单级倒立摆系统的极点配置与状态观测器设计

合集下载

演示文稿一阶倒立摆系统模型分析状态反馈与观测器设计

演示文稿一阶倒立摆系统模型分析状态反馈与观测器设计

的。为了应用线性系统理论,可在倒立摆平衡位
置附近对系统进行线性化,取 - ,令
• sin , cos 1 并忽略高次项,可得如下方程:

x
u mgl
J
c J
ml J
u
第7页,共33页。
• 可以用线性系统理论对倒立摆系统进行控制,选
择状态变量x。
x1 x
x2
x
x3 x4
第15页,共33页。
4.极点配置
• 假设系统要求超调量不超过10%,调整时间为2s,根据公

e( / 1 2 ) 10%
ts
4
wn
2
经计算取 0.7, wn 3
可得系统特征方程为
主导极s点2 为 2wns wn2 s2 4.2s 9 0
s1,2 2.1 j2.1424
第16页,共33页。
• 降维观测器状态跟踪误差仿真结果:
第33页,共33页。
21.4174 1 3.9281
0

计算
A

28.3480 6.3224
0 0
78.5615 27.9079
0
1
122.1830 0 152.8225 0.6747
第22页,共33页。
• 带状态观测器的状态反馈系统为
v
u
+ x
b
+
A
y c
+ b
xˆ G

+
A-GC
K
第23页,共33页。
T
A22
T
A12
K)
a(s)
•得
30 0
K
0
29.3253

直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告

直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告

一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。

倒立摆状态空间极点配置控制实验实验报告

倒立摆状态空间极点配置控制实验实验报告

倒立摆状态空间极点配置控制实验实验报告《现代控制理论》实验报告状态空间极点配置控制实验一、实验原理经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。

极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。

1.状态空间分析对于控制系统X = AX + Bu选择控制信号为:u = ?KX式中:X 为状态向量( n 维)u 控制向量(纯量)A n × n维常数矩阵B n ×1维常数矩阵求解上式,得到 x(t) = (A ? BK)x(t)方程的解为: x(t) = e( A?BK )t x(0)状态反馈闭环控制原理图如下所示:从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。

2.极点配置的设计步骤1) 检验系统的可控性条件。

2) 从矩阵 A 的特征多项式来确定a1, a2,……,an的值。

3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW其中 M 为可控性矩阵,4) 利用所期望的特征值,写出期望的多项式5) 需要的状态反馈增益矩阵 K 由以下方程确定:二、实验内容针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。

三、实验步骤及结果1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输入的系统状态方程为:可以取1l 。

则得到系统的状态方程为:于是有:直线一级倒立摆的极点配置转化为:对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。

2.采用四种不同的方法计算反馈矩阵 K。

方法一:按极点配置步骤进行计算。

1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计

一阶倒立摆系统模型分析状态反馈与观测器设计一阶倒立摆系统是控制工程中常见的一个具有非线性特点的系统,它由一个摆杆和一个质点组成,质点在摆杆上下移动,而摆杆会受到重力的作用而产生摆动,需要通过控制来实现倒立的功能。

以下是一阶倒立摆系统的模型分析、状态反馈与观测器设计的详细介绍。

一、系统模型分析:一阶倒立摆系统是一个非线性动力学系统,可以通过线性化的方式来进行模型分析。

在进行线性化之前,首先需要确定系统的状态变量和输入变量。

对于一阶倒立摆系统,可以将摆杆角度和质点位置作为状态变量,将水平推力作为输入变量。

在对系统进行线性化之后,可以得到系统的状态空间表达式:x_dot = A*x + B*uy=C*x+D*u其中,x是状态向量,u是输入向量,y是输出向量。

A、B、C和D是系统的矩阵参数。

二、状态反馈设计:状态反馈是一种常用的控制方法,通过测量系统状态的反馈信号,计算出控制输入信号。

在设计状态反馈控制器之前,首先需要确定系统的可控性。

对于一阶倒立摆系统,可以通过可控性矩阵的秩来判断系统是否是可控的。

如果可控性矩阵的秩等于系统的状态数量,则系统是可控的。

在确定系统可控性之后,可以通过状态反馈控制器来实现控制。

状态反馈控制器的设计可以通过选择适当的反馈增益矩阵K来实现。

具体的设计方法是,根据系统的状态空间表达式,将状态反馈控制器加入到系统模型中。

状态反馈控制器的输入是状态变量,输出是控制输入变量。

然后,通过调节反馈增益矩阵K的值,可以实现对系统的控制。

三、观测器设计:观测器是一种常用的状态估计方法,通过测量系统的输出信号,估计系统的状态。

在设计观测器之前,首先需要确定系统的可观性。

对于一阶倒立摆系统,可以通过可观性矩阵的秩来判断系统是否是可观的。

如果可观性矩阵的秩等于系统的状态数量,则系统是可观的。

在确定系统可观性之后,可以通过观测器来实现状态估计。

观测器的设计可以通过选择适当的观测增益矩阵L来实现。

具体的设计方法是,根据系统的状态空间表达式,将观测器加入到系统模型中。

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计小组成员:武锦张东瀛杨姣李邦志胡友辉一.倒立摆系统简介倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。

由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。

由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。

单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。

倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。

最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。

1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。

目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。

二.系统建模1.单级倒立摆系统的物理模型图1:单级倒立摆系统的物理模型单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。

倒立摆和小车共同构成了单级倒立摆系统。

倒立摆可以在平行于纸面180°的范围内自由摆动。

倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。

在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。

一级倒立摆实验报告

一级倒立摆实验报告

一级直线倒立摆极点配置控制实验一、实验目的1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、PID 控制分析等内容。

