复变函数论文
复变函数论文.doc

复、实变函数的比较与应用作者:阮玲花学号:专业:数学与应用数学复、实变函数的比较与应用姓名:阮玲花班级:数学 132数域从实数域扩大到复数域后,便产生了复变函数论,并且深入到了微分方程、拓扑学等数学分支。
复变函数论着重讨论解析函数,而解析函数的实部与虚部是相互联系的 , 这与实函数有根本的区别。
有关实函数的一些概念,很多都是可以推广到复变函数上。
例如:函数的连续性、函数的导数、有(无)界函数、中值定理、泰勒展式、基本初等函数等等。
在中学我们主要了解学习了实变函数,与大学期间我们又更加深入的学习研究了实变函数,与此同时,也开始复变函数的学习。
由此我们看到了:“数的扩展:正数→负数→实数→” , 在实数范围内:当方程判别式小于 0 时,没有实根。
→扩大数域,引进复数,这样容易给人一种由浅入深、由简入繁、由特殊到一般的感觉,它们有很深的联系,然而事实上,他们有很大的不同,有很大的区别。
下面我们从几个方面来说明实变函数与复变函数的联系与区别。
(一)实变函数实变函数论即讨论以实数为变量的函数 , 然而实变与常微分方程等不同 , 简单地说就是恰当的改造积分定义使得更多的函数可积。
由于诸如狄利克雷这样的简单函数都不可积,所以原有的积分范围太窄了,进而便产生了Lebesgue 创立新积分的原始思路。
Lebesgue 积分:(二)复变函数复变函数是数学分析的继续,复变函数的定义:若在复数平面上存在一个点集 E ,对于 E 的每一点 z,按照一定规律,有一个或多个复数值 W 与之相对应,则称 W 为 z 的函数,记作 W f ( z) ,z∈E 邻域:以复数 z0为圆心,以任意小正实数为半径做一个圆,则圆内所有点的集合称为 z0 的邻域。
把复变函数的 f ( z) 的实部和虚部分别记作u(x,y)和v(x,y) ,f ( z) =u(x,y)+iv(x,y) ,所以,复变函数可以归结为一对二元实变函数。
(三)实变函数及与复变函数比较1.自变量的不同以实数作为自变量的函数就做实变函数;即实数→实变量→实变函数。
复变函数论论文

论文目录1.摘要 (1)2.关键词 (1)3.引言 (1)4.理论 (1)5.参考文献 (6)8.英文摘要 (6)全文共15 页2,148 字复变函数论- - 2 -复变函数论(学号:20101101926 刘艳玲)(物理与电子信息学院 物理学专业2010级,内蒙古 呼和浩特 010022)指导老师: 孙永平摘要:了解利用柯西定理来对复变函数的定分积和不定积分的分类。
运用留数定理来求解实变函数的积分。
利用达朗贝尔,泰勒,解析延拓和洛朗法对级数进行展开,在运用傅里叶变换来对特殊级数进行计算。
关键字:复数;复变函数;积分;级数;留数;傅里叶变换;1引言了解利用柯西定理来对复变函数的定分积和不定积分的分类。
运用留数定理来求解实变函数的积分。
利用达朗贝尔,泰勒,解析延拓和洛朗法对级数进行展开,在运用傅里叶变换来对特殊级数进行计算。
2复变函数2.1.1复数与复数运算 2.1.1.1复数的基本概念Z=x+iy (1.1.1)这叫作复数的代数式,x 和y 则分别叫作该复数的实部和虚部,并分别记作Res 和Imz 。
复数z 可表示为三角式和指数式,即 ()ϕϕρsin cos i z +=ϕρi e z =叫作该复数的模,叫作该复数的幅角。
2.1.2 复数的运算 复数222111,iy x z iy x z +=+=由此明显可见加法的结合律和交换律成立。
商的定义物理与电子信息学院期中论文- 3 -.e )]sin(i )[cos()i(212121212121ϕϕρρϕϕϕϕρρ-=-+-=z z n 次幂应用.e )sin i (cos i ϕρϕϕρn n n n n n z =+=n 次根号的应用.e )sin i (cos /i n n nnnn z ϕρϕϕρ=+=2.1.2复变函数2.1.2.1复变函数定义一般地,当z=x+iy 在复平面上变化时,如果对于z 的每一个值,都有一个或几个复数值ω相对应,则称ω为z 的复变函数。
复变函数小论文

复变函数小论文本学期我学习了复变函数,丰富了数学的见识。
