初二数学下学期第八章证明单元测试卷
八年级数学下册第八章分式检测试卷及答案

八年级数学下册第八章分式检测试卷及答案【】多做练习题和试卷,可以使学生了解各种类型的题目 ,使学生在数学中做到举一反三。
在此查字典数学网为您提供八年级数学下册第八章分式检测试卷及答案 ,希望给您学习带来帮助 ,使您学习更上一层楼!八年级数学下册第八章分式检测试卷及答案一、选择题(每题3 分 ,共24分)1.(2009福州)假设分式有意义 ,那么x的取值范围是 ( )A.x1B.x1C.x=1D.x12.假设分式的值为0 ,那么x的值为 ( )A.1B.-1C.1D.23.以下分式中 ,属于最简分式的是 ( )A. B. C. D.4.如果把分式中的x和y都扩大5倍 ,那么分式的值 ( )A.扩大5倍B.扩大10倍C.不变D.缩小5.(2009陕西)化简的结果是 ( )A.a-bB.a+bC.D.6.以下运算中 ,正确的选项是 ( )A. B. C. D.7.方程的解为 ( )A.0B.2C.-2D.无解8.某商店销售一批服装 ,每件售价150元 ,可获利25% ,求这种服装的本钱价.设这种服装的本钱价为x元 ,那么可得到方程 ( )A. B.150-x=25% C.x=15025% D.25%x=150二、填空题(每题2分 ,共20分)9.(2019广州)函数与的自变量x的取值范围是_________.10.(2009义乌)化简: =_________.11.分式、和的最简公分母是_________.12.当m=________时 ,分式方程会产生增根.13.(2009佳木斯)计算: =__________.14.小华从家到学校每小时走m千米 ,从学校返回家里每小时走n千米 ,那么他往返家里和学校的平均速度是每小时走_________千米.15.甲做180个零件与乙做240个零件所用的时间相等 ,如果两个人每小时共做140个零件 ,那么甲、乙两个人每小时各做多少个零件?假设设甲每小时做x个零件 ,那么乙每小时做_________个零件 ,所列方程为_____________.16.(2009枣庄)a、b为实数 ,且ab=1 ,设 , ,那么P______Q (填、或=).17.假设 , ,那么 =_________.18. , , 假设 (a、b为正整数) ,那么ab=__________.三、解答题(共56分)19.(8分)计算:(1) ; (2) .20.(8分)解分式方程:(1) ; (2) .21.(5分)(2009邵阳) 、 ,用+或-连接M、N ,有三种不同的形式:M+N、M-N、N-M ,请你任选其中一种进行计算 ,并化简求值 ,其中x:y=5:2.22.(5分)下面是小丽课后作业中的一道题:计算: .解:原式= .你同意她的做法吗?如果同意 ,请说明理由;如果不同意 ,请把你认为正确的做法写下来.23.(6分)在村村通公路建设中 ,某乡镇决定对一段公路进行改造.这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天 ,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数.(2)求两队合做完成这项工程所需的天数.24.(8分)(2019天津)注意:为了使同学们更好地解答此题 ,我们提供了一种解题思路 ,你可以依照这个思路 ,填写表格 ,并完成此题解答的全过程.如果你选用其他的解题方案 ,此时 ,不必填写表格 ,只需按照解答题的一般要求 ,进行解答即可.天津市奥林匹克中心体育场水滴位于天津市西南部的奥林匹克中心内 ,某校九年级学生由距水滴10千米的学校出发前往参观.一局部同学骑自行车先走 ,过了20分钟后 ,其余同学乘汽车出发.结果他们同时到达.汽车的速度是骑自行车同学速度的2倍 ,求骑自行车同学的速度.(1)设骑车同学的速度为x千米/时.利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式 ,完成表格)速度/(千米/时) 所用时间/时所走的路程/千米骑自行车乘汽车(2)列出方程(组) ,并求出问题的解.25.(8分)在数学学习过程中 ,通常是利用已有的知识与经验 ,通过对研究对象进行观察、实验、推理、抽象概括 ,发现数学规律 ,揭示研究对象的本质特征.比方同底数幂的乘法法那么的学习过程是利用有理数的乘方概念和乘法结合律 ,由特殊到一般进行抽象概括的:2223=25 ,2324=27 ,2226=28 2m2n=2m+n aman=am+n(m、n都是正整数).