三角形有关的线段典型例题88
与三角形有关的线段练习题(含答案)

与三角形有关的线段练习题11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80° B.90° C.20° D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30° B.40° C.50° D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61° B.39° C.29° D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60° B.36° C.54° D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80° B.90° C.100° D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30° B.40° C.60° D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180° B.360° C.540° D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?1.1与三角形有关的线段11.1.1三角形的边1.C 2.B 3.C 4.6∠B AE∠AED∠C5.解:(1)∵|a-3|+(b-2)2=0,∴a-3=0,b-2=0,∴a=3,b=2.由三角形三边关系得3-2<c<3+2,即1<c<5.(2)∵c为整数,1<c<5,∴c=2或3或4.11.1.2三角形的高、中线与角平分线11.1.3三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.27.解:(1)S△ABC=12AB·CE=12×6×4.5=13.5.(2)∵S△ABC=12BC·AD,∴BC=2S△ABCAD=2×13.55=5.4.11.2与三角形有关的角11.2.1三角形的内角第1课时三角形的内角和1.D 2.B 3.30° 4.(1)27(2)29(3)595.解:∵∠BAC=65°,∠C=30°,∴∠B=85°.∵DE∥BC,∴∠BDE=180°-∠B=180°-85°=95°.第2课时直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40°6.解:∵∠A=70°,CE,BF是△ABC的两条高,∴∠EBF=20°,∠ECA=20°.又∵∠BCE =30°,∴∠ACB=50°,∴在Rt△BCF中,∠FBC=40°.7.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC =90°,∴CD⊥AB.11.2.2三角形的外角1.70° 2.> 3.C 4.A5.解:∵∠ACE=140°,∴∠ACB=40°.∵∠A=80°,∴∠1=40°+80°=120°.11.3多边形及其内角和11.3.1多边形1.A 2.B 3.B 4.B 5.18 6.457.解:(1)六边形ABCDEF,它的内角是∠A,∠B,∠C,∠D,∠E,∠F.(2)如图所示.(3)如图,∠DCG即为点C处的一个外角(答案不唯一).11.3.2多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n边形.由题意可得(n-2)·180°=3×360°,解得n=8.故该多边形为八边形.8.解:根据题意,设四边形ABCD的四个外角的度数分别为3x,4x,5x,6x,则3x+4x+5x+6x=360°,解得x=20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.。
三角形有关的线段典型例题

三角形有关的线段典型例题1.如图,图中共有多少个三角形?解析:依照三角形的看法,不重复、无遗漏地找出所有的三角形,要点在于依照某种顺序去找。
解:能够边为序次找:BC 为边的共 4 个,分别是:△△BCF, △BCE; AC 为边的 2 个(其中重复一个)ABC,△BCD,,分别是:△ ACF,△ ACB (与前面重复);同理可得 AB 为边 1 个,是△ ABD;CD 为边 1 个,为:△ CDE; 以 BF 为边 1 个,为△BEF ;AD 、AF 为边已计。
共8 个。
2.如图,在△ABC 中, AB =AC,AC 边上的中线BD 把三角形的周长分为12cm 和15cm 的两部分,求三角形各边的长。
解析:因为中线BD 中的点 D 为 AC 边的中点,所以AD = DC,造成所分的两部分不等的原因就在于BC 边与 AB 、 AC 边的不等,故应分类谈论。
解:如图,设AB = x,则 AD = DC =x(1)若 AB +AD = 12,即x= 12,得 x= 8即 AB =AC =8则 DC =4,故 BC = 15- 4= 11此时 AB + AC > BC,可组成三角形;(2)若 AB +AD = 15,x= 15,∴ x= 10即 AB =AC = 10,则 DC = 5,故 BC = 12-5= 7显然此时可组成三角形综上,三角形的各边长为:8,8,11 或 10,10,73.(1)已知三角形的两边分别为 5cm 和 6cm,求第三边 c 的取值范围及三角形周长的取值范围;( 2)已知三角形的三边分别为14, 4 x 和 3 x,求 x 的取值范围;(3)已知三角形的三边分别为a, a-1 和 a+ 1,求 a 的取值范围。