从实数到复数的延伸,形成一个全面的知识体系。
复变函数是以复数为中心进行一系列讨论和分析,而复数的独特之处在于它的虚部,也就是虚数部分;之前对虚数域的认识,完全在于一个虚字。
复数的出现,使得基本运算中的开方运算不再存在无解情况,n此多项式也不再存在增根,这为在某些运算提供了帮助。
复数可以解决一些物理数学上的问题,解题到最后经过转化所得到的实数解,才有物理上的意义。
虚数是有很大的的现实意义的,通过引入虚数,那些没有意义根式也变得有理可寻。
复数的集合复平面是一个二维平面,实数有自己的直角坐标系,而类似的复数也有坐标。
复数有实轴和虚轴,用(x,y)表示。
复变函数的极限与连续和实函数一样提到邻域的含义。
复函数是一元实变函数概念的推广,二者表述有所不同:1.实变函数是单值函数,而复变中有了多值函数。
2.复变函数实现了不同复平面的转化,运用了曲线或图形的映射。
复变函数的导数和微分定义与实变函数一致,但是前者多了一个要求,即对极限式要求是与路径和方式无关。
复变函数的积分许多与高等数学中曲线积分相似的性质,积分可化为第二类曲线积分,也可化为参数方程直接关于t的积分。
复数列极限在定义与性质上与实数列极限相似,可以将复数列极限的计算问题转化到实数列上,这其中的级数的敛散性与和的定义形式都与实数项级数相同。
通过课程的学习,我们可以了解到,复数可以应用的现实中的数学建模,其在很多运算中都有着不可思议的性质和规律。
复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。
王琪材料31 2130201019。
复变函数论文

复变函数论文复变函数理论推动了许多学科的发展,在解决某些实际问题中也是强有力的工具,复变函数的理论和方法在数学,自然科学和工程技术中有着广泛的应用,是解决诸如流体力学,电磁学,热学,弹性理论中的平面问题的有力工具。
而自然科学和生产技术的发展有极大的推动了复变函数的发展,丰富了它的内容。
复变函数的主要内容已成为理工科很多专业的必修课程。
复变函数在很多领域都有重要的应用,其涵盖面极广,甚至可以用来解决一些复杂的计算问题。
复变函数可以应用在地理信息系统中,因为GIS对复杂函数的计算要求以及空间函数的分析,复变函数的应用也渗透到了这个领域,它对复杂函数的计算能力使得在GIS上的应用也不可或缺。
GIS的操作对象是空间数据和属性数据,即点线,面,体这类有三维要素的地理实体。
空间数据的最根本特点是每一个数据都按统一的地理坐标进行编码,实现对其定位,定性和定量的描述,这是其技术难点之所在。
而复变函数中的黎曼曲面理论就是用来解决这种问题的。
复变函数研究多值函数,黎曼曲面理论是研究多值函数的主要工具。
由许多层面安放在一起而构成的一种曲面叫做黎曼曲面,利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。
对于某一个多值函数,如果能做出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。
复变函数作为最丰饶的数学学科的分支,复变函数在数学领域的应用尤为可见。
特别是在解析函数的微分理论,积分理论等方面的应用,而在这些方面,它与一个实际的电路是一一对应的关系,是为我们求解响应与激励的关系服务的,这也就是它的基础应用。
针对连续系统和离散系统的时域分析,相对应的有三个变换域或傅立叶变换,拉普拉斯变换和Z变换。
变换域是信号与系统的核心内容,也是比较难的一部分,原因是变换域的分析方法涉及到工程数学的知识很多,如果没有扎实的基础,学起来就有一定的难度。
复变函数中还有很多知识点都可以对应到电路中,这可以使我们在求解电路问题时,使问题变得简单化。
复变函数与积分变换结业论文

基于matlab对复变函数与积分变量的研究姓名:徐庆学号:101044113单位:北京林业大学工学院自动化10-1内容摘要:《复变函数与积分变量》这门课程作为自动化专业的专业基础课程,对于后继课程有着极其重要的意义,但在学习过程中,很多量的求解需要繁琐的计算步骤与复杂的计算过程。
同时,作为一种抽象的函数,复变函数一般来说很难用具体图像来描绘其信息。
