热力学·统计物理第一章 热力学的基本定律

合集下载

热力学统计物理第一章热力学的基本规律

热力学统计物理第一章热力学的基本规律

p p1
p1
p2
§1.5 热力学第一定律
能量守恒定律:自然界一切物质都具有能量,能量有各种不 同的形式,可以从一种形式转化为另一种形式,从一个物体 传递到另一个物体,在传递与转化中能量的数量不变。
另一种表述:第一类永动机是不可能造成的。
热力学U系 BUA 统 W: Q W:以外界对系统所功作为的正 Q:以吸热为正
WW 'QRln V V 1 2(T1T2)
热机效率定义: W Q1
卡 诺 热 W T 1 机 T 21 : T 21
Q 1 T 1
T 1
§1.10 热力学第二定律 克劳修斯(克氏)表述: 不可能把热量从低温物体传到高温物体而不引起其他变化 卡尔文(开氏)表述: 不可能从单一热源吸热使之完全变成有用的功而不引起 其他变化
AT B T
A BdTQ A BdTQ r SBSA
SB SA
BdQ AT
dS dQ T
第二定律的数学表述
绝热过 :d程 Q0
SBSA0 ——熵增加原理的数学表述
熵增加原理:经绝热过程后,系统的熵永不减少,经可逆 绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热 条件下熵减少的过程是不可能实现的。
第一章 热力学的基本规律 §1.1 热力学系统的平衡状态及其描述
1.系统
孤立系 (极限概念) 闭系 开系
热力学系统的状态
平衡态 非平衡态
热力学平衡态:
(1)定义: 一个孤立系统,不论其初态如何复杂,经过 足够长的时间后,将会到达这样的状态,系 统的各种宏观性质在长时间内不发生任何变 化,这样的状态称为热力学平衡态。
n称 为 多 方 指 数: 。理 试想 证气 明体 多的 方热 过容 程

热力学统计物理第一章

热力学统计物理第一章
第一项是激发磁场所作的功; 第二项是使得介质磁化所作的功。 当热力学系统只包含介质不包括磁场时,功的表达式只是 右方的第二项:
dW 0V H d μ 0 H dm
m V H 为介质的总磁矩(已经假设介质是均匀极化的)
(5)准静态过程做功的通用式
准静态过程中外界做功的通用式:
dW Yi dyi Ydy
Q dU pdV d (U pV ) dH
为系统的焓。
定义
H U PV
焓:也称为热函数,类似于熵为热商函量等于系统焓的增加。 •特征: 系统吸收的热量一部分用来增加系统的内能,另一部分 使系统对外界作功。
§ 1.3 热力学第二定律
安培定律给出了磁介质中的磁场强度H 为:
H l NI
dB l dW NA H dt N
dt Al H dB V H dB
为了简单,考虑各项同性磁介质(磁化是均匀的):
B 0 H μ ;
0为真空磁导率
0 H 2 0 H 2 dW Vd 0V H d μ = Vd 0 H dm 2 2
1.文字叙述和数学表示: 外界对系统作功与系统从外界吸收热量之和等 于系统内能的增加,即 U B U A W Q 或写为
Q U (W )
即吸收的热量等于内能的增加与系统对外作功 之和。
3、说明 •符号规定:
U W Q
热量Q: 正号——系统从外界吸收热量 负号——系统向外界放出热量 功 W: 正号——外界对系统作功 负号——系统对外界作功 内能Δ U:正号——系统能量增加 负号——系统能量减小 •计算中,各物理量的单位是相同的,在SI制中为J

热力学统计物理总复习知识点

热力学统计物理总复习知识点

概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。

2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。

3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。

4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。

6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。

7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。

8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。

9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。

绝热过程中内能U 是一个态函数:A B U U W -=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。

12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。

13.定压热容比:pp T H C ⎪⎭⎫ ⎝⎛∂∂=;定容热容比:V V T U C ⎪⎭⎫ ⎝⎛∂∂= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。

解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。

1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。

线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

云南师范大学热力学统计物理期末复习讲解

云南师范大学热力学统计物理期末复习讲解

各章知识点整理和复习第一章 热力学的基本定律知识点1、热力学第一定律dU dQ dW =+2、热力学第二定律3、热力学基本方程dU TdS pdV =-4、热力学第二定律的数学表述dU TdS pdV ≤-5、克劳修斯熵BRB A Ad Q S S T-=⎰,玻尔兹曼熵ln S k =Ω 6、熵增加原理。