2.熟悉利用极点配置方法来进行倒立摆实验的原理方法。

3.学习MATLAB工具软件在控制工程中的应用。

3.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。

二、实验设备计算机及MATLAB相关软件元创兴倒立摆系统的软件元创兴一级直线倒立摆系统,包括运动卡和倒立摆实物倒立摆相关安装工具三、倒立摆系统介绍倒立摆是进行控制理论研究的典型实验平台。

由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。

学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。

倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。

由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。

四、倒立摆工作原理和物理模型以及数学模型(简述)1、工作原理:数据采集卡(也称运动控制卡,安装于计算机机箱的PCI插槽上)采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。

控制量由计算机通过运动控制卡下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现闭环控制。

直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。

(2)对该系统的稳定性、能观性、能控性进行分析。

(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。

(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

单级倒立摆系统的建模与控制器设计

单级倒立摆系统的建模与控制器设计

单级倒立摆系统的建模与控制器设计摘要:本文主要研究的是单级倒立摆的建模、控制与仿真问题。

倒立摆是一类典型的快速、多变量、非线性、强耦合、自然不稳定系统。

由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。

本文首先建立了单级倒立摆的数学模型,对其进行了近似线性化处理,得到了它的状态空间描述,并对系统的开环特性进行了仿真和分析。

然后,基于极点配置方法设计了单级倒立摆系统的控制器。

最后,用Matlab对系统进行了数值仿真,验证了所设计的控制算法的有效性。

关键词:单级倒立摆;极点配置;建模与控制目录1 绪论 (3)2 单级倒立摆系统的建模与分析 (4)2.1单级倒立摆系统的建模 (4)2.2单级倒立摆系统的模型分析 (8)3 单级倒立摆系统的极点配置控制器设计 (13)3.1单级倒立摆系统控制器设计的目标 (13)3.2单级倒立摆系统的能控性分析 (13)3.3单级倒立摆系统的极点配置控制器设计 (14)3.4闭环系统仿真分析 (16)4 结论 (20)致谢 (21)参考文献 (22)1 绪论倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

通过对它的研究不仅可以解决控制中的理论和技术实现问题,还能将控制理论涉及的主要基础学科:力学,数学和计算机科学进行有机的综合应用。

其控制方法和思路无论对理论或实际的过程控制都有很好的启迪,是检验各种控制理论和方法的有效的“试金石”。

倒立摆的研究不仅有其深刻的理论意义,还有重要的工程背景。

在多种控制理论与方法的研究与应用中,特别是在工程实践中,也存在一种可行性的实验问题,使其理论与方法得到有效检验,倒立摆就能为此提供一个从理论通往实践的桥梁,目前,对倒立摆的研究已经引起国内外学者的广泛关注,是控制领域研究的热门课题之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单级倒立摆系统的极点配置与状态观测器设计
14122156 杨郁佳
(1)倒立摆的运动方程并将其线性化
选取小车的位移z ,及其速度z g 、摆的角位置θ及其角速度θg
作为状态变量,即T x z z θθ⎡⎤=⎢⎥⎣
⎦g g 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml
Ml x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦g []1000y x
= 设M=2kg ,m=0.2kg ,g=9.81m/2
s ,则单级倒立摆系统的状态方程为 (1010)
01010
01020.500013030
011040.54x x x x u x x x x ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦ []12100034x x y x x ⎡⎤⎢⎥
⎢⎥=⎢⎥⎢⎥⎣⎦
(2)状态反馈系统的极点配置。

首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。

MATLAB 程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5];
C=[1 0 0 0];
D=0;
rct=rank(ctrb(A,B))
[z,p,k]=ss2zp(A,B,C,D)
MATLAB程序执行结果如下:
系统能控,系统的极点为
1=0
λ
2=0
λ
3=3.3166
λ
4=-3.3166
λ
可以通过状态反馈来任意配置极点,将极点配置在
1=-3
λ*
2=-4
λ*
3=-5
λ*
4=-6
λ*
MATLAB程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];
B=[0; 0.5; 0; -0.5];
P=[-3 -4 -5 -6];
K=place(A,B,P)
MATLAB程序执行结果如下:
因此,求出状态反馈矩阵为
K=[-72.0 -68.4 -332.0 -104.4]
采用MATLAB/Simulink构造单级倒立摆状态反馈控制系统的仿真模型。

首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值:2。

运行仿真程序,显示仿真曲线,如下。

o处。

仿真结果表明倒立摆的杆子与数值方向的偏角从初值2,经过控制稳定在=0
(3)状态观测器实现状态反馈极点配置。

MATLAB程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];
B=[0; 0.5; 0; -0.5];
C=[1 0 0 0];
rob=rank(obsv(A,C))
MATLAB程序执行结果如下:
Rob=4说明系统能观,可以设计状态观测器。

取状态观测器的特征值为-3,-4,-5,-6 MATLAB程序如下:
A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0];
A1=A’;
C=[1 0 0 0];
C1=C’;
P=[-3 -4 -5 -6];
H1=place(A1,C1,P);
H=H1’
MATLAB 程序执行结果如下:
状态观测器矩阵[]18 130 540 1790T
H =--
采用MATLAB/Simulink 构造具有状态观测器的单级倒立摆状态反馈控制系统的仿真模型。

首先,在MATLAB的Command Window中输入各个矩阵的值,并且在模型中的积分器中设置非零初值:2。

运行仿真程序,显示仿真曲线,如下。

对比两个仿真图,可以发现加上状态观测器对单级倒立摆的控制效果基本上无影响。

相关文档
最新文档