外文翻译--机器人技术简介

合集下载

机器人英文介绍初中作文

机器人英文介绍初中作文

机器人英文介绍初中作文Robot is a machine that can perform a variety of tasks automatically. It is a combination of hardware and software that enables it to interact with the environment and complete tasks. Robots come in different shapes and sizes, and they are used in various industries, including manufacturing, healthcare, and entertainment.One of the most significant advantages of robots is their ability to perform repetitive tasks with high precision and accuracy. This makes them ideal for tasksthat require a high level of consistency, such as assembling products in a factory. Robots can work for long periods without getting tired, which increases productivity and efficiency.Robots can also be programmed to perform complex tasks that are dangerous or impossible for humans to do. For example, robots can be used in the mining industry to explore and extract minerals from deep underground. Theycan also be used in the military to perform reconnaissance and disarm bombs.Another advantage of robots is their ability to work in environments that are hazardous to humans. For example, robots can be used in nuclear power plants to perform maintenance tasks without exposing workers to radiation. They can also be used in space exploration to explore planets and collect data without risking human lives.In conclusion, robots are an essential part of modern technology. They have revolutionized the way we work and live, and they continue to play an important role in various industries. As technology advances, we can expect robots to become even more advanced and versatile, opening up new possibilities for the future.。

机器人技术发展中英文对照外文翻译文献

机器人技术发展中英文对照外文翻译文献

机器人技术发展中英文对照外文翻译文献(文档含英文原文和中文翻译)外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need.Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, for instance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide.Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now I have a brief account of China's robot development of the basic profiles. As our country there are many other factors that problem. Our country in robotics research of the 20th century the late 1970s. At that time, we organized at the national, a Japanese industrial automation products exhibition. In this meeting, there are two products, is a CNC machine tools, an industrial robot, this time, our country's many scholars see such a direction, has begun to make a robot research But this time, are basically confined to the theory of phase .Then the real robot research, in 7500 August 5, 1995, 15 nearly 20 years of development, The most rapid development, in 1986 we established a national plan of 863 high-technology development plan, As robot technology will be an important theme of the development of The state has invested nearly Jiganyi funds begun to make a robot, We made the robot in the field quickly and rapid development.At present, units like the CAS ShenYng Institute of Automation, the original machinery, automation of the Ministry, as of Harbin Industrial University, Beijing University of Aeronautics and Astronautics, Qinghua University, Chinese Academy of Sciences, also includes automation of some units, and so on have done a very important study, also made a lot of achievements Meanwhile, in recent years, we end up in college, a lot of flats in robot research, Many graduate students and doctoral candidates are engaged in robotics research, we are more representative national study Industrial robots, underwater robots, space robots, robots in the nuclear industry are on the international level should be taking the lead .On the whole of our country Compared with developed countries, there is still a big gap, primarily manifested in the We in the robot industry, at present there is no fixed maturity product, but in theseunderwater, space, the nuclear industry, a number of special robots, we have made a lot of achievements characteristics.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue,relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign t o complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, people would not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through amanipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.We regard this country excel, it should be said that the United States, Russia and France, in our nation, also to the international forefront, which is the CAS ShenYang Institute of Automation of developing successful, 6,000 meters underwater without cable autonomous underwater robot, the robot to 6,000 meters underwater, can be conducted without cable operations. His is 2000, has been obtained in our country one of the top ten scientific and technological achievements. This indicates that our country in this underwater robot, have reached the advanced international level, 863 in the current plan, the development of 7,000 meters underwater in a manned submersible to the ocean further development and operation, This is a great vote of financial and material resources.In this space robotics research has also been a lot of development. In Europe, including 16 in the United States space program, and the future of this space capsule such a scheme, One thing is for space robots, its main significance lies in the development of the universe and the benefit of mankind and the creation of new human homes, Its main function is to scientific investigation, as production and space scientific experiments, satellites and space vehicles maintenance and repair, and the construction of the space assembly. These applications, indeed necessary, for example, scientific investigation, as if to mock the ground some physical and chemical experiments do not necessarily have people sitting in the edge of space, because the space crew survival in the day the cost is nearly one million dollars. But also very dangerous, in fact, some action is very simple, through the ground, via satellite control robot, and some regularly scheduled completion of the action is actually very simple. Include the capsule as control experiments, some switches, buttons, simple flange repair maintenance, Robot can be used to be performed by robots because of a solar battery, then the robot will be able to survive, we will be able to work, We have just passed the last robot development on the application of the different areas ofapplication, and have seen the robots in industry, medical, underwater, space, mining, construction, service, entertainment and military aspects of the application .Also really see that the application is driven by the development of key technologies, a lack of demand, the robot can not, It is because people in understanding the natural transformation of the natural process, the needs of a wide range of robots, So this will promote the development of key technologies, the robot itself for the development of From another aspect, as key technology solutions, as well as the needs of the application, on the promotion of the robot itself a theme for the development of intelligent, and from teaching reappearance development of the current local perception of the second-generation robot, the ultimate goal, continuously with other disciplines and the development of advanced technology, the robot has become rich, eventually achieve such an intelligent robot mainstream.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

