应用题解题技巧

合集下载

数学应用题答题技巧

数学应用题答题技巧

数学应用题答题技巧
1. 嘿,仔细读题可是关键啊!就像你走路得看清路一样。

比如题目说小明有 5 个苹果,给了小红 2 个,问还剩几个。

你要是没看清数字,那不就答错啦!所以读题要认真仔细,可别马虎哟!
2. 画图解题超有用的呀!这就好比给你一团乱麻,你画个图不就理清啦。

像有道题是算几个图形的面积,你画个图出来,一目了然,答案不就轻松找到啦!
3. 找关键信息很重要呢!好比在一堆东西里找宝贝。

比如题目里说周末去公园,那这就是个重要提示呢,做题可得抓住这些关键啊,不然咋答对呢!
4. 大胆假设也不错呀!就像摸着石头过河。

比如算一个数除以另一个数是多少,你先假设一个数试试看,说不定就能找到规律呢!
5. 检查答案可不能忘啊!这就像出门前得照照镜子看看有没有问题。

做完题检查下步骤对不对,算的数对不对,这样才放心呀!
6. 多思考几种方法呀,别在一棵树上吊死!好比去一个地方可以走好几条路呢。

一道题可能有多种解法,都试试,说不定有更简单快捷的呢!
7. 不要死磕难题呀,该放就放!就像爬山遇到陡壁,先绕过去嘛。

要是一道题难住了,别一直纠结,先去做后面的,最后再回来看看,说不定就有灵感啦!
总之,掌握这些数学应用题答题技巧,做题就会又快又准,不信你试试呀!。

做数学应用题的技巧

做数学应用题的技巧

做数学应用题的技巧做数学应用题的技巧一.归一问题解答含义及方法牢记题中的数量关系,仔细阅读应用题给出的意思。

含义:在解答应用题时,先要求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

数量关系:总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数解答思路及方法:先求出单一量,以单一量为标准,求出所要求的数量。

二.归总问题解答含义及方法含义:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

数量关系:1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量解题思路和方法: 先求出总数量,再根据题意得出所求的数量。

三.和差问题解答含义及方法含义:已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

数量关系:大数=(和+差)÷ 2 小数=(和-差)÷ 2解题思路和方法:简单的题目可以直接套用公式;复杂的题目变通后再用公式。

四.和倍问题解答含义及方法含义:已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

数量关系:总和÷(几倍+1)=较小的数总和 - 较小的数 = 较大的数较小的数×几倍 = 较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。

五.差倍问题解答含义及方法含义:已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

数量关系:两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数解题思路和方法:简单的题目直接利用公式,复杂的题目变通后利用公式。

小学数学应用题解题技巧分析

小学数学应用题解题技巧分析

小学数学应用题解题技巧分析小学数学应用题通常需要学生通过对题目进行分析和理解,将题目中提供的信息和数据转化为数学模型,并最终求解问题。

以下是一些解题技巧,帮助学生更好地应对小学数学应用题。

1. 读懂题目小学数学应用题的第一步是读懂题目。

学生需要认真阅读题目中的各种信息和要求,理解题目所涉及的概念和条件,掌握题目所给数据的含义和单位。

2. 画图辅助对于一些需要考虑几何图形的应用题,学生可以通过画图来帮助自己理解和解决问题。

画图对于判断题目信息的有效性以及找到规律有很大的帮助。

3. 少设未知量尽可能减少未知量的数量,可以帮助学生更好地理解题目和求解问题。

通过简化问题的形式,可以使问题更加清晰明确,并且更容易找到解决方案及其过程。

4. 分步骤求解对于复杂的应用题,分步骤求解是非常必要的,这可以使问题变得更容易处理。

学生可以在解题过程中分步骤处理,先进行一些简单的计算和推理,然后逐步进行更深的问题分析和求解。

5. 掌握常见模型小学数学应用题眼种常见的模型,如“比例运算”、“面积和周长”、“速度、时间、距离”等等,学生需要掌握这些常见模型的问题分析和求解方法。

在日常练习中,可以对这些模型进行大量练习,以提高对这些模型的理解和记忆。

6. 实际思考对于一些实际场景的数学应用题,学生需要在解题过程中考虑到实际情况。

分析问题背后的实际情况和条件可以更好地帮助学生理解问题,并找到最佳的解决方案。

7. 看清单位在应用题中,单位通常也很重要。

学生通常需要将题目中给出的数据进行转换,以便计算得出正确的答案。

例如,需要将距离换算成米或公里,将时间换算成小时或分钟。

总之,对小学数学应用题的成功解决,需要学生认真阅读题目,画图辅助,少设未知量,分步骤求解,掌握常见模型,实际思考,并注意看清单位。

通过这些技巧,可以让学生更加熟练地处理数学应用题,并提高他们的数学技能水平。

初一数学应用题解题技巧

初一数学应用题解题技巧

初一数学应用题解题技巧一、审题技巧1. 仔细读题,明确已知条件和所求问题- 例如:某班有男生25人,女生比男生少5人,问这个班共有多少人?- 解析:已知条件是男生有25人,女生比男生少5人。