我们亦知: , , ,(1)请你根据上面的材料归纳出a、b、c(a0 ,c0)之间的一个数学关系式.(2)试用(1)中你归纳的数学关系式 ,解释下面生活中的一个现象:假设m 克糖水里含有n克糖 ,再参加k克糖(仍不饱和) ,那么糖水更甜了.26.(8分)(2019湛江)先观察以下等式 ,然后用你发现的规律解答以下问题.(1)计算: =__________.(2)探究: =__________(用含有n的式子表示).(3)假设 ,求n的值.参考答案1.A2.D3.B4.C5.B6.D7.D8.A9.xl 10.a+2 11.xy2 (m-n)或xy2 (n-m)12.6 13. 14. 15.(140-x)16.= 17.3 18.720 19.(1)x-2 (2) 20.(1)无解 (2)x=321.答案不唯一 ,如选择 ,当x:y=5:2时 , ,原式=22.不同意.正确的计算为:原式=23.(1)设乙工程队单独完成这项工程需要x天.根据题意 ,得 .解得x=60.经检验 ,x=60是原方程的根.所以乙工程队单独完成这项工程所需的天数为60天 (2)设两队合做完成这项工程需要x天.根据题意 ,得 .解得y=24.所以两个人合做完成这项工程所需的天数为24天24.(1) 2x (2)根据题意 ,列方程得 .解得x=15.经检验 ,x=15是原方程的根.所以骑车同学的速度为每小时15千米 25.(1)根据所给的式子之间的关系 ,可以用a、b、c的数学关系式表示出一般的规律 .验证:.因为a0 ,c0 ,所以 .所以 (2)因为 ,说明原来糖水中糖的质量分数小于参加k克糖后糖水中糖的质量分数 ,所以糖水更甜了26.(1) (2) (3)由 ,得n=17.经检验n=17是方程的根.所以n=17。
八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级数学下学期期中复习同步练习(答题时间:60分钟)一、选择题1. 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得三角形的周长可能是()A. 5.5B. 5C. 4.5D. 42. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A. S平行四边形ABCD=4S△AOBB. AC=BDC. AC⊥BDD. 平行四边形ABCD是轴对称图形3. 如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A. 1B. 2C. 3D. 44. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 80*5. 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C. 52D. 2*6. 如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;其中正确的个数是()A. 0B. 1C. 2D. 3*7. 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 53cmB. 25 cmC. 485 cmD. 245cm *8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8**9. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A. 32B. 33C. 4D. 34**10. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( )A. 2B. 3C. 4D. 5二、填空题11. 5082。
初二几何证明单元测试

初二几何证明单元测试导言:几何证明是初中数学学科的重点内容之一。
通过进行几何证明,学生能够提高逻辑思维和分析问题的能力,加深对几何概念的理解。
为了检测学生对几何证明的掌握情况,提高他们的几何证明能力,初二数学教师安排了几何证明单元测试。
1. 测试内容几何证明单元测试主要涵盖了初二上学期所学的几何知识点,包括角的性质、平行关系、全等三角形等内容。
测试共分为三个部分:选择题、填空题和证明题。
2. 选择题选择题是测试中的第一部分,共包括20道题目。
这些题目要求学生从给出的选项中选择正确答案。
选择题的目的是检测学生对几何概念的理解,以及对几何性质和定理的掌握情况。
3. 填空题填空题是测试中的第二部分,共包括10道题目。