复习题1、简述热力学第二定律及其统计解释。

参考:热力学第二定律的开尔文表述:热不可能全部转变为功而不引起其他变化。

热力学第二定律的克劳修斯表述:热量不能自动地从低温物体传向高温物体。

或第二类永动机不可能。

热力学第二定律的微观意义是,一切自然过程总是沿着分子热运动的无序性(或混乱度)增大的方向进行,系统对应的微观状态数增大,根据玻尔兹曼熵ln S k =Ω,因此系统的熵值增加,即熵增加原理。

2、简述熵增加原理及其统计解释。

参考:孤立系统中所进行的自然过程总是沿着熵增大的方向进行。

根据玻尔兹曼熵公式ln S k =Ω,可知孤立系统中所进行的自然过程总是向着微观状态数(或混乱度)增大的方向进行。

第二章 均匀物质的热力学性质知识点1、基本热力学函数的全微分和麦氏关系的得出。

dU TdS pdV dH TdS Vdp dF SdT pdV dG SdT Vdp=-=+=--=-+ ()()()()()()()()S V S pT V T p T p V ST Vp SS pV T S V p T∂∂=-∂∂∂∂=∂∂∂∂=∂∂∂∂=-∂∂2、麦氏关系的应用。

2、气体的节流过程。

3、特性函数的应用。

4、热辐射(平衡辐射)的热力学结果,斯特方玻尔兹曼定律。

复习题1、写出焦汤系数的数学表达式,简述节流过程的特点;利用焦汤系数分析通过节流产生致冷效应、致温效应和零效应的原理。

(P57)2、证明能态方程T VU p T p V T ∂∂⎛⎫⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭。

参考:选T 、V 作为状态参量时,有V TU U dU dT dV TdS pdV T V ∂∂⎛⎫⎛⎫=+=- ⎪ ⎪∂∂⎝⎭⎝⎭V TS S dS dT dV T V ∂∂⎛⎫⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭ 得: V T S S dU T dT T p dV T V ⎡⎤∂∂⎛⎫⎛⎫=+- ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦比较得: T TU S T p V V ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 将麦氏关系T V S p V T ∂∂⎛⎫⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭代入,即得T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭3、证明焓态方程p TH V V T p T ⎛⎫∂∂⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭。

热力学与统计物理第一章

热力学与统计物理第一章

三.功的计算 1.简单系统(PVT系统)无摩擦准静态过程体积功 当系统的体积由VA变到VB时,外界对系统所做的功为:
W pdV
VA
VB
式中P,V均为系统平衡态时的状态参量。系统膨胀, 外界对系统做负功,反之外界对系统做正功。 元功记做: dW pdV 2.液体表面膜面积变化功 3.电介质的极化功
温度计与温标: 1)经验温标:以某物质的某一属性随冷热程度 的变化为依据而确定的温标称为经验温标。 经验温标除标准点外,其他温度并不完全一致。 如:水 冰点 沸点
摄氏温标: 0 0C 1000C
华氏温标:
32F
212F
2)理想气体温标:以理想气体作测温物质 3)热力学温标:不依赖任何具体物质特性的温标 在理想气体可以使用的范围内,理想气体温 标与热力学温标是一致的。
是状态量.
热力学第一定律指出:热力学过程中,如果外界 与系统之间不仅作功,而且传递热量,则有
U B U A W Q
即:系统内能的变化等于外界对系统所做的功和 系统从外界吸收的热量之和。
对无限小的状态变化过程:
dU dQ dW
另一表述:第一类永动机不可能造成。 说明: 适用于任何系统的任何过程。
热力学·统计物理
(Thermodynamics and statistical Physics)
导言
一.热力学与统计物理学的研究对象与任务 对象:由大量微观粒子组成的宏观物质系统 任务:研究热运动的规律、与热运动有关的物性 及宏观物质系统的演化。。 二.热力学与统计物理学的研究方法 热力学是讨论热运动的宏观理论.其研究特点是: 不考虑物质的微观结构,从实验和实践总结出的基 本定律出发,经严密的逻辑推理得到物体宏观热性质 间的联系,从而揭示热现象的有关规律。 热力学的基本经验定律有:

热力学统计物理

热力学统计物理

《热力学统计物理》复习资料热力学部分第一章 热力学的基本定律基本概念:平衡态,热力学参量,热平衡定律,温度,三个实验系数(、、),转换关系,物态方程,功及其计算,热力学第一定律(数学表述式),热容量(C 、C V 、C P 的概念及定义),理想气体的内能,焦耳定律,绝热过程特征,热力学第二定律(文学表述、数学表述),克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵,熵增加原理及应用。

综合计算:利用实验系数的任意二个求物态方程,熵增(S )计算。

第二章 均匀物质的热力学性质基本概念:焓H ,自由能F ,吉布斯函数(自由焓)G 的定义,全微分式,热力学函数的偏导数关系、麦克斯韦关系及应用,能态公式,焓态公式,节流过程的物理性质,焦汤系数定义及热容量(C P )的关系,绝热膨胀过程及性质、特性函数F 、G ,辐射场的物态方程,内能、熵,吉布函数的性质、辐射通量密度的概念。

综合运用:重要热力学关系式的证明,由特性函数F 、G 求其它热力学函数(如S 、U 、物态方程)。

第三章、第四章 单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据(S 、F 、G 判据),单元复相系平衡条件,复相多元系的平衡条件,多元系的热力学函数及热力学方程,相变的分类、一级与二级相变的特点及相平衡曲线斜率的推导、吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律的标准表述,绝对熵的概念。

统计物理部分第六章 近独立粒子的最概然分布基本概念:能级的简并度,μ空间,运动状态代表点,三维自由粒子的μ空间,德布罗意关系(=,=),相格,量子态数、等概率原理,对应于某种分布的玻尔兹曼系统,玻色系统,费米系统的微观态数(热力学概率)的计算公式,最概然分布,玻尔兹曼分布律(),配分函数(),用配分函数表示的玻尔兹曼分布(),f s ,P λ, P s的概念,经典配分函数(),麦克斯韦速度分布律。

综合运用:能计算在体积V 内,在动量范围p —p+dp 内,或能量范围+d ε内,粒子的量子态数;了解运用最可几方法推导三种分布。

热力学与统计物理复习总结级相关试题

热力学与统计物理复习总结级相关试题

热⼒学与统计物理复习总结级相关试题《热⼒学与统计物理》考试⼤纲第⼀章热⼒学的基本定律基本概念:平衡态、热⼒学参量、热平衡定律温度,三个实验系数(α,β,T κ)转换关系,物态⽅程、功及其计算,热⼒学第⼀定律(数学表述式)热容量(C ,C V ,C p 的概念及定义),理想⽓体的内能,焦⽿定律,绝热过程及特性,热⼒学第⼆定律(⽂字表述、数学表述),可逆过程克劳修斯不等式,热⼒学基本微分⽅程表述式,理想⽓体的熵、熵增加原理及应⽤。

综合计算:利⽤实验系数的任意⼆个求物态⽅程,熵增(ΔS )的计算。

第⼆章均匀物质的热⼒学性质基本概念:焓(H),⾃由能F ,吉布斯函数G 的定义,全微公式,麦克斯韦关系(四个)及应⽤、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp )的关系,绝热膨胀过程及性质,特性函数F 、G ,空窖辐射场的物态⽅程,内能、熵,吉布函数的性质。

综合运⽤:重要热⼒学关系式的证明,由特性函数F 、G 求其它热⼒学函数(如S 、U 、物态⽅程)第三章、第四章单元及多元系的相变理论该两章主要是掌握物理基本概念:k ),相格,量⼦态数。

(l l a ω=l e βε-),f s ,P l ,P s 综合运⽤: V m ,平均速度V 综合运⽤:(n+21)基本概念:(f s=1),费⽶能量µ均能量ε的计算。

