信号与系统实验总结1
信号与系统实验报告(一) 大二下

电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。
应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。
完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。
实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。
(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。
不得不加引用标记地抄袭任何资料。
每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。
再按照学时比例与本课程其它部分实验综合成为总实验成绩。
每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。
信号与系统实验总结及心得体会

信号与系统实验总结及心得体会2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。
下面我将从实验总结、心得体会、意见与建议等三方面作以总结。
一.实验总结本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。
1.信号的分类与观察主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。
主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。
2.非正弦信号的频谱分析主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。
主要内容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。
3.信号的抽样与恢复主要目的是:验证抽样定理,观察了解PAM信号的形成过程。
主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。
4.模拟滤波器实验主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。
主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。
信号与系统实验一连续时间信号分析实验报告

实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。
三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。
(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。
程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。
信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。
实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。
方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。
方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。
方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。
幅值较一二次谐波大为减少。
方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。
幅值较三次谐波再次减小。
方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。
幅值减少到0.3以内,几乎可以忽略。
综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。
分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。
二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。
可知,方波信号可分解为多个谐波。
方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。
方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。
综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。
信号与系统实验总结

信号与系统实验总结转眼间,信号与系统实验课已接近尾声。
和蔼的老师,亲切的同组同学,每一个新奇的信号实验,都给刚入大二的我留下了许多深刻印象。
这一学期,共做了“信号的分类与观察”、“非正弦信号的频谱分析”、“信号的抽样与恢复(PAM)”、和“模拟滤波器实验”共四个信号与系统实验。
此学期的实验课程加深了我对信号与系统这门课的感性认知与体会,也增强了我的实际动手能力,有效地处理了实验过程中遇到的问题,收获颇丰。
众所周知,信号与系统这门课程对于电子信息科学与技术专业的我们是何等的重要。
而每周一次的实验,培养了我分析问题和处理问题的能力,使抽象的概念和理论形象化、具体化、对增强学习的兴趣有了极大的好处,针对各个实验及实验中的具体问题,现总结如下:一.信号的分类与观察对于一个系统的特性进行研究,重要的一个方面是研究它的输入—输出关系,即在特定输入信号下,系统输出的响应信号。
因而对信号进行研究是研究系统的出发点,是对系统特性观察的基本方法和手段。
在这个实验中,对常用信号及其特性进行了分析、研究。
由实验箱中元件产生正弦波、指数信号、指数衰减正弦信号三种波形,示波器观察,并根据数据求出函数表达式。
此次实验我最大的收获,就是了解了示波器的使用方法和各个按钮的作用。
初步了解了信号与系统实验箱的各个模块作用。
比如示波器上无法显示波形,先调节辉度按钮,如还未出现,调节垂直POSITION按钮,看波形是不是在屏幕之外,波形不稳,调节触发电平或TIME/DIV,等等。
示波器在各种实验中都起到很重要的作用,所以了解它的原理和使用方法是必备的基础知识,为以后的实验打下了坚实的基础。
作图在实验数据处理中也是很重要的一步。
准确的记录,描点,坐标分度,看似很小的事情真的做起来就会觉得不是那么容易。
把每一个平凡的小事做好,就是一种不平凡。
在数据处理中,我学会了耐心的处理事情。
最后的正弦,指数,和指数衰减正弦信号都在坐标纸上有了很好的体现。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
信号与系统实验报告