智能机器人的介绍作文英语

智能机器人的介绍作文英语

智能机器人的介绍作文英语In the realm of modern technology, the concept of smart robots has become increasingly prevalent, transforming various sectors from manufacturing to healthcare. Smart robots are sophisticated machines designed to perform tasks autonomously or with minimal human intervention. They are equipped with advanced sensors, powerful processors, and artificial intelligence (AI) algorithms that enable them to perceive their environment, make decisions, and learn from experience.The development of smart robots is a testament to the rapid evolution of AI and machine learning. These robots are not just programmable to execute specific tasks; they are capable of adapting to new situations and improving their performance over time. Here's a deeper look into the world of smart robots:1. Capabilities: Smart robots can be found in various forms, from humanoid machines that can interact with humans to industrial robots that can assemble complex products with precision. They are capable of tasks such as object recognition, navigation, and manipulation.2. Applications: The applications of smart robots are vast. In the industrial sector, they are used for automation, increasing efficiency and reducing the potential for human error. In healthcare, they assist in surgeries and patientcare. In the service industry, they serve as receptionists, waiters, and even personal assistants.3. AI Integration: The integration of AI in smart robots allows them to process complex data and make informed decisions. They can learn from their mistakes and optimize their performance based on the feedback they receive.4. Sensory Perception: Equipped with an array of sensors, smart robots can perceive their surroundings in ways similar to humans. They can see with cameras, hear with microphones, and feel with touch sensors.5. Mobility: Many smart robots are designed with mobility in mind. They can move on wheels, walk on legs, or even fly with the help of drones, allowing them to navigate diverse terrains.6. Ethical Considerations: As with any technology, the rise of smart robots brings ethical questions. Issues such as job displacement, privacy concerns, and the potential for misuse are important to address as this technology advances.7. Future Prospects: The future of smart robots is promising. As technology continues to advance, we can expect to see more sophisticated, versatile, and intelligent robots that will become an integral part of our daily lives.In conclusion, smart robots represent the cutting edge of technology, offering a glimpse into a future where machines and humans coexist and collaborate in a variety of settings.As these robots become more integrated into society, it will be crucial to navigate the ethical and practical challenges they present to ensure a harmonious and beneficial coexistence.。

机器人外文文献翻译、中英文翻译

机器人外文文献翻译、中英文翻译

外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。

介绍robot作文英语四年级

介绍robot作文英语四年级

介绍robot作文英语四年级English: Robot is a mechanical device that is capable of carrying outa complex series of actions automatically. Robots can be controlled remotely or guided by a computer program to perform various tasks, such as assembly line work, surgical procedures, space exploration, and even household chores. They are designed to take on repetitive or dangerous tasks that humans may find tedious or risky to do. Robots are made up of different components, such as sensors, actuators, and a control system, which work together to fulfill their assigned functions. With advancements in technology, robots are becoming more intelligent and versatile, capable of learning from their surroundings and adapting to new situations. Overall, robots play a crucial role in the modern world, enhancing efficiency, productivity, and safety in various industries.Translated content: 机器人是一种能够自动执行复杂系列动作的机械设备。