这些题目要求学生填写正确的答案,以准确描述几何图形的特征、性质或关系。
填空题的目的是检测学生对几何概念的运用能力,以及对几何性质和定理的理解程度。
4. 证明题证明题是测试中的第三部分,共包括2道题目。
这些题目要求学生完整地证明给定的几何问题。
证明题的目的是检测学生对几何性质和定理的深入理解和应用能力。
通过解答证明题,学生可以培养逻辑思维和推理能力,提高解决几何问题的能力。
5. 测试方法几何证明单元测试通过书面形式进行,要求学生在规定的时间内独立完成。
学生需要在答题卷上写下自己的答案,以便教师进行评分。
为了保护学生隐私,答题卷上不得包含个人身份信息。
6. 测试目标几何证明单元测试的主要目标是检测学生对几何证明的理解和掌握程度。
通过测试结果的分析,教师可以了解学生的优势和不足,。
八下数学第八章单元测试卷

八下数学第八章单元测试卷一、选择题(每题2分,共20分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形2. 下列哪个选项是二次根式:A. √3xB. 3x√2C. √x^2D. √x3. 若x^2 - 5x + 6 = 0,那么x的值是:A. 2B. 3C. -2D. -34. 根据题目所给的几何图形,下列哪个选项是正确的:A. 面积是20平方厘米B. 周长是20厘米C. 对角线长度为10厘米D. 以上都不是5. 下列哪个选项是分式的基本性质:A. 分式的分子与分母同时乘以或除以同一个不为0的数,分式的值不变B. 分式的分子与分母同时加上或减去同一个数,分式的值不变C. 分式的分子与分母同时乘以或除以同一个数,分式的值不变D. 分式的分子与分母同时乘以或除以同一个多项式,分式的值不变6. 若抛物线y = ax^2 + bx + c的顶点坐标为(-1, -4),则a的值是:A. 1B. -1C. 2D. -27. 下列哪个选项是正确的不等式解集:A. x > 3B. x < 3C. x ≥ 3D. x ≤ 38. 若函数y = kx + b的图象经过点(1, 5)和(2, 7),则k的值是:A. 1B. 2C. 3D. 49. 下列哪个选项是正确的因式分解:A. x^2 - 4 = x + 2B. x^2 - 4 = (x - 2)(x + 2)C. x^2 - 4 = x^2 - 2xD. x^2 - 4 = x^2 + 4x + 410. 若一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2二、填空题(每题2分,共20分)11. 一个数的立方根是3,这个数是________。
12. 根据勾股定理,若直角三角形的两条直角边长分别为3和4,则斜边长为________。
2019年秋浙教版初中数学八年级下册《图形与证明》单元测试(含答案) (145)

八年级数学下册《图形与证明》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)下面四个语句:①内错角相等;②OC是∠AOB的角平分线吗?③π不是有理数.其中是真命题的个数为()A.1个B.2个C.3个D.4个2.(2分)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°3.(2分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°4.(2分)下列语句是命题的有()①若两个角都等于50o,则这两个角是对顶角;②直角三角形一定不是轴对称图形;③画线段AB=2㎝;④在同一平面内的两条直线,若不相交,则平行A.1个B.2个C.3个D.4个5.(2分)如图,在△ABC中,∠B和∠C的平分线相交于点F,过点F作DE∥BC,交AB 于点D,交AC于点E.若 BD+CE=9,则线段DE的长为()A.9 B.8 C.7 D.66.(2分)已知a,b,C是同一平面内三条直线,下列命题中,属于假命题的是()A.若a⊥c,b⊥c,则a⊥bB.若a∥b,b⊥c,则a⊥cC.若a⊥c,b⊥c,则a∥bD.若a⊥c,b∥a,则b⊥c7.(2分)“a,b,c三数中至少有一个正数”的反面是()A.a,b,c三个都是正数B.a,b,c至少有一个负数C.a,b,c有两个或三个是负数D.a,b,c全都是非正数8.(2分)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360° B.α-β+γ=180°C.α+β+γ=180° D.