Matlab作为一款功能强大的科学计算软件,利用一些编程语句可以很轻松的解决上述问题。
例如,利用matlab可以对一个复常数进行基本的求模,求幅角,求实部、虚部的运算。
更进一步地,还可以求复数的指数、对数,对复数进行三角运算。
在对于复变函数的研究中,可以求解复变函数的留数,并用来求复变函数的积分,对复变函数进行泰勒级数展开。
在积分变换方面,可以对函数进行傅里叶变换、逆变换,进行拉普拉斯变换、逆变换。
在编程化的语句中,可以对同一类的问题进行统一的解决。
关键字:复变函数积分变量matlab语句运算结果目录1 matlab在复常数中的应用 (4)1.1 Matlab中对单个复常数的简单运算 (4)1.2 Matlab中对于单个复常数进行复杂的运算 (5)1.3Matlab中对于两个复常数之间进行乘法、除法运算 (7)2.利用matlab对函数进行泰勒级数展开 (8)3 matlab在留数和积分中的应用 (9)3.1利用matlab计算复变函数的留数 (9)3.2在matlab中,利用留数定理求解复变函数的积分 (10)4 利用matlab对信号做傅氏、拉氏变换 (11)4.1 利用matlab对信号做傅里叶变换 (11)4.2 利用matlab对信号做拉普拉斯变换 (13)5 利用matlab绘制复变函数 (14)1 matlab在复常数中的应用1.1 Matlab中对单个复常数的简单运算在matlab中,生成复数的形式分为两种:代数形式(如z=x+y*i)与指数形式(如z=r*exp(theta i),其中r为模长,theta为幅角的弧度值)。
复变函数论文(DOC)

复变函数论文《复变函数与积分变换》与《信号系统》的相互联系和运用系别:专业名称:学号:姓名:指导老师:年月日《复变函数与积分变换》与《信号系统》的相互联系和运用摘录:随着现代科学技术理论的发展,学课间的联系越来越紧密,通过相互协助,使复杂的问题能够利用较简单的方法方便,快捷的解决。
由于复变函数与积分变换的运算是实变函数运算的一种延伸,且由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,以及Taylor级数展开,Laplace变换和Fourier变换之后而使其显得更为重要,因此学习复变函数与积分变换对学习信号与系统具有很大的促进作用。
文章主要介绍了:1,Fourier变换是怎样在信号系统的频域分析中进行运用的;2,怎样利用复变函数中的“留数定理”对Laplace反变换进行计算; 3,复变函数中的Z变换是怎样解决信号系统中离散信号与系统复频域问题分析的;4,复变函数与积分变换中的各种运算是怎样通过信号系统中的MATLAB来实现的。
关键词:留数,Laplace变换,Z变换, Fourier变换,Taylor级数,MATLAB。
1,Fourier变换是怎样在信号系统的频域分析中进行运用的;当对一个信号系统进行分析和研究时,首先应该知道该信号系统的数学模型,即建立该信号系统的数学表达式,例如:根据Fourier 级数的理论,连续时间周期信号的频域分析的数学表达式即为无限项虚指数序列的线性叠加;而且信号的Fourier 变换建立了信号的时域与频域之间的一一对应的关系,并揭示了其在时域域频域之间的内在联系,因此为信号和系统的分析提供了一种新的方法和途径。
例1:已知描述某稳定的连续时间LTI 系统的微分方程为''''()3()2()2()3(),y t y t y t x t x t ++=+系统的输入激励3()()t x t e u t -=,求该系统的零状态响应()zs y t 。
《复变函数》可视化教学实践论文

关于《复变函数》可视化教学的实践摘要:探讨利用matlab 软件可视化复变函数的教学心得,旨在加深学生对知识的理解,提高教师课堂教学效果。
关键词:可视化复变函数教学实践随着科技的发展,计算机已经走入千家万户,高校教学手段也发生了相应地改变,越来越多的教师尝试将数学课程与计算机结合起来,通过可视化手段增强学生对抽象的数学问题的理解,锻炼学生的自我动手能力,这也是高校教学改革的一个重要方面。