机器人相关外文翻译---机器人技术发展趋势

机器人相关外文翻译---机器人技术发展趋势

Robotics technology trendsBy : Jim Pinto, San Diego, CA. USAWhen it comes to robots, reality still lags science fiction. But, just because robots have not lived up to their promise in past decades does not mean that they will not arrive sooner or later. Indeed, the confluence of several advanced technologies is bringing the age of robotics ever nearer - smaller, cheaper, more practical and cost-effectiveBrawn, Bone & BrainThere are 3 aspects of any robot:∙Brawn – strength relating to physical payload that a robot can move.∙Bone – the physical structure of a robot relative to the work it does; this determines the size and weight of the robot in relation to its physical payload.∙Brain – robotic intelligence; what it can think and do independently; how much manual interaction is required.Because of the way robots have been pictured in science fiction, many people expect robots to be human-like in appearance. But in fact what a robot looks like is more related to the tasks or functions it performs. A lot of machines that look nothing like humans can clearly be classified as robots. And similarly, some human-looking robots are not much beyond mechanical mechanisms, or toys.Many early robots were big machines, with significant brawn and little else. Old hydraulically powered robots were relegated to tasks in the 3-D category – dull, dirty and dangerous. The technological advances since the first industry implementation have completely revised the capability, performance and strategic benefits of robots. For example, by the 1980s robots transitioned from being hydraulically powered to become electrically driven units. Accuracy and performance improved.Industrial robots already at workThe number of robots in the world today is approaching 1,000,000, with almost half that number in Japan and just 15% in the US. A couple of decades ago, 90% of robots were used in car manufacturing, typically on assembly lines doing a variety of repetitive tasks. Today only 50% are in automobile plants, with the other half spread out among other factories, laboratories, warehouses, energy plants, hospitals, and many other industries.Robots are used for assembling products, handling dangerous materials,spray-painting, cutting and polishing, inspection of products. The number of robots used in tasks as diverse as cleaning sewers, detecting bombs and performing intricate surgery is increasing steadily, and will continue to grow in coming years.Robot intelligenceEven with primitive intelligence, robots have demonstrated ability to generate good gains in factory productivity, efficiency and quality. Beyond that, some of the "smartest" robots are not in manufacturing; they are used as space explorers, remotely operated surgeons and even pets – like Sony's AIBO mechanical dog. In some ways, some of these other applications show what might be possible on production floors if manufacturers realize that industrial robots don't have to be bolted to the floor, or constrained by the limitations of yesterday's machinery concepts.With the rapidly increasing power of the microprocessor and artificial intelligence techniques, robots have dramatically increased their potential as flexible automation tools. The new surge of robotics is in applications demanding advanced intelligence. Robotic technology is converging with a wide variety of complementary technologies – machine vision, force sensing (touch), speech recognition and advanced mechanics. This results in exciting new levels of functionality for jobs that were never before considered practical for robots.The introduction of robots with integrated vision and touch dramatically changes the speed and efficiency of new production and delivery systems. Robots have become so accurate that they can be applied where manual operations are no longer a viable option. Semiconductor manufacturing is one example, where a consistent high levelof throughput and quality cannot be achieved with humans and simple mechanization. In addition, significant gains are achieved through enabling rapid product changeover and evolution that can't be matched with conventional hard tooling.Boosting CompetitivenessAs mentioned, robotic applications originated in the automotive industry. General Motors, with some 40-50,000 robots, continues to utilize and develop new approaches. The ability to bring more intelligence to robots is now providing significant new strategic options. Automobile prices have actually declined over the last two to three years, so the only way that manufacturers can continue to generate profits is to cut structural and production costs.When plants are converted to new automobile models, hundreds of millions of dollars are typically put into the facility. The focus of robotic manufacturing technology is to minimize the capital investment by increasing flexibility. New robot applications are being found for operations that are already automated with dedicated equipment. Robot flexibility allows those same automated operations to be performed more consistently, with inexpensive equipment and with significant cost advantages.Robotic AssistanceA key robotics growth arena is Intelligent Assist Devices (IAD) – operators manipulate a robot as though it were a bionic extension of their own limbs with increased reach and strength. This is robotics technology – not replacements for humans or robots, but rather a new class of ergonomic assist products that helpshuman partners in a wide variety of ways, including power assist, motion guidance, line tracking and process automation.IAD’s use robotics t echnology to help production people to handle parts and payloads – more, heavier, better, faster, with less strain. Using a human-machine interface, the operator and IAD work in tandem to optimize lifting, guiding and