第九章系综理论基本概念:Γ空间的概念,微正则分布的经典表达式、量⼦表达式,正则分布的表达式,正则配分函数的表达式。

经典正则配分函数。

不作综合运⽤要求。

四、考试题型与分值分配1、题型采⽤判断题、单选题、填空题、名词解释、证明题及计算题等六种形式。

2、判断题、单选题占24%,名词解释及填空题占24%,证明题占10%,计算题占42%。

《热⼒学与统计物理》复习资料⼀、单选题1、彼此处于热平衡的两个物体必存在⼀个共同的物理量,这个物理量就是()①态函数②内能③温度④熵2、热⼒学第⼀定律的数学表达式可写为()①W Q U U A B +=-②W Q U U B A +=- ③WQ U U A B -=-④WQ U U B A -=-3、在⽓体的节流过程中,焦汤系数µ=)(1-αT C V P ,若体账系数T 1>α,则⽓体经节流过程后将()①温度升⾼②温度下降③温度不变④压强降低4、空窖辐射的能量密度u 与温度T 的关系是()①3aT u =②T aV u 3=③4aVT u =④4aT u = 5、熵增加原理只适⽤于()①闭合系统②孤⽴系统③均匀系统④开放系统6、在等温等容的条件下,系统中发⽣的不可逆过程,包括趋向平衡的过程,总是朝着()①G 减少的⽅向进⾏②F 减少的⽅向进⾏③G78①3②2③19①≥LTζθ10111213141516、描述N ①617①Z P l 11=18、T =0k F ①平均动量②最⼤动量③最⼩动量④总动量19、光⼦⽓体处于平衡态时,分布在能量为εs 的量⼦态s 的平均光⼦数为()①11-+seβεα②11-KTeω③11++seβεα④11+KT20、由N 个单原⼦分⼦构成的理想⽓体,系统的⼀个微观状态在Γ空间占据的相体积是()①Nh 3②Nh 6③3h ④6h21、服从玻⽿兹曼分布的系统的⼀个粒⼦处于能量为εs 的量⼦态S 的概率是()①se NP s βεα--=1②se P s βεα--=③se N P s βε-=1④se P s βε-=22、在T =0K 时,由于泡利不相容原理限制,⾦属中⾃由电⼦从能量ε=0状态起依次填充之µ(0)为⽌,µ(0)称为费⽶能量,它是0K 时电⼦的()①最⼩能量②最⼤能量③平均能量④内能23、平衡态下,温度为T 时,分布在能量为εs 的量⼦态s 的平均电⼦数是()①11-=-KT us e f ε②11+=KT s e f ε③11+=-KTu s e f ④11+=u s e f ε 24、描述N①125①1>αe 26、由N ①h ②h 27、由N ①h ②h 28①329①330①s ρ⼆、判断题1()2、在P-V 34567891011121314、玻⾊系统的粒⼦是不可分辨的,且每⼀个体量⼦态最多能容纳⼀个粒⼦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们把表示上述四类参量与温度之间联系的数学关系 式称为系统物态方程,也称状态方程。
说明: 只有均匀系才有状态方程。一个非均匀系可分为几
个均 匀部分,每一部分有一个状态方程,但整个非 均匀系没有一个统一的状态方程。 只有平衡态才有状态方程 对pVT系统状态方程为 f( P,V,T)=0
物态方程的确定方法
第一章 热力学的基本规律
1. 热力学基本概念 2. 热力学第一定律 3. 热力学第二定律 4. 熵和熵增加原理 5. 热力学基本方程
第一章 热力学的基本规律
§1.1 热力学基本概念
系统与外界 热力学的研究对象称为热力学系统,简称系统。
由大数微观粒子组成的宏观物质系统 与系统有关的、发生相互作用其它物质或空间称为外界。
系统 物质交换 能量交换
孤立 无 无
封闭 无 有
开放 有 有
平衡态
经验表明,一个孤立系统经过足够长的时间,将会达到 这样一种状态,系统的各种宏观性质在长时间内不再发生 变化,这种状态称为热力学平衡态,不符合以上条件的状 态称为非平衡态.
说明:
热力学平衡态是一种动态平衡,常称为热动平衡. 在平衡态下,系统宏观量的数值仍会发生涨落,但对于宏观物质 系统,一般情况下,涨落是极其微小而可以忽略的. 对于封闭系和开放系,在不变的外界条件下,经过一定的时间后, 系统也必将达到一个宏观上不随时间变化的状态,这样的状态称 为稳定态. 系统处于平衡态时,其各种宏观性质不再随时间改变,所以可用 一组具有确定值的宏观物理量来表征系统平衡态的特征.
① 在热力学中,状态方程的具体形式不能由热力学理论得到,而是 完全依靠实验来确定。