所求问题是这个班共有的人数。

首先根据已知条件求出女生人数为25 - 5=20人,然后将男生人数和女生人数相加,得到班级总人数为25+20 = 45人。

2. 标注关键信息- 例如:一件商品按进价提高20%后标价,又以9折优惠卖出,结果每件仍获利20元,求这件商品的进价。

- 解析:关键信息有“进价提高20%标价”“9折优惠卖出”“获利20元”。

设这件商品的进价为x元,标价就是(1 + 20%)x元,售价就是(1 + 20%)x×0.9元,根据售价 - 进价=利润,可列方程(1 + 20%)x×0.9−x = 20,1.08x−x = 20,0.08x = 20,解得x = 250元。

3. 理解题目中的隐含条件- 例如:在一个等腰三角形中,一个角是80°,求另外两个角的度数。

- 解析:隐含条件是等腰三角形两底角相等。

这里80°的角可能是顶角也可能是底角。

当80°是顶角时,底角为(180° - 80°)÷2 = 50°,另外两个角是50°、50°;当80°是底角时,另一个底角也是80°,顶角为180° - 80°×2 = 20°,另外两个角是80°、20°。

二、建立数学模型(方程或算式)的技巧1. 对于等量关系明显的问题,直接设未知数建立方程- 例如:甲、乙两人相距30千米,甲的速度是5千米/小时,乙的速度是4千米/小时,两人同时相向而行,几小时后相遇?- 解析:等量关系是甲走的路程+乙走的路程 = 30千米。

设x小时后相遇,根据路程 = 速度×时间,可列方程5x+4x = 30,9x = 30,解得x=(10)/(3)小时。

应用题11种解题技巧

应用题11种解题技巧

应用题11种解题技巧“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。

(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。

三年级数学应用题解题技巧

三年级数学应用题解题技巧

三年级数学应用题解题技巧一、审题技巧1. 仔细读题例如:“果园里有苹果树30棵,梨树比苹果树多10棵,问梨树有多少棵?”解析:读题时要明确已知条件是苹果树有30棵,梨树和苹果树数量的关系是梨树比苹果树多10棵,问题是求梨树的数量。

要把每个数字、字词的含义都理解清楚,不能漏读或误读信息。

2. 圈出关键信息对于上题,可以圈出“苹果树30棵”“梨树比苹果树多10棵”这些关键信息。

解析:圈出关键信息有助于在解题过程中快速找到有用的数据和关系,避免被多余信息干扰。

二、分析数量关系1. 找出已知量和未知量如在“小明有15颗糖,小红的糖比小明的2倍少3颗,问小红有多少颗糖?”解析:已知量是小明有15颗糖,未知量是小红有多少颗糖。

同时还要明确数量关系是小红的糖数 = 小明的糖数×2 3。

2. 确定运算关系在“学校图书馆有故事书80本,科技书是故事书的3倍,问科技书有多少本?”解析:这里的运算关系是乘法,因为科技书的数量是故事书数量的3倍,所以科技书数量 = 80×3 = 240(本)。

如果是“学校图书馆有故事书80本,比科技书的2倍多20本,问科技书有多少本?”这里的运算关系就复杂一些,需要先从故事书的数量中减去多的20本(80 20 = 60本),再除以2得到科技书的数量,即60÷2 = 30本。

三、列式计算1. 根据数量关系正确列式例如“三年级一班有男生25人,女生比男生少5人,求全班人数。

”解析:首先求出女生人数,因为女生比男生少5人,所以女生人数为25 5 = 20人。

全班人数就是男生人数加女生人数,列式为25+(25 5)=40人。

2. 注意运算顺序在“18+2×(10 6)”这个式子中。

解析:根据四则运算顺序,先算括号里的10 6 = 4,再算乘法2×4 = 8,最后算加法18+8 = 26。

四、检查答案1. 代入原题检查例如“一个数除以5商是8,余数是3,这个数是多少?”解析:根据被除数 = 商×除数+余数,算出这个数是8×5+3 = 43。

应用题的解题技巧

应用题的解题技巧

应用题的解题技巧(一)用综合法解应用题从已知条件出发,逐步推出要求问题的方法,叫做综合法。

用综合法解应用题,是从条件出发,根据数量关系,先选择两个已知数量,提出可以解答的问题;然后把所求出的数量作为我们已知条件,与其它的已知条件搭配,再提出可以解的问题。

这样逐步推导,直至求出应用题所要求的问题为止。

[例1]一个车间有两个小组,第一小组与第二小组人数的比是5:3;如果第一小组14人到第二小组时,第一小组与第二小组人数的比是1:2。

原来两个小组各有多少人?[分析与解]由“第一小组与第二小组人数的比是5:3”,可以推出:第一小组人数占全车间总人数的355+;第二小组人数占全车间总人数的353+。