positioning movements. Sensors, computer power and control algorithms translate the operator's hand movements into super human lifting power.New robot configurationsAs the technology and economic implications of Moore's law continue to shift computing power and price, we should expect more innovations, more cost-effective robot configurations, more applications beyond the traditional “dumb-waiter” service emphasis.The biggest change in industrial robots is that they will evolve into a broader variety of structures and mechanisms. In many cases, configurations that evolve into new automation systems won't be immediately recognizable as robots. For example, robots that automate semiconductor manufacturing already look quite different from those used in automotive plants.We will see the day when there are more of these programmable tooling kinds of robots than all of the traditional robots that exist in the world today. There is an enormous sea change coming; the potential is significant because soon robots will offer not only improved cost-effectiveness, but also advantages and operations that have never been possible before.Envisioning VisionDespite the wishes of robot researchers to emulate human appearance and intelligence, that simply hasn't happened. Most robots still can't see – versatile and rapid objectrecognition is still not quite attainable. And there are very few examples of bipedal, upright walking robots such as Honda’s P3, mostly used for research or sample demonstrations.A relatively small number of industrial robots are integrated with machine vision systems – which is why it's called machine vision rather than robot vision. The early machine vision adopters paid very high prices, because of the technical expertise needed to “tweak” such systems. For example, in the mid-1980s, a flexible manufacturing system from Cincinnati Milacron included a $900,000 vision guidance system. By 1998 average prices had fallen to $40,000, and prices continued to decline.Today, simple pattern matching vision sensors can be purchased for under $2,000 from Cognex, Omron and others. The price reductions reflect today's reduced computing costs, and the focused development of vision systems for specific jobs such as inspection.Robots already in use everywhereSales of industrial robots have risen to record levels and they have huge, untapped potential for domestic chores like mowing the lawn and vacuuming the carpet. Last year 3,000 underwater robots, 2,300 demolition robots and 1,600 surgical robots were in operation. A big increase is predicted for domestic robots for vacuum cleaning and lawn mowing, increasing from 12,500 in 2000 to almost 500,000 by the end of 2004. IBot’s Roomba floor cleaning robot is now available at under $200.00.In the wake of recent anthrax scares, robots are increasingly used in postal sorting applications. Indeed, there is huge potential to mechanize the US postal service. Some 1,000 robots were installed last year to sort parcels and the US postal service has estimated that it has the potential to use up to 80,000 robots for sorting.Look around at the “robots” around us today: automated gas pumps, bank ATMs,self-service checkout lanes – machines that are already replacing many service jobs.Fast-forward another few decades. It doesn't require a great leap of faith to envision how advances in image processing, microprocessor speed and human-simulation could lead to the automation of most boring, low-intelligence, low-paying jobs.Marshall Brain (yes, that's his name) founder of has written a couple of interesting essays about robotics in the future, well worth reading. He feels that it is quite plausible that over the next 40 years robots will displace most human jobs. According to Brain's projections, in his essay "Robotic Nation", humanoid robots will be widely available by 2030. They will replace jobs currently filled by people for work such as fast-food service, housecleaning and retail sales. Unless ways are found to compensate for these lost jobs, Brain estimates that more than 50% of Americans could be unemployed by 2055 – replaced by robots.New robot applications aboundAs robot intelligence increases, and as sensors, actuators and operating mechanisms become more sophisticated, other applications are now multiplying. There are now thousands of underwater robots, demolition robots and even robots used inlong-distance surgery.Dozens of experimental search-and-rescue robots scoured the wreckage of the World Trade Center's collapsed twin towers. Teams of robotics experts were at Ground Zero operating experimental robots to probe the rubble and locate bodies. During the war in Afghanistan, robots were being used by the US military as tools for combat. They were sent into caves, buildings or other dark areas ahead of troops to help prevent casualties.A giant walking robot is used to harvests forests, moving on six articulated legs, advancing forward and backward, sideways and diagonally. It can also turn in place and step over obstacles.At UC Berkeley, a tiny robot called Micromechanical Flying Insect has wings that flap with a rhythm and precision matched only by natural equivalents. The goal is to develop tiny, nimble devices that can, for example, surreptitiously spy on enemy troops, explore the surface of Mars or safely monitor dangerous chemical spills.Robotics – an exciting new development arenaThe typical Automation techie has knowledge and experience in instruments, PLCs, computers, displays, controls, sensors, valves, actuators, data-transmission, wireless, networking, etc. These are exactly the key requirements for development of robots and robotic systems. During this time of economic recession, Robotics can surely be a new arena of exciting and rewarding business development.机器人技术发展趋势作者:Jim Pinto,加利福利亚州圣迭亚哥·美国谈到机器人,现实仍落后于科幻小说。