信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统总结报告

信号与系统总结报告信号与系统是一门电子信息类本科阶段的专业基础课。
通过本学期对该课程的学习,我了解了什么是信号,什么是系统,掌握了基本的信号分析的理论和方法和对线性时不变系统的描述方法,并且对求解微分方程有了一定的了解。
最后学习了傅里叶变换和拉普拉斯变换,明白了如何用matlab去求解本课程的问题。
1.1信号与系统信号是一种物理量(电,光,声)的变化,近代中使用的电台发出的电磁波也是一种信号,所以信号本身是带有信息的。
而系统是一组相互有联系的事物并具有特定功能的整体,又分为物理系统和非物理系统,每一个系统都有各自的数学模型,两个不同的系统可能有相同的数学模型。
1.2信号从不同的角度看,信号也有不同的分类。
信号可分为确定性信号和随机性信号,周期信号与非周期信号,连续时间信号与离散时间信号。
还有一种离散信号:采样信号和数字信号。
在该课程中,还有几种类似数学函数的信号,指数信号和正弦信号;其表达式与对应的函数表达式也类似。
另外,如果指数信号的指数因子为一复数,则称为复指数信号,其表达式为 f(t)=Kest,s=σ+jw。
还有一种Sa(t)函数,其表达式为sint/t。
从数学上来讲,它也是一个偶函数。
1.2.1 信号的运算另外,信号也可以像数字那样进行运算,可以进行加减,数乘运算。
信号的运算以图像为基础进行运算;包括反褶运算:f(t)->f(-t),以y轴为轴,将图像对称到另一边,时移运算:f(t)->f(t-t1),该运算移动法则类似数学上的左加右减;尺度变换运算:f(t)->f(2t)表示将图像压缩。
除此之外,信号还有微分,积分运算,运算过后仍然是一个信号。
1.2.2信号的分类单位斜边信号指的是从某一时刻开始随时间正比例增长的信号,表达式为R (t)=t,(t>=0)。
单位阶跃信号从数学上来讲,是一个常数函数图像;单位冲激信号有不同的定义方法,狄拉克提出了一种方法,因此它又叫狄拉克函数;用极限也可以定义它,冲激函数也可以把冲激所在位置处的函数值抽取出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验总结班级:10电子班学号:1039035 姓名:田金龙这学期的实验都有:信号的时域分析、线性时不变系统的时域分析、连续时间信号系统的频域分析、连续时间在连续时间信号的频域LTI系统的复频域分析、连续时间LTI系统的频域分析。
在这学期的学习中学习了解到很多关于信号方面的处理方法加上硬件动手的实践能力,让我对课堂上所学到的知识有了更深层次的理解也加深了所学知识的印象。
下面则是对每次实验的分析和总结:实验一:信号的时域分析在第一次试验中进行信号的时域分析还有的就是学会使用MATLAB软件来利用它实现一些相关的运算并且绘制出相关的信号图。
在时域分析中掌握连续时间信号和离散时间信号的描述方法,并能够实现各种信号的时域变化和运算。
了解单位阶跃信号和单位冲激信号的拓展函数,以便于熟悉这两种函数在之后的程序中的应用。
在能够对简单信号的描述的前提下,通过一些简单的程序,实现信号的分析,时域反相,时域尺度变换和周期信号的描述。
clear,close alldt=0.01;t=-2:dt:2;x=u(t);plot(t,x)title('u signal u(t)')grid on连续时间信号的时域分析后,则是离散时间信号的仿真。
通过对连续时间信号的描述和对离散时间信号的描述,发现它们的不同之处在于对时间的定义和对函数的图形描述。
在离散时间信号的图形窗口描述时,使用的是stem(n,x)函数。
在硬件实验中,使用一些信号运算单元,加法器,减法器,倍乘器,反相器,积分器和微分器。
输入相应的简单信号,观察通过不同运算单元输出的信号。
实验二:线性时不变系统的时域分析在线性时不变系统的时域分析中主要研究的就是信号的卷积运算,学会进行信号的卷积运算和MATLAB对卷积运算的实现。
而系统则通常是由若干部件或单元组成的一个整体,根据系统所处理的信号不同,系统又有多种不同的分类。
而在学习总最常研究的则是线性时不变系统,而线性时不变系统则是形同同时满足齐次性和叠加性。
在这次的试验中主要的还是掌握卷积的运算,卷积的运算通常是由五部分构成:1.改换两个信号波形图中的横坐标,由t改为τ,τ变成函数的自变量;2.把其中一个信号反摺,如把h(τ)变成h(-τ);3.把反褶后的信号做移位,移位量是t,这样t是一个参变量。
在τ坐标系中,t>0时图形右移,t<0时图形左移。
4.计算两个信号重叠部分的乘积x(τ)h(t-τ);5.完成相乘后图形的积分。
下面则是程序实例和相关程序图:function y=u(t)y=(t>=0); %y=1 for t>0,else y=0Q2-1程序的源代码:clear;close all;t0=-2;t1=4;dt=0.01;t=t0:dt:t1;x=u(t)-u(t-1);h=t.*(u(t)-u(t-1));y=dt*conv(x,h);subplot(221)plot(t,x),grid on,title('Signal x(t)'),axis([t0,t1,-0.2,1.2])subplot(222)plot(t,h),grid on,title('Signal h(t)'),axis([t0,t1,-0.2,1.2])subplot(212)t=2*t0:dt:2*t1;plot(t,y),grid on,title('The convolution of x(t) and h(t)'),axis([2*t0,2*t1,-0.1,0.6]),xlable('Time t sec')在程序未修改的情况下的波形图:在进行软件的仿真和图形的绘制后则是在硬件方面的对线性时不变系统验证,通过信号与系统试验箱上已有的“线性时不变系统”单元,利用此单元设计实验步骤,验证线性时不变系统的一些基本特性。
