gly
Pro -
Pro -
Pro -
pK1=3.24
Cl-
Cl-
Cl-
pI=6.0
pK2=9.7
Pro -
Pro -
Pro -
Gly Cl-
Gly Cl-
Gly Cl-
pH为8.3的电泳缓冲液 (Tris-Gly) pH为6.7的浓缩胶
pH为8.9的分离胶
有效泳动率:
MCl->
M
Gly
>
M
Pro

实验分组(每人做一管,每4人配一份胶)
相关文档
最新文档