机器人外文翻译(中英文翻译)

机器人外文翻译(中英文翻译)机器人外文翻译(中英文翻译)With the rapid development of technology, the use of robots has become increasingly prevalent in various industries. Robots are now commonly employed to perform tasks that are dangerous, repetitive, or require a high level of precision. However, in order for robots to effectively communicate with humans and fulfill their intended functions, accurate translation between different languages is crucial. In this article, we will explore the importance of machine translation in enabling robots to perform translation tasks, as well as discuss current advancements and challenges in this field.1. IntroductionMachine translation refers to the use of computer algorithms to automatically translate text or speech from one language to another. The ultimate goal of machine translation is to produce translations that are as accurate and natural as those generated by human translators. In the context of robots, machine translation plays a vital role in allowing them to understand and respond to human commands, as well as facilitating communication between robots of different origins.2. Advancements in Machine TranslationThe field of machine translation has experienced significant advancements in recent years, thanks to breakthroughs in artificial intelligence and deep learning. These advancements have led to the development of neural machine translation (NMT) systems, which have greatly improved translation quality. NMT models operate by analyzinglarge amounts of bilingual data, allowing them to learn the syntactic and semantic structures of different languages. As a result, NMT systems are capable of providing more accurate translations compared to traditional rule-based or statistical machine translation approaches.3. Challenges in Machine Translation for RobotsAlthough the advancements in machine translation have greatly improved translation quality, there are still challenges that need to be addressed when applying machine translation to robots. One prominent challenge is the variability of language use, including slang, idioms, and cultural references. These nuances can pose difficulties for machine translation systems, as they often require a deep understanding of the context and cultural background. Researchers are currently working on developing techniques to enhance the ability of machine translation systems to handle such linguistic variations.Another challenge is the real-time requirement of translation in a robotic setting. Robots often need to process and translate information on the fly, and any delay in translation can affect the overall performance and efficiency of the robot. Optimizing translation speed without sacrificing translation quality is an ongoing challenge for researchers in the field.4. Applications of Robot TranslationThe ability for robots to translate languages opens up a wide range of applications in various industries. One application is in the field of customer service, where robots can assist customers in multiple languages, providing support and information. Another application is in healthcare settings, where robots can act as interpreters between healthcare professionals and patientswho may speak different languages. Moreover, in international business and diplomacy, robots equipped with translation capabilities can bridge language barriers and facilitate effective communication between parties.5. ConclusionIn conclusion, machine translation plays a crucial role in enabling robots to effectively communicate with humans and fulfill their intended functions. The advancements in neural machine translation have greatly improved translation quality, but challenges such as language variability and real-time translation requirements still exist. With continuous research and innovation, the future of machine translation for robots holds great potential in various industries, revolutionizing the way we communicate and interact with technology.。