α+β-γ=180°9.(2分)如图所示,能使BF∥EG的条件是()A.∠l=∠3 B.∠2=∠4 C.∠2=∠3 D.∠l=∠410.(2分)如图,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于H,EF⊥AB于F,则下列结论中不正确的是()A.∠ACD=∠B B. CH=CE=EF C.AC=AF D.CH=HD11.(2分)等腰三角形的一个外角是80°,则其底角是()A.40°B.100°或40°C.100°D.80°12.(2分)如图所示是人字形屋架的设计图,由AB、AC、AD、BC四根钢条焊接而成,其中A、B、C、D均为焊接点,现在焊接所需要的四根钢条已截好,且已标出BC的中点D,如果焊接工身边只有检验直角的角尺,那么为了准确快速度地焊接,他首先应取的两根钢条及焊接点是()A.AB和BC,焊接点B B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A13.(2分)下列命题中,假命题的个数为()①若线段AC,BC满足AC=BC,则点C是线段AB的中点;②若b>0,则a+b>a;③如果一个角的两条边分别平行于另一个角的两条边,那么这丽个角相等;④如果两个数中有一个数是负数,那么这两个数之积是负数.A.4个B.3个C.2个D.1个14.(2分)下列命题中,是假命题的为()A.两条直线相交,只有一个交点B.全等三角形对应边上的中线相等C.全等三角形对应边上的高相等D.三角形一边上的中线把这个三角形分成两个全等的小三角形评卷人得分二、填空题15.(3分)在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D.从这四个条件中选取三个条件能判定△ABC≌△DEF的方法共有种.解答题16.(3分)如图,在△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数= .17.(3分)如图,点B,D在AN上,点C,E在AG上,且AB=BC=CD,EC=ED=EF,∠A=20°,则∠EG= .18.(3分)天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2 m,其侧面图如图所示,则购买地毯至少需要元.19.(3分)已知:如图所示,直线A8,CD相交.求证:AB,CD只有一个交点.证明:假设AB,CD相交有两个交点0与0′,那么过0,0′两点就有条直线.这与矛盾,所以假设不成立.所以.20.(3分)如图,点A,C在EF上,AD=BC,AD∥BC,AE=CF.求证:BF=DE.分析:要证BF=DE,只要证△≌△,已有条件AD=BC,AE=CF,只需证∠ =∠,只需证∠ =∠,而这可由证得.21.(3分)如图,把△ABC绕点C顺时针旋转35°到△A′B′C的位置,交AC于点D,若∠A′DC=90°,则∠A= .22.(3分)判断线段相等的定理(写出2个);.23.(3分)下面的判断是否正确:(1)我从书架上取出了5本书,5本书都是数学书.因此书架上的书都是数学书. ( )(2)有一条线段AB长3 cm.另一条线段BC长2 cm,那么AC长5cm ( )(3)直线AB,CD相交于O,∠AOC=30°,那么∠BOD=30°. ( )评卷人得分三、解答题24.(6分)判断命题“等腰三角形的角平分线平分对边”的真假,并给出证明.25.(6分)判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.26.(6分)如图,△ABC 中,AC ⊥BC ,CE ⊥AB 于点E ,AF 平分∠CAB 交CE 于点F ,过点F 作FD ∥BC 交AB 于点D ,求证:AC=AD .27.(6分)一个零件的形状如图所示,按规定∠A 应等于90°,∠B 和∠C 分别是32°和21°,检验工人量得∠BDC =148°,就断定这个零件不合格,你能否运用三角形的有关知识说明这个零件不合格的理由?28.(6分)阅读理解题:(1)如图,在△ABC 中,AD 是BC 边上的中线,且AD=21BC . 求证:∠BAC=90°. 证明:∵AD=12BC ,BD=CD=12BC ,∴AD=BD=DC , ∴∠B=∠BAD ,∠C=∠CAD , ∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.(3)直线运用这个结论解答题目:一个三角形一边长为2,这边上的中线长为1,另两边之和为3,求这个三角形的面积.AB CD29.