解析:依照三角形的三边关系,可得第三边的取值范围是:两边之差<第三边<两边之和,所以较简单确定第三边的取值范围解:( 1)( 6- 5) cm<c<( 6+ 5) cm∴1cm< c<11cm设周长为pcm又因另两边分别为5cm 和 6cm∴[( 5+6)+ 1] cm < p<[11 +( 5+ 6) ] cm即 12cm< p< 22cm(2)依照三角形的三边关系:4x- 3x< 14<4x+3x ∴ 2<x< 14(3)∵ a- 1< a< a+ 1又∵三角形的三边长为正∴a- 1> 0即 a>1又∵ a+ 1< a+( a- 1)∴a> 2∴a> 24.如图,在小河的同侧有 A , B ,C 三条农村,图中的线段表示道路,某邮递员从 A 村送信到 B 村,总是走经过 C 村的道路,不走经过 D 村的道路,这是为什么呢?请你用所学的数学知识加以证明。
人教版八年级上册数学:11.1 与三角形有关的线段 练习卷

人教版八年级上册数学:11.1 与三角形有关的线段练习卷与三角形有关的线段一、填空题:1、如图,在△ABC中,已知点D、E、F分别是边BC、AD、CE 上的中点,且S△ABC=4,则S△BFF=_______2、△ABC的三边长分别为,则__.3、三角形的三边长分别为5,1+2x,8,则x的取值范围是 .4、在△ABC中,点D,E分别在AB,AC上,且CD与BE相交于点F,已知△BDF的面积为6,△BCF的面积为9,△CEF的面积为6,则四边形ADFE的面积为 .5、如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点 P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点 P1、P2、P3、…、P2019,把△ABC分成个互不重叠的小三角形.6、如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为_________.二、选择题:7、如图AD⊥BC于点D,那么图中以AD为高的三角形有个()A.2条B.3条C.4条 D.5条13、已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A.15B.16C.17D.15或1714、现有3cm,4cm,7cm, cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个15、下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部16、一个三角形的两边长为3和7,第三边长为偶数,则第三边为()A.6B.6或8 C.4 D.4或617、画△ABC的边AB上的高,下列画法中,正确的是()A. B. C. D.18、设△ABC的面积为1,如图①将边BC、AC分别2等份,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等份,BE1、AD1相交于点O,△AOB的面积记为S2;……,依此类推,则S5的值为()A. B. C. D.三、解答题:19、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为 .20、已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21、如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC 的周长分成12cm和15cm两部分,求△ABC各边的长.22、已知△ABC的面积是60,请完成下列问题:(1)如图1,若AD是△ABC的BC边上的中线,则△ABD的面积_______△ACD的面积(填“>”“<”或“=”)(2)如图2,若CD、BE分别是△ABC的AB、AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y由题意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程组为:,解得_______,通过解这个方程组可得四边形ADOE的面积为_______.(3)如图3,AD:DB=1:3,CE:AE=1:2,请你计算四边形ADOE的面积,并说明理由.23、如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S △ADF,且S△ABC=36,则S△CEF﹣S△ADF= .(仅填结果)参考答案1、答案为:12、答案为:3、答案为:1<x<6.4、答案为:24.5、答案为:4035.6、答案为:17、D8、A9、C10、A11、C12、C。
[数学]-必考点01 与三角形有关的线段(原卷版)
![[数学]-必考点01 与三角形有关的线段(原卷版)](https://img.taocdn.com/s3/m/7ca3db37a36925c52cc58bd63186bceb19e8ed37.png)
★★三角形的角平分线
【例题8】(2021秋•大兴区校级期中)如图,在△ABC中,∠BAC=60°,∠ACE=40°,AD,CE是△ABC的角平分线,则∠DAC=,∠BCE=,∠ACB=.