智能机器人的介绍作文英文

智能机器人的介绍作文英文英文:Introduction to Intelligent Robots。

Intelligent robots, also known as smart robots, are machines equipped with artificial intelligence (AI) that enable them to perform tasks and make decisions without human intervention. These robots are designed to mimic human behavior and possess the ability to learn from their experiences, adapt to new situations, and interact with their environment.One example of an intelligent robot is Sophia, a humanoid robot developed by Hong Kong-based company Hanson Robotics. Sophia is capable of holding conversations, recognizing faces, and expressing emotions through facial expressions. She has been programmed to learn and improve her knowledge over time, making her one of the most advanced AI robots in the world.Intelligent robots are revolutionizing various industries, including manufacturing, healthcare, and customer service. In manufacturing, these robots can perform complex tasks with precision and efficiency, leading to increased productivity and cost savings. In healthcare, robots are being used to assist with surgeries, provide companionship to the elderly, and even deliver medication to patients. In customer service, AI-powered chatbots are able to handle customer inquiries and provide support 24/7, improving the overall customer experience.In my opinion, intelligent robots have the potential to greatly benefit society by taking on repetitive and dangerous tasks, freeing up humans to focus on morecreative and meaningful work. However, there are also concerns about the impact of AI on employment and the ethical implications of giving robots too much autonomy.Overall, intelligent robots are a fascinating and rapidly evolving technology that has the potential to reshape the way we live and work. As the technologycontinues to advance, it will be important to carefully consider the ethical and societal implications ofintegrating intelligent robots into our daily lives.中文:智能机器人介绍。

人工智能与机器人技术简介

人工智能与机器人技术简介引言在如今的快速发展的科技世界中,人工智能(Artificial Intelligence,AI)与机器人技术(Robotics)成为备受瞩目的焦点。