复变函数是高等数学的一个重要分支,是很多专业的基础课程,该课程内容抽象,定理证明复杂,大部分教材侧重理论分析,复变函数可视化内容难得一见。
目前对于复变函数可视化教学实践主要包含理论分析、计算机编程、教育意义的思考等,不仅从理论上探讨了可视化的可行性与重要性,还从教学实践的层面上分析了可视化在教学中所存在的问题及相应的对策,有很多一线教师总结了复变函数可视化教学的实施经验,还开发了一系列有创意的可操作的课题学习案例,其中有来自于数学知识内部的,也有来自于实际生活中的,甚至还有和其它学科相关联的课题等等。
本文是作者根据自己教授《复变函数》的教学实践,总结的一些教学心得。
1 复变函数可视化有利于学生熟练掌握计算机编程语言复变函数的可视化需要借助计算机来实现,因此教师和学生本身必须熟悉计算机编程语言。
原则上,可以通过c,fortran等语言来实现,但是基于成本考虑,个人更倾向于matlab语言编程。
matlab 是美国mathworks 公司20 世纪80 年代中期推出的数学软件,优秀的数值计算能力和卓越的数据可视化能力使其很快在数学软件中脱颖而出。
由于matlab不区分实数、复数和整数之间的区别,所有数都采用双精度表示,再加上matlab中具有丰富的数学函数库使得计算更加简便,所以利用matlab 编写复变函数程序更加方便,实现复变函数的数据计算以及图形显示更加快捷。
在《复变函数》教学中matlab的应用非常广泛,可以用来可视化函数,计算残数,分析傅里叶级数,理解平面场问题,应用到傅里叶变换和拉普拉斯变换中等,有兴趣的读者可以参考文献[1]。
复变函数与积分变换论文

复变函数论文复变函数在反馈系统稳定性中的应用姓名:李欢欢学号:0914101 21学院(系):电气与电子工程系专业:电气工程及其自动化指导教师:秦志新评阅人:完成日期:2011年12月25日星期日复变函数在反馈系统稳定性中的应用一、摘要:Laplace变换在分析反馈系统稳定性有着关键作用,求解一些简单的稳定性问题也很方便。
但对于一些较为复杂的反馈系统,用Laplace变换就不方便了。
通过对“辐角定理和奎斯特判据”和Laplace变换及特征方程,根与系数关系劳斯判据,根据三种方法的对比及其不同方法的特点体现出利用辐角定理结合奎斯特判据处理反馈系统问题的优越性。
辐角定理与奈奎斯特判据解法简单易懂便于推广,同时在其他领域也有着广泛的应用。
二、关键词:反馈系统、幅角、奈奎斯特判据、极点、零点三、正文: 【提出问题】:在电气电子工程及其自动化控制过程中,如图所示负反馈放大电路是最为常见的,应用最广泛的电路之一Xi 为输入量,Xi ’为电路中信号净输入量,Xf 为反馈量,“ ”为反馈系统在实际应用中,当输入信号为零即Xi=0时。
由于某种电扰动(如合闸通电或者外来信号干扰)其中含有的信号经过电路的放大,产生输入信号,而输出信号再进过负反馈系统再次进入输入,如此循环下去,电路将产生自激振荡,反馈系统将无法正常工作,处于不稳定状态。
所以如何保持反馈系统稳定工作,不致于产生自激振荡、在实践上和理论上都是一个必须解决的问题。
【分析问题】:如图所示表示单个回路反馈系统,整个反馈系统的输出Y(s),与输入X(s)之间的 关系为Y(s)=H1(s)[X(s)-H2(s)Y(s)]则闭环传输函数)(s H s H s H s X s Y s H 211)(1)()()()(+==而开环传输函数)()(s H s H s H 21)(='将H (s )进行拉氏反变换得∑∑==--=-==ni ni pit kie pi s kig s H g t h 1111][][)()(式中Pi 为H (s )的极点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复、实变函数的比较与应用
作者:阮玲花
学号:201310401205
专业:数学与应用数学
复、实变函数的比较与应用
姓名:阮玲花班级:数学132 学号:201310401205数域从实数域扩大到复数域后,便产生了复变函数论,并且深入到了微分方程、拓扑学等数学分支。
复变函数论着重讨论解析函数,而解析函数的实部与虚部是相互联系的,这与实函数有根本的区别。