实验三 :连续时间信号系统的频域分析在连续时间信号的频域分析中主要讨论的就是周期信号的Gibbs 现象和周期信号的傅里叶级数。
任何的一个周期为T1的正弦周期信号,只要是满足狄里赫利条件,就可以展开成傅里叶级数。
狄里赫利条件:1. 在一个周期内如果有间断点存在,则间断点的数目应是有限个;2.3. 等于有限值。
以下的程序为连续周期信号的傅里叶级数CTFS 的MATLAB 的实现。
调用函数u(t)function y=u(t)y=(t>=0); 主程序clear,close all ,T=2; dt=0.00001;t=-2:dt:2;x1=u(t)-u(t-1-dt);x=0;for m=-1:1;x=x+u(t-m*T)-u(t-1-m*T-dt);endw0=2*pi/T;N=10;L=2*N+1;for k=-N:N;ak(N+1+k)=(1/T)*x1*exp(-j*k*w0*t')*dt;endphi=angle(ak);x2=0;for r=1:L;x2=x2+ak(r)*exp(j*(-(L-1)/2+r-1)*2*pi*t/T);end ;subplot(221),plot(t,x), title('The orginal signal x(t)'),axis([-2,2,-0.2,1.2]),subplot(223),plot(t,x2), title('The orginal signal y(t)'),axis([-2,2,-0.2,1.2]), xlabel('Time t'),subplot(222),k=-N:N; stem(k,abs(ak),'k.'), title('The amplitude [ak] of x(t)'),axis([-N+1,N+1,-0.1,0.6])subplot(224)stem(k,phi,'r.'), title('The phase phi(k) of x(t)'),axis([-N,N+1,-2,2]), xlabel('Index k')在命令窗口输入ak,即可得到所求的ak 的结果。
而下图则是输入N=7时的吉布斯现象图。
硬件方面则是通过信号与系统试验箱的信号合成模块实现周期信号的合成以及Gibbs 现象。
通过不同的幅值的调节观察输出信号的波形在逐步加成信号的合成。
实验四:连续时间在连续时间信号的频域LTI 系统的复频域分析 在连续时间LTI 系统的复频域分析中主要讨论的则是另一个很重要的变换——拉普拉斯变换。
主要掌握的则是拉普拉斯变换求解连续时间LTI 系统的时域响应,系统函数的零、极点分布图与系统的稳定性。
fudupu-10-8-6-4-20246810拉普拉斯变换主要用于系统的分析,描述系统的另一种数学模型就是建立在拉普拉斯变换基础上的“系统函数”,而系统函数H(s)的实质就是系统单位冲击响应h(t)的拉普拉斯变换。
下面则是系统零极点分布图和相关程序。
b=input('请输入分子系数向量');a=input('请输入分母系数');[H,w] = freqs(b,a);Hm = abs(H);phai = angle(H);Hr = real(H);Hi = imag(H);subplot(221)splane (b,a), grid on, title('The zero-pole diagram'), xlabel('Real Part') subplot(222)plot(w,Hm), grid on, title('Magnitude response')subplot(223)plot(w,Hi), grid on, title('The impulse response')subplot(224)plot(w,phai), grid on, title('Phase response')运行后在命令窗口输入如下:>>请输入分子系数向量:[3 5 7 ]请输入分母系数向量:[2 3 5 7 6 5 4 ]期间调用splane扩展函数文件得到的零极点分布情况与系统的时域和频域之间的关系为:由频相特性可以看出该系统是低通滤波器以及拉普拉斯变换和傅里叶变换之间的关系:可以通过旋转图来观察两者之间的关系。
最后的则是连续时间LTI系统的频域分析,在这次的试验中主要掌握的则是系统频率响应特性的计算方法和特性曲线的绘制方法理解具有不同频率响应特性的滤波器对信号的滤波作用。
其次则是幅度特性、相位特性以及群延时的物理意义等。
频率响应是指系统在正弦信号的激励下的稳态响应岁频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
下面的程序和图示是通过改变程序中a,b的值从而求得各系统的幅度响应特性图,相位响应特性,频率响应特性的实部和频率响应的虚部曲线图。
b=[1];a=[1 3 2];[H,w]=freqs(b,a);Hm=abs(H);phai=angle(H);Hr=real(H);Hi=imag(H);subplot(221)plot(w,Hm),grid on,title('Magnitude response'),xlabel('Frequency in rad/sec')subplot(223)plot(w,phai),grid on,title('Phase response'),xlabel('Frequency inrad/sec')subplot(222)plot(w,Hr),grid on,title('Real part of frequency response'),xlabel('Frequency in rad/sec')subplot(224)plot(w,Hi),grid on,title('Imaginary part of frequency response'), xlabel('Frenquency in rad/sec')a=[1 1 25] b=[1];。