这两项技术的快速发展和应用推动了人类生活的进一步改变与进步。

本文将简要介绍人工智能与机器人技术,并探讨其对我们的生活和未来的影响。

人工智能的定义与发展人工智能是一门致力于使机器具备执行智能任务的研究领域。

它的目标是使机器能够感知、理解、学习和决策,以更好地模拟和扩展人类智能。

人工智能的发展始于上世纪50年代,但直到最近几十年才真正取得了飞速进展。

这得益于计算能力的提升和大数据时代的到来,为人工智能提供了高效的数据处理和学习手段。

人工智能的应用人工智能已经在各行各业中得到广泛应用。

在医疗领域,AI可以帮助医生通过分析大量的患者数据,提供更准确的诊断结果和治疗方案。

在交通运输领域,AI技术可以帮助我们实现无人驾驶汽车,提高交通效率和安全性。

在金融领域,AI可以通过算法预测市场走势,帮助投资者做出更明智的决策。

此外,在智能家居、教育、娱乐等领域,AI也扮演着越来越重要的角色。

机器人技术的发展与应用机器人技术是指设计、制造和操作具备人类工作能力的机器人的技术和学科。

机器人是能够执行一系列任务的智能设备,可以模仿人类的行为和思维。

机器人技术的发展也源于人工智能的进步。

随着计算能力的提升和传感器技术的进步,机器人已经能够执行越来越复杂的任务。

机器人技术的应用领域非常广泛,尤其是自动化生产和服务领域。

在工厂中,机器人可以替代人类执行危险、重复和繁琐的工作,提高生产效率和质量。

在服务领域,机器人可以扮演导游、医疗助手、仓储员等角色,为人们提供更便捷和高效的服务体验。

人工智能与机器人技术的未来随着人工智能与机器人技术的不断发展,它们在未来将有更广泛的应用和更深远的影响。

例如,人工智能可以帮助我们解决全球性的大问题,如气候变化、粮食短缺等。

机器人可以成为长时间在恶劣环境中工作的替代品,如探索外太空、清理核废料等。

介绍机器人的作文

介绍机器人的作文英文回答:Robots: The Future of Human Technology。

Robots, automated machines capable of carrying out complex tasks, have emerged as a cornerstone of modern technology. Their versatility and adaptability have revolutionized numerous industries, from manufacturing and healthcare to transportation and entertainment.Robotics encompasses a wide range of fields, including computer science, electrical engineering, and mechanical engineering. By integrating hardware and software systems, engineers can create robots that possess advanced capabilities such as:Motion and Manipulation: Robots can move and manipulate objects with precision, performing tasks that are often dangerous or repetitive for humans.Perception and Sensing: Equipped with cameras, sensors, and other devices, robots can perceive and interpret their surroundings, enabling them to navigate and interact with their environment.Decision-Making and Autonomy: Advanced robots can make decisions based on collected data and predefined algorithms, allowing them to operate autonomously in complex situations.The applications of robotics are vast and continuously expanding. In the manufacturing sector, robots automate assembly lines and perform high-precision tasks, increasing efficiency and productivity. In healthcare, robotic systems assist in surgeries, provide rehabilitation, and dispense medications, enhancing patient outcomes.Transportation has also benefited from robotics. Self-driving cars utilize advanced algorithms and sensors to navigate roads and avoid obstacles, offering increasedsafety and convenience. In the military, robots play a critical role in surveillance, reconnaissance, and combatoperations, reducing risks to human soldiers.Entertainment and personal assistance are other areas where robots are making significant strides. Companion robots provide companionship and assistance to individuals, particularly the elderly and those with disabilities. Service robots handle household chores such as cleaning, cooking, and laundry, freeing up time for human activities.The development of robotics raises ethical and societal considerations. As robots become more autonomous and intelligent, questions arise about their potential impact on employment, privacy, and human interaction. It is essential that we address these issues through responsible regulation and ethical guidelines.In conclusion, robots have become an integral part of our technological landscape, transforming industries and shaping the future of human society. Their continued evolution promises to bring even greater innovation and benefits in the years to come.中文回答:机器人,人类技术的未来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Introduction to robotics technologyIn the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).Mechanical platforms -- the hardware baseA robot consists of two main parts: the robot body and some form of artificial intelligence (AI) system. Many different body parts can be called a robot. Articulated arms are used in welding and painting; gantry and conveyor systems move parts in factories; and giant robotic machines move earth deep inside mines. One of the most interesting aspects of robots in general is their behavior, which requires a form of intelligence. The simplest behavior of a robot is locomotion. Typically, wheels are used as the underlying mechanism to make a robot move from one point to the next. And some force such as electricity is required to make the wheels turn under command.MotorsA variety of electric motors provide power to robots, allowing them to move material, parts, tools, or specialized devices with variousprogrammed motions. The efficiency rating of a motor describes how much of the electricity consumed is converted to mechanical energy. Let's take a look at some of the mechanical devices that are currently being used in modern robotics technology.Driving mechanismsGears and chains:Gears and chains are mechanical platforms that provide a strong and accurate way to transmit rotary motion from one place to another, possibly changing it along the way. The speed change between two gears depends upon the number of teeth on each gear. When a powered gear goes through a full rotation, it pulls the chain by the number of teeth on that gear.Pulleys and belts:Pulleys and belts, two other types of mechanical platforms used in robots, work the same way as gears and chains. Pulleys are wheels with a groove around the edge, and belts are the rubber loops that fit in that groove.Gearboxes:A gearbox operates on the same principles as the gear and chain, without the chain. Gearboxes require closer tolerances, since instead of using a large loose chain to transfer force and adjust for misalignments, the gears mesh directly with each other. Examples of gearboxes can be found on the transmission in a car, the timing mechanism in a grandfather clock, and the paper-feed of your printer.Power suppliesPower supplies are generally provided by two types of battery. Primary batteries are used once and then discarded; secondary batteries operate from a (mostly) reversible chemical reaction and can be recharged several times. Primary batteries have higher density and a lower self-dischargerate. Secondary (rechargeable) batteries have less energy than primary batteries, but can be recharged up to a thousand times depending on their chemistry and environment. Typically the first use of a rechargeable battery gives 4 hours of continuous