(6分)下列语句中,哪些是命题,哪些不是命题?若是命题,指出它的题设和结论.(1)立方等于本身的数是0或1;(2)画线段AB=3 cm.30.(6分)观察如图所示的四个图形,找出它们的共同特征并给以名称,再作出定义.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.B3.A4.C5.A6.A7.D8.D9.A10.D11.A12.C13.B14.D二、填空题15.216.36°17.100°18.480°19.两;两点确定一条直线;AB,CD只有一个交点20.DEA,BFC,EAD,FCB,DAF,BCE,AD∥BC21.55°22.全等三角形的对应边相等;在一个三角形中,等角对等边23.(1)× (2)× (3)√三、解答题24.假命题.若这条角平分线是底角的平分线,则不一定平分对边25.假命题,证明略26.利用“ASA”证△ACF≌△ADF,得AC=AD27.连结BC,则∠DBC+∠DCB=180°-148°=32°,∴∠ABC+∠ACB=32°+32°+21°=85°,∴∠A=95°>90°所以这个零件不合格.28.如果三角形一边上的中线等于这边的一半,则这个三角形是直角三角形,S=3 2.29.(1)是;题设:一个数的立方等于它本身;结论:这个数是0或1;(2)不是30.轴对称图形:把一个图形沿着一条直线对折,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形.。
八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
初二数学下册单元测试(八)

怀文中学2013—2014学年度第二学期中考假期定时作业(4)初 二 数 学命题:陈秀珍 审核人:郁胜军 日期:2014-5-26 班级 学号 姓名一、选择(每题3分,共24分)1.()a a -=-112成立的条件是A .a ≠1B .a ≥1 C .a <1 D .a ≤1 ( )2.把227化成最简二次根式,结果为:A 233B 29C 69D 39 ( ) 3.下列根式中,最简二次根式为:A 4x B x 24- Cx4D ()x +42 ( ) 4.已知t <1,化简1212---+t t t 得:A 22-t B 2tC 2D 0 ( )5. 把二次根式(y>0)化为最简二次根式结果是( ).A .(y>0) B .(y>0) C .(y>0) D .以上都不对6. 是同类二次根式的是A .①和②B .②和③C .①和④D .③和④ ( )7. x 有:A 0 B 1 C .2 D .无数 ( )个.8.与n 是同类二次根式,则m 、n 的值( ) A.m=22 n=2±B.m=22- n=3-C.m=22n=3-D.m=22±n=3±二、填空:(每空3分,共24分)9.28751·)(= 24656942·)( = ;(3)与23是同类根式的是: 。
10.计算23354233mn mn n m m · = ;()()105453515-÷-的结果是: 。
11.已知,则xy= ;12.11m +有意义,则m 取值范围是 ;已知〉xy 0,化简二次根式正确结果__ ___。
三、解答题 (18分 + 12分 + 7分+5分+10分=52分)BACQP13. 要是下列式子有意义求字母的取值范围 (1(2)(3)(4)(5)14.(1)=0,求a20014+b20014(2)已知:x y =+=-123123,求:x xy y 225-+15.若5的整数部分为a ,小数部分是b ; 求:a b-1的值。
新人教版二年级数学下册第八、九单元测试卷

2013-2014学年度二年级数学下册第八、九单元测验卷班级: 姓名: 学号: 成绩: 一、直接写出得数。
(20分)7000+600=35÷7=2300-600= 2700-1700=8×6=9÷9=65+40=900+100=1千克+2千克= 50千克-20千克=2千克-1700克=2000克+5千克= 700克+300克= 900克-600克=二、填空。
(17分)1、在()里填上合适的单位名称。
(6分)一个苹果约重200()一个鸡蛋约重55()一个铅球重4()一只母鸡重4()一本数学书重300()小明体重约31()2、一袋盐重500克,两袋这样的盐重()克,也就是()千克。
3、在○里填上>、<或=。