★★三角形的角平分线、中线、高的综合运用
【例题9】(2022春•惠州期末)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:
必考点01与三角形有关的线段
●题型一三角形的有关概念
【例题1】(2021秋•双牌县期末)下面是小强用三根火柴组成的图形,其中符合三角形概念的是( )
A. B.
C. D.
【例题2】(2021秋•泰山区校级月考)图中共有三角形个,其中以AE为边的三角形有个.
【解题技巧提炼】
三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.
19.(2021秋•赵县月考)在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点.
(1)如图1,若S△ABC=1cm2,求△BEF的面积.
(2)如图2,若S△BFC=1cm2,则S△ABC=.
20.(2022春•方城县期末)如图,在△ABC中,∠ACB=90°,AC=8cm,BC=6cm,AB=10cm,点P从点A出发,沿射线AB以2cm/s的速度运动,点Q从点C出发,沿线段CB以1cm/s的速度运动,P、Q两点同时出发,当点Q运动到点B时P、Q停止运动,设Q点的运动时间为t秒.
12.(2022春•沭阳县校级月考)如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.
人教版数学 八年级上册11.1与三角形有关的线段 练习 (含答案)

11.1与三角形有关的线段一.选择题1.已知三角形两边的长分别为1cm、5cm,则第三边的长可以为()A.3cm B.4cm C.5cm D.6cm2.下列各组图形中,表示AD是△ABC中BC边的高的图形为()A.B.C.D.3.如图,AD⊥BC于点D,GC⊥BC于点C,CF⊥AB于点F,下列关于高的说法中正确的是()A.△ABC中,AD是BC边上的高B.△ABC中,GC是BC边上的高C.△GBC中,CF是BC边上的高D.△GBC中,GC是BG边上的高4.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.锐角三角形的三条高交于一点D.三角形的高、中线、角平分线一定在三角形的内部5.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 6.下列各组长度的三条线段能组成三角形的是()A.4cm,5cm,9cm B.4cm,4cm,8cmC.5cm,6cm,7cm D.3cm,5cm,10cm7.如果a、b、c分别是三角形的三条边,那么化简|a﹣c+b|+|b+c﹣a|的结果是()A.﹣2c B.2b C.2a﹣2c D.b﹣c8.如图,在△ABC中,AB=2020,AC=2018,AD为中线,则△ABD与△ACD的周长之差为()A.1B.2C.3D.49.如图,△ABC的BC边上的高是()A.BE B.AF C.CD D.CF10.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A.3<a<6B.﹣5<a<﹣2C.﹣2<a<5D.a<﹣5或a>2二.填空题11.如图,根据“两点之间线段最短”,可以判定AC+BC AB(填“>”“<”或“=”).12.从长度分别为3cm,4cm,5cm,6cm,9cm的线段中任意取3条,能构成的三角形个数为.13.△ABC的两边长分别是2和7,且第三边为奇数,则第三边长为.14.如图,AD是△ABC的一条中线,若BD=3,则BC=.15.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形个.三.解答题16.在△ABC中,已知AB=3,AC=7,若第三边BC的长为偶数,求△ABC的周长.17.已知a=m2+n2,b=m2,c=mn,且m>n>0.(1)比较a,b,c的大小;(2)请说明以a,b,c为边长的三角形一定存在.18.如图,在三角形ABC中,AB=10cm,AC=6cm,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.(1)求线段AE的长.(2)若图中所有线段长度的和是53cm,求BC+DE的值.参考答案一.选择题1.解:设第三边的长为xcm,则5﹣1<x<1+5,即4<x<6.故选:C.2.解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.3.解:∵AD⊥BC于点D,∴△ABC中,AD是BC边上的高,故A选项正确,B选项错误;∵CF⊥AB于点F,∴△GBC中,CF是BG边上的高,故C选项错误,D选项错误.故选:A.4.解:A.三角形的角平分线是线段,故A不符合题意;B.三角形的中线是线段,故B不符合题意;C.锐角三角形的三条高交于一点说法正确,故C符合题意;D.锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故D不符合题意;故选:C.5.解:∵AD是△ABC的中线,∴BD=DC,故选:B.6.解:根据三角形的三边关系,A、4+5=9,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、5+6>7,能组成三角形,符合题意;D、3+5=8<10,不能组成三角形,不符合题意.故选:C.7.