operation in an application or robot.SensorsRobots react according to a basic temporal measurement, requiring different kinds of sensors.In most systems a sense of time is built-in through the circuits and programming. For this to be productive in practice, a robot has to have perceptual hardware and software, which updates quickly. Regardless of sensor hardware or software, sensing and sensors can be thought of as interacting with external events (in other words, the outside world). The sensor measures some attribute of the world. The term transducer is often used interchangeably with sensor. A transducer is the mechanism, or element, of the sensor that transforms the energy associated with what is being measured into another form of energy. A sensor receives energy and transmits a signal to a display or computer. Sensors use transducers to change the input signal (sound, light, pressure, temperature, etc.) into an analog or digital form capable of being used by a robot.Microcontroller systemsMicrocontrollers (MCUs) are intelligent electronic devices used inside robots. They deliver functions similar to those performed by a microprocessor (central processing unit, or CPU) inside a personal computer. MCUs are slower and can address less memory than CPUs, but are designed for real-world control problems. One of the major differences between CPUs and MCUs is the number of external components needed tooperate them. MCUs can often run with zero external parts, and typically need only an external crystal or oscillator.Utilities and toolsROBOOP (A robotics object oriented package in C++):This package is an object-oriented toolbox in C++ for robotics simulation. Technical references and downloads are provided in the Resources.CORBA: A real-time communications and object request broker software package for embedding distributed software agents. Each independent piece of software registers itself and its capabilities to the ORB, by means of an IDL (Interface Definition Language). Visit their Web site (see Resources) for technical information, downloads, and documentation for CORBA.TANGO/TACO:This software might be useful for controlling a robotics system with multiple devices and tools. TANGO is an object oriented control system based on CORBA. Device servers can be written in C++ or Java. TACO is object oriented because it treats all(physical and logical) control points in a control system as objects in a distributed environment. All actions are implemented in classes. New classes can be constructed out of existing classes in a hierarchical manner, thereby ensuring a high level of software reuse. Classes can be written in C++, in C (using a methodology called Objects in C), in Python or in LabView (using the G programming language).ControllersTask Control Architecture: The Task Control Architecture (TCA) simplifies building task-level control systems for mobile robots. "Task-level" refers to the integration and coordination of perception, planning, andreal time control to achieve a given set of goals (tasks). TCA provides a general control framework, and is intended to control a wide variety of robots. TCA provides a high-level machine-independent method for passing messages between distributed machines (including between Lisp and C processes). TCA provides control functions, such as task decomposition, monitoring, and resource management, that are common to many mobile robot applications. The Resources section provides technical references and download information for Task Control Architecture.EMC (Enhanced Machine Controller): The EMC software is based on the NIST Real time Control System (RCS) methodology, and is programmed using the NIST RCS Library. The RCS Library eases the porting of controller code to a variety of UNIX and Microsoft platforms, providing a neutral application programming interface (API) to operating system resources such as shared memory, semaphores and timers. The EMC software is written in C and C++, and has been ported to the PC Linux, Windows NT, and Sun Solaris operating systems.Darwin2K: Darwin2K is a free, open source toolkit for robot simulation and automated design. It features numerous simulation capabilities and an evolutionary algorithm capable of automatically synthesizing and optimizing robot designs to meet task-specific performance objectives.LanguagesRoboML (Robotic Markup Language): RoboML is used for standardized representation of robotics-related data. It is designed to support communication language between human-robot interface agents, as well as between robot-hosted processes and between interface processes, and to provide a format for archived data used by human-robot interface agents.ROSSUM: A programming and simulation environment for mobile robots. The Rossum Project is an attempt to help collect, develop, and distribute software for robotics applications. The Rossum Project hopes to extend the same kind of collaboration to the development of robotic software.XRCL (Extensible Robot Control Language): XRCL (pronounced zircle) is a relatively simple, modern language and environment designed to allow robotics researchers to share ideas by sharing code. It is an open source project, protected by the GNU Copyleft.SummaryThe field of robotics has created a large class of robots with basic physical and navigational competencies. At the same time, society has begun to move towards incorporating robots into everyday life, from entertainment to health care. Moreover, robots could free a large number of people from hazardous situations, essentially allowing them to be used as replacements for human beings. Many of the applications being pursued by AI robotics researchers are already fulfilling that potential. In addition, robots can be used for more commonplace tasks such as janitorial work. Whereas robots were initially developed for dirty, dull, and dangerous applications, they are now being considered as personal assistants. Regardless of application, robots will require more rather than less intelligence, and will thereby have a significant impact on our society in the future as technology expands to new horizons.外文出处:Robotic technology / edited by A. Pugh./P. Peregrinus, c1993.附件1:外文资料翻译译文机器人技术简介在制造业领域,机器人的开发集中在执行制造过程的工程机器人手臂上。

相关文档
最新文档