(6分)8000克○9千克4千克○4000克3千克○2990克1千克○1010克1千克-600克○500克5010克○6千克4、小明、小丽、笑笑比赛跑步,小丽说:“我不是最后一名”,笑笑说:“我不是最后一名,但小丽比我快”,笑笑第()名,小丽第()名,小明()名。
三、选择。
(8分)1、18个鸡蛋大约重1()。
A、克B、米C、千克2、10千克铁和10千克棉花相比,( )。
A.10千克铁重B.同样重C.10千克棉花重3、一筐橘子连筐重30千克,筐重3千克,橘子的重量是( )千克。
A.33 B.27 C.304、2只鸭子的重量等于3只鸡的重量,已知1只鸭重3千克,1只鸡重( )。
A.3千克B.4千克C.2千克四、脱式计算。
(12分)40÷8+10 25-5×4 3×(40-36) 15+6×6五、连一连。
(8分)200千克1克 160克3千克六、解决问题。
(35分)1、3元/500克 6元/500克 5元/500克(1)买1千克梨多少钱?(4分)(2)妈妈带了30元,买500克苹果和1千克梨,够买吗?(5分)(3)请你提出一个数学问题并解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学下学期第八章证明单元测试卷
命题人:段振富
班级座号姓名成绩
一、填空题(每空3分,共42分)
1、“两直线平行,同位角互补”是命题(填真、假)
2、把命题“对顶角相等”改写成“假如…那么…”的形式
3、如图所示,∠1+ ∠2=180°,若∠3=50°,则∠4=
4、如图所示,△ABC中,∠ACD=115°,∠B=55°,则∠A= , ∠ACB=
5、在△ABC中,∠C=90°,若∠A=30°,则∠B=
6、在△ABC中,∠B—∠C=40°,则∠C= ,∠B=
7、在三角形中,最多有个锐角,至少有个锐角,最多有个钝角(或直角)
8、△ABC的三个外角度数比为3∶4∶5,则它的三个外角度数分别为
9、在△ABC中,∠ABC和∠ACB的平分线交于点I, 若∠A=60°,则∠BIC=
10、已知如图,平行四边形ABCD中,E为AB上一点,DE与AC交于点F,AF∶FC=3∶7,则AE∶EB=
二、选择题(每小题3分,共18分)
11、下列命题是真命题的是()
A、同旁内角互补
B、直角三角形的两锐角互余
C、三角形的一个外角等于它的两个内角之和
D、三角形的一个外角大于内角
12、下列语句为命题的是()
A 、你吃过午饭了吗?B、过点A作直线MN
C 、同角的余角相等
D 、红扑扑的脸蛋
13、命题“垂直与同一条直线的两条直线互相平行”的题设是( )
A 、垂直
B 、两条直线
C 、同一条直线
D 、两条直线垂直于同一条直线
14、已知△ABC 的三个内角度数比为2∶3∶4,则个三角形是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、等腰三角形
15、如图,一个任意的五角星,它的五个内角的度数和为( )
A 、90°
B 、180°
C 、360°
D 、120°
16、如图,AB ∥EF , ∠C=90°,则α、β、γ的关系为( )
A 、β=α+γ
B 、α+β+γ=180°
C 、β+γ-α=90°
D 、α+β-γ=90°
三、完型填空(每空2分,共8分)
17、已知如图,在△ABC 中,CH 是外角∠ACD 的平分
线,BH 是∠ABC 的平分线。
求证:∠A= 2∠H
证明: ∵∠ACD 是△ABC 的一个外角,
∴∠ACD=∠ABC+∠A ( )
∠2是△BCD 的一个外角,
∠2=∠1+∠H ( )
∵CH 是外角∠ACD 的平分线,BH 是∠ABC 的平分线
∴∠1= 21∠ABC ,∠2= 2
1∠ACD ( ) ∴∠A =∠ACD-∠ABC= 2 (∠2 - ∠1) (等式的性质)
而 ∠H=∠2 - ∠1 (等式的性质)
∴∠A= 2∠H ( )
四、解答题(每题8分,共32分)
18、已知如图,在△ABC中,∠1是它的一个外角,E为边AC上一点,延长BC到D,连接DE。
求证:∠1 > ∠2
19、求证:两条直线平行,同旁内角的角平分线互相垂直。
(提示:先画图,写出已知,求证,然后进行证明)
19、已知如图,O是四边形ABCD的两条对角线的交点,过点O作OE∥CD,交AD于E,作OF∥BC,交AB于F,连接EF。
求证:EF∥BD
20、已知如图,AB∥DE。
(1)、推测∠A、∠ACD、∠D有什么关系,并证明你的结论。
(2)、若点C向右移动到线段AD的右侧,现在∠A、∠ACD、∠D之间的关系,仍旧满足(1)中的结论吗?若符合请你证明,若不符,请你写出正确的结论并证明。
要求画出相应的图形。