解:∵a、b、c分别是三角形的三条边,∴a﹣c+b>0,b+c﹣a>0,∴|a﹣c+b|+|b+c﹣a|=a﹣c+b+b+c﹣a=2b.故选:B.8.解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2020﹣2018=2,故选:B.9.解:△ABC的BC边上的高是AF,故选:B.10.解:由题意得:8﹣3<1﹣2a<8+3,解得:﹣5<a<﹣2,故选:B.二.填空题11.解:如图,根据“两点之间线段最短”,可以判定AC+BC>AB,故答案为:>.12.解:其中的任意三条组合有:3cm、4cm、5cm;3cm、4cm、6cm;3cm、4cm、9cm;3cm、5cm、6cm;3cm、5cm、9cm;3cm、6cm、9cm;4cm、5cm、6cm;4cm、5cm、9cm;4cm、6cm、9cm;5cm、6cm、9cm十种情况.根据三角形的三边关系,其中的3cm、4cm、5cm;3cm、4cm、6cm;3cm、5cm、6cm;4cm、5cm、6cm;4cm、6cm、9cm;5cm、6cm、9cm能搭成三角形.故答案为:6.13.解:∵7﹣2=5,7+2=9,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故答案为:7.14.解:∵AD是△ABC的一条中线,BD=3,∴BC=2BD=2×3=6.故答案为:6.15.解:第n个图形中,三角形的个数是1+4(n﹣1)=4n﹣3.所以当n=6时,原式=21,故答案为:21.三.解答题16.解:∵在△ABC中,AB=3,AC=7,∴第三边BC的取值范围是:4<BC<10,∴符合条件的偶数是6或8,∴当BC=6时,△ABC的周长为:3+6+7=16;当BC=8时,△ABC的周长为:3+7+8=18.∴△ABC的周长为16或18.17.解:(1)∵a=m2+n2,b=m2,c=mn,且m>n>0,∴m2+n2>m2>mn,∴a>b>c;(2)∵m>n>0,∴mn>n2,∴m2+mn>m2+n2,∴a,b,c为边长的三角形一定存在.18.解:(1)∵三角形BDE与四边形ACDE的周长相等,∴BD+DE+BE=AC+AE+CD+DE,∵BD=DC,∴BE=AE+AC,设AE=x cm,则BE=(10﹣x)cm,由题意得,10﹣x=x+6.解得,x=2,∴AE=2cm;(2)图中共有8条线段,它们的和为:AE+EB+AB+AC+DE+BD+CD+BC=2AB+AC+2BC+DE,由题意得,2AB+AC+2BC+DE=53,∴2BC+DE=53﹣(2AB+AC)=53﹣(2×10+6)=27,∴BC+DE=(cm).。
与三角形有关的线段练习题

与三角形的边、角有关的练习1、 对于下面每个三角形,过顶点A 画出中线、角平分线和高。
2、 对于下面第个三角形,过顶点A 画出中线、角平分线和高。
3、如图(1),AD 、BE 、CF 是△ABC 的三条中线,请根据线段中线的几何表示填空: AB=2 ,BD= ,AE=214、如图(2),AD 、BE 、CF 是△ABC 的三条角平分线,请根据角平分线的几何表示填空: ∠1= ,∠3=∠ =21,∠ACB=2 ,∠4= . 5、一个三角形有两条边相等,周长为20㎝,三角形的一边长6㎝,求其他两边长。
6、(1)已知等腰三角形的一边等于6,一边等于5,求它的周长。
(2)已知等腰三角形的一边等于9,一边等于4,求它的周长。
7、如图(3),△ABC 中,AB=2㎝,BC=4㎝,△ABC 的高AD 与CE 的比是多少? 8、如图(4),AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于E ,DF ∥AB ,DF 交AC 于F ,图中∠1与∠2有什么关系?为什么?9、一个多边形的内角和为1200°,它是几边形? 10、一个多边形的内角和是外角和的21,它是几边形? 11、已知一个n 边形的每一个内角都等于150°. (1)求n ;(2)求这个n 边形的内角和;(3)从这个n 边形的一个顶点出发,可以画出几条对角线?C CB B B AA A CCBBBAAA4(2)321FED (1)F E D CCBBAA (3)ED CBA1(4)2F E D CBA12、一个多边形的内角和与外角和的比是7︰2,求这个多边形的边数和对角线各是多少条? 13、△ABC 中,∠B=∠A +10°,∠C=∠B +10°, △ABC 的各内角的度数。
14、如图(5),AD ⊥BC,∠1=∠2,∠C=65°,求∠BAC 15、如图(6),AB ∥CD,∠A=45°,∠D=40°,求 ∠1与∠2的度数。
中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)知识点总结1.三角形的定义:三条线段首尾顺次连接组成的图形。
2.三角形的分类:①按角分类:锐角三角形,直角三角形,钝角三角形。
②按边分类:不等边三角形,等腰三角形。
等腰三角形底和腰相等时叫做等边三角形。
3.三角形的中线、高线、角平分线:①中线:连接顶点与对边中点得到的线段。
平分三角形的面积。
②高线:过定点做对边的垂线,顶点与垂足之间的线段。
得到两个直角三角形。
③角平分线:作三角形角的平分线与对边相交,顶点与交点间的线段。
4.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