有关实函数的一些概念,很多都是可以推广到复变函数上。
例如:函数的连续性、函数的导数、有(无)界函数、中值定理、泰勒展式、基本初等函数等等。
在中学我们主要了解学习了实变函数,与大学期间我们又更加深入的学习研究了实变函数,与此同时,也开始复变函数的学习。
由此我们看到了:“数的扩展:正数→负数→实数→”,在实数范围内:当方程判别式小于0时,没有实根。
→扩大数域,引进复数,这样容易给人一种由浅入深、由简入繁、由特殊到一般的感觉,它们有很深的联系,然而事实上,他们有很大的不同,有很大的区别。
下面我们从几个方面来说明实变函数与复变函数的联系与区别。
(一)实变函数
实变函数论即讨论以实数为变量的函数,然而实变与常微分方程等不同,简单地说就是恰当的改造积分定义使得更多的函数可积。
由于诸如狄利克雷这样的简单函数都不可积,所以原有的积分范围太窄了,进而便产生了Lebesgue创立新积分的原始思路。
Lebesgue积分:
(二)复变函数
复变函数是数学分析的继续,复变函数的定义:若在复数平面上存在一个点集E,对于E的每一点z,按照一定规律,有一个或多个复数值W与之相对应,则称W为z的函数,记作)(z
W=,z∈E邻域:以复数
f
z为圆心,以任意小
正实数ε为半径做一个圆,则圆内所有点的集合称为
z的邻域。
把复变函数的
(z
f=u(x,y)+iv(x,y),所以,复变函数f的实部和虚部分别记作u(x,y)和v(x,y),)
)
(z
可以归结为一对二元实变函数。
(三)实变函数及与复变函数比较
1.自变量的不同
以实数作为自变量的函数就做实变函数;即实数→实变量→实变函数。
以复数作为自变量的函数就叫做复变函数;即复数→复变量→复变函数。
2.实变函数与复变函数的联系区别
因为z=x+yi,所以复变函数y=)(z
W=
f
f的实部与虚部都是x,y的函数,即)(z =u(x,y)+iv(x,y),由此可以看成:一个复变函数是两个实变函数的有序组合。
这样,实变函数的许多定义、公式,定理可直接移植到复变函数中。
然而同时,由于复
变函数的虚部,实变函数的许多定义、公式,定理也不再是用于复变函数。
对于复变函数与实变函数,我们分别学习了两者的点集、序列、极限、连续性、可微性、积分等性质与应用。
然而同时,由于复变函数的虚部,所要求的点集、序列、极限、连续性、可微性、积分等性质与应用的定义也不尽相同。
3.复变函数与实变函数关于导数概念的叙述是相似的,即都是由函数值的差与自变量的差之商的极限来定义导数,它们的联系也是密切的,区别则是整个取值的差异。
复变函数在复数域中取值,实变函数在实数域内取值,但两种微分的几何意义是相同的。
对于微分的性质,实变函数与复变函数有以下三大点的不同。
(1)微分中值定理
微分中值定理是微分学的重要内容,表现形式一般为柯西中值定理,罗尔中值定理及拉格朗日中值定理,微分中值定理在复数域中是不成立的。
我们以罗尔定理来举例证明。
罗尔定理:若函数()f x 满足:①在闭区间[],a b 上连续;②在开区间(),a b 内可导,且()()f a f b =;则必存在ξ(),a b ∈,使得()0f ξ'=。
证明:取()iz f z e =,()f z 在整个复平面上解析,且()()02f f π=,但()iz f z ie '=,
无论z 取什么值都不会为零,也就是说罗尔定理的结论对函数()iz
f z e =不成立。
故微分中值定理不能直接推广到复变函数中来。
(2)解析函数零点的孤立性
在《复变函数论》中,区域D 内点可微的复变解析函数的零点总是孤立的。
而实变函数体现出的性质则截然相反。
例1:如在|a z -|<R 内的解析函数)(z f 不恒为零,a 为其零点,则必有a 的一个邻域,使得)(z f 在其中无异于a 的零点(不恒为零的解析函数零点必孤立)。
证明:设a 为)(z f 的m 级零点,则)(z f =(a z -)m ϕ(z) . 其中ϕ(z)在|a z -|<R 内解析,且ϕ(a )≠0. 从而ϕ(z)在点a 连续 . 于是存在邻域|a z -|<r<R 使得ϕ(z)在其中恒不为零. 故)(z f 在其中无异于a 的零点.