由“第一小组14人到第二小组后,第一小组与第二小组人数的比是1:2”,可推出:第一小组调14人到第二小组后,第一小组人数占全车间总人数的211+。

调出14人后,第一小组人数占全车间人数的分率由85降为31。

:由此可推出14人占全车间人数的分率是:85-31。

[例2]甲乙两地相距672千米,一辆汽车以每小时48千米的速度从甲地驶向乙地。

从乙地返回甲地比去时多用4小时,且最后一小时只行26千米。

这辆汽车从乙地返回甲地平均每小时行多少千米?[分析与解]根据“甲乙两地相距672千米”和“去时每小时48千米”,可求出“从甲地到乙地用了几小时”。

又根据“从甲地到乙地用了几小时”和“比去时多用4小时”,可求出“从乙地返回甲地用了多少小时”。

进而求得返回时每小时行多少千米。

同类练习1、两地之间相距1120千米,有两列火车同时相向开出。

第一列火车每小时行60千米,第二列火车每小时行48千米。

在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距离目的地有多少千米?2、甲班和乙班共83人,乙班和丙班共86人,丙班和丁班共88人。

问甲班和丁班共有多少人?参考答案1、5+3=8 14÷(85-31)=48 48×85=30(人) 48×83=18(人) 2、(672-26)÷(672÷48+4-1)=38(千米)3、1120-48×[1120÷(60+80)]=736(千米)4、83+88-86=85(人)(二)用分析法解应用题从要求问题出发,寻找为了解决问题所需要的条件的方法,叫分析法。

五年级数学应用题的解题技巧有哪些

五年级数学应用题的解题技巧有哪些

五年级数学应用题的解题技巧有哪些在小学的学习中,数学是学习的重点知识,而应用题是考察的重点,所以我们应该了解一些答题的技巧,下面是小编为大家总结的小学五年级数学应用题解题技巧。

应用题解题技巧一、和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。

一般关系式有:(和-差)÷2=较小数 (和+差)÷2=较大数二、倍差问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题;基本关系式是:两数差÷倍数差=较小数三、还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题:还原问题是逆解应用题。

一般根据加、减法,乘、除法的互逆运算的关系。

由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

四、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。

五、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题):解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差六、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:成倍时小的年龄=大小年龄之差÷(倍数-1)几年前的年龄=小的现年-成倍数时小的年龄几年后的年龄=成倍时小的年龄-小的现在年龄七、鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”;一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题解题技巧
小学数学应用题是小学数学学习的难点,每次考试中都会有大的综合题体现在应用题中,小学数学应用题考察的是知识点的累计和关系,结构复杂、类型颇多,学生要学会举一反三,灵活运用,今天易第家教网向您介绍不同类型的应用题有不同的解决方法。

一、和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。

一般关系式有:
(和-差)÷2=较小数(和+差)÷2=较大数
二、倍差问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题;
基本关系式是:两数差÷倍数差=较小数
三、还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题:
还原问题是逆解应用题。

一般根据加、减法,乘、除法的互逆运算的关系。

由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

四、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。

其结果往往与条件不符合,再加以适当的调整,从而求出结果。

五、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题):
解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。

其计算方法是:
当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差
六、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
七、鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”;
一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。

常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数
兔子只数=(总腿数-总头数×2) ÷2 鸡的只数=(总头数×4-总腿数) ÷2
(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
八、公约数、公倍数问题:运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题:
九、分数应用题:指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题:分数应用题一般分为三类:1.求一个数是另一个数的几分之几;
2.求一个数的几分之几是多少;
3.已知一个数的几分之几是多少,求这个数;
其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题十、工程问题:它是分数应用题的一个特例。

是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。

解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:工作效率×工作时间=工作量
工作量÷工作时间=工作效率
工作量÷工作效率=工作时间
十一、过桥问题:从车头上桥,到车尾离开桥,求所用的时间:
路程=桥长+列车长度
十二、流水问题:求船在流水中航行的时间;
船速+水速=顺流速度,船速-水速=逆流速度;
十三、线上植树问题,求植树的株数:
在封闭的线上植树:路长=株距×株数株距=路长÷株数株数=路长÷株距
在不封闭线上植树: 两端都植树;
路长=株距×(株数-1)株距=路长÷(株数-1)株数=路长÷株距+1
十四、面上植树问题,求植树的株数:
当长方形土地的长、宽分别能被株距、行距整除时;
行距×株距=每株植物的占地面积,土地面积÷每株植物的占地面积=株数;
当长方形土地的长、宽不能被株距、行距整除时,可以按线上植树问题解题;十五、盈亏问题,求分配的人数:
剩余物品的个数差÷分配方法的个数差=分配的人数。

相关文档
最新文档