②用可测量(如膨胀系数 、压强系数 、等温压缩系数 KT 等)通过
三个系数中的两个,根据二元函数微分学知识,利用由两个偏导导 数求原函数的方法即可以找到状态方程。
1 V
V T p
1 p
p T V
状态参量可分为内参量和外参量两种。内参量表示系统内部的 状态,外参量表示系统周围环境的状况。
热力学量可分为强度量和广延量。强度量与系统的质量无关, 广延量则与系统的质量成正比。
§1.2 热平衡定律和温度
一、热平衡定律(热力学第零定律)
1、文字叙述(见书P7)
2、数学表示:
若A与C达到热平衡,即 f AC PA ,VA ; PC ,VC 0
(6)
(3)(4)(5)(6)的适用条件:理想气体,不考虑重力,平衡态。
几种物质的状态方程
气体(1mol)
理想气体状态方程 pv RT (1.1.3)
范德瓦尔斯状态方程 ( p a v2 )(v (b1).1.4R)T
范德瓦尔斯状态方程是考虑到分子有一定大小及分子间
有相互吸引力的作用,对理想气体状态方程进行修正而
状态参量
被选作能够确定系统平衡态的独Fra bibliotek的宏观物理量,称为 状态参量。通常可测量的物理量都可选作状态参量,如压 强、体积、温度、磁场强度、磁化强度等。
状态函数:表示为状态参量函数的其他宏观量。 ❖ 气体:压强和体积可独立改变,为状态参量。
❖ 平衡态对应P-V图上的一点。
说明:
系统需要的独立状态参量个数是由系统的性质和外界条件决定。
(3)
利用 n M / ,(3)式又可以写为
pV M RT
(4)
同除V,得到用质量密度 M /V 表示的形式
p 1 RT
(5)
设总分子数N,阿伏伽德罗常数No,由摩尔数 n N / N o ,
令k R / No 1.38 10 23 J K 1 (称为玻尔兹曼常数)。
代入(3)式得 pV NkT
T
1 V
V p
T
③用统计物理理论导出.
三个系数与状态方程
定压膨胀系数
1 V V T p
(1.1.11)
它给出在压强保持不变的条件下,温度升高1K 所引起物
体体积的相对变化。
定容压强系数
1 p p T V
(1.1.12)
它给出在体积保持不变的条件下,温度升高1K 所引起物
体压强的相对变化。
得到的。 昂尼斯状态方程 pV A Bp Cp 2 Dp 3
B与C达到热平衡,即 f BC PB ,VB ; PC ,VC 0
则A与B必达到热平衡,即有 f AB PA ,VA ; PB ,VB 0
3、重要性:
1)、定义了温度;温度概念的建立基于热力学第零(热平衡)定律
2)、为制造温度计和判断温度的高低提供理论根据。
3)、温度决定于系统内部热运动状态,是状态函数。
说明: 系统是指其时空广延范围均为正常量度过程可及的宏观实体。 外界通常可概括为加在所研究系统上的一定的外界条件。 根据系统与外界的关系系统可分为:孤立系,封闭系,开放
系。 根据系统物理性质和化学性质系统还可分为:单元系,多
元系,单相系,复相系。
1. 系统与外界
热力学系统 由大数微观粒子组成的宏观物质系统 外界 与系统发生相互作用的其他物质
4)、物体的冷热程度,微观上反映热运动的剧烈程度。
K
1 mv2 2
3 2
kT
二、温标
温度的定量表示叫温标。
摄氏温标:温度t( C )。
华氏温标:温度tF F 。
理想气体温标:温度T(K)
T=t+273.15 ;
9 tF=32+5
t
§1.3 物态方程
物态方程的定义
经验表明:任何一个热力学系统的平衡状态都可用几 何参量、力学参量、电磁参量及化学参量来描写,这4 类参量可完全确定系统的平衡状态。但在一定的平衡 态中热力系统还具有确定的温度。
等温压缩系数
kT
1 V
V p
T
(1.1.13)
它给出在温度保持不变的条件下,增加单位压强所引起的
物体体积的相对变化。
由于p 、V 、T 三个参量满足状态方程(1.1.1)式,
可以证明 由此得到
V p
T
p T
V
(1T.1.14)1
V p
kp
(1.1.15)
如果已知状态方程,由(1.1.11)式和(1.1.13)式
可以求得α和κ;反之,通过实验测得α和κ,也可求
得状态方程。对于固体和液体,升高温度时要维持体
积不变相当困难,可通过测量α和κ并利用(1.1.15)
式求得β。
理想气体的物态方程
1、理想气体的物态方程
由玻-马定律、阿伏伽德罗定律和理想气体温标的定义可得
pV nRT R 8.3145J .mol1 K 1
相关文档
最新文档