例2:一个实函数的零点不一定是孤立的。
如函数()f x ,当x ≠0时()f x =x 2sin
x
1,当x=0时()f x =0. 证明:由题意得,函数()f x 在x=0处可微,且以x=0为零点,此外x=πn 1也是它的零点,并以0为聚点。
(3)解析函数的无穷可微性在复变函数中,若)(z f 在区域D 内解析,则)(z f 在区域D 内具有各阶导数,并且它们也在区域D 内解析。
复变函数的这一性质称为解析函数的无穷可微性。
但在实变函数中,区间上的可微函数,是不一定具有二阶导数的,更谈不上具有高阶导数,这样的例子是很多的。
例:由高阶导数的柯西积分公式可得
设函数)(z f 在闭区域D 上解析(D 为单连通区域或多连通区域),则)(z f 在D 内的任意阶导数存在,且 )(n f (0z )=i n π2!
dz z z z f c
n ⎰+-10)()( (n=1,2,...).
其中C 为D 的边界,取正向:D z ∈0.
但实变函数中,任意()f x =b ax +不具有二阶导数。
4.复变函数积分性质与实变函数积分性质的区别
⑴复变函数积分的定义类似数学分析里积分的方法,采取的是分割、近似替代、求和、取极限等步骤来建立的,但形式像一元积分,而实质像曲线积分,也就是复变函数的积分在本质上与实变函数中第一类曲线积分相似。
⑵复变函数积分的牛顿—莱布尼兹公式与实一元函数的牛顿—莱布尼兹公式在形式和结果上几乎是完全一致,但实变函数积分对函数的要求比复变函数积分对函数的要求要低得多。
用牛顿—莱布尼兹公式计算复变函数积分,首先要解决的是,积分上下限的两点是否可以包含在一个单连通域内,且被积函数)(z f 是否在该单连通域内解析。
⑶复变函数与实变函数积分最大的不同之处是复变函数积分主要研究简单闭曲线上的积分)(z f dz ,方法不同于高等数学中的方法,但思想有相同之处。
复合闭路定理或留数定理,表达了边界与内部的联系,在高等数学中的牛顿-莱布尼兹公式、格林公式、高斯公式同样表达了边界与内部的联系。
(四)复变函数微积分理论在实际中的应用
复变函数论的方法在力学、物理学、以及工程技术中都有应用,就是把流体力学、弹性力学、电磁学、热学、电工以及通讯中的一些问题转化为复变函数中的一些问题,用解析函数来解决。
而计算一些实积分可以采用留数定理。
①利用复变函数的微分性质研究平面向量场的相关问题可以统一研究静电场的里函数和势函数,讨论电力线和等势线的分布,描绘出静电场的图像。
②复变函数积分的相关理论在流体力学中的应用
③留数的相关理论在积分计算中应用也较为广泛,在其它科学领域用处颇多,只因我等还未学到留数的相关
总结:
实变函数与复变函数在一定程度上的相通性便于对二者的理解与运用。
不过复变函数毕竟延伸到了虚数的领域,要求就较严格了一些。
在学习这方面的知识时,要注意对比,将两者融会贯通,这对学好复变函数与实变函数很有帮助。