专项练习题1.(2022•大庆)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.2.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.【解答】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.4.(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.5.(2022•永州)下列多边形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性即可得出答案.【解答】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.6.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD 的面积是.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.7.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【分析】根据三角形的三边关系判断即可.【解答】解:A、∵3+3=6,∴长度为3,3,6的三条线段不能组成三角形,本选项不符合题意;B、∵3+5<10,∴长度为3,5,10的三条线段不能组成三角形,本选项不符合题意;C、∵4+6>9,∴长度为4,6,9的三条线段能组成三角形,本选项符合题意;D、∵4+5=9,∴长度为4,5,9的三条线段不能组成三角形,本选项不符合题意;故选:C.8.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.9.(2022•南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木棒长为xcm,由三角形三边关系定理得6﹣3<x<6+3,所以x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.10.(2022•益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.4【分析】本题实际上是长为6的线段围成一个等腰三角形.求腰长的取值范围.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.11.(2022•西宁)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2 B.5 C.10 D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.12.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5 B.4 C.7 D.8【分析】由实数与数轴与绝对值知识可知该三角形的两边长分别为3、4.然后由三角形三边关系解答.【解答】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.13.(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.14.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.15.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设杨冲,李锐两家的直线距离为xkm,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.。
初中数学八年级上册与三角形有关的线段练习题含答案

初中数学八年级上册与三角形有关的线段练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列选项中的图形都是小强用三根火柴棒组成的,其中符合三角形概念的是()A. B.C. D.2. 在▱ABCD中,∠C=120∘,CD=2,以点B为圆心,以1为半径画弧,交AB于点G,交BC于点H,再分别以G和H为圆心,以1为半径画弧,交于点M,作射线BM交AD于点E,连结AM,则AM的长为()A.1B.√3C.2D.123. P为△ABC内一点,PA、PB、PC把△ABC的面积分成三等分,则P点是△ABC的()A.内心B.外心C.垂心D.重心4. 试通过画图来判定,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形5. 如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条应钉在()A.E,H两点之间B.E,G两点之间C.F,H两点之间D.A,B两点之间6. 如图,已知△ABC的周长是30,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=4,△ABC的面积是( )A.60B.120C.26D.347. 在Rt△ABC中,∠ACB=90∘,点G是△ABC的重心,且CG=2,则AB长为()A.2B.3C.4D.68. 三角形两边长分别为2、6,第三边为偶数,则第三边可以是()A.4B.6C.8D.109. 如图,网格中小正方形的边长均为1,△ABC的三个顶点都在格点上,则△ABC的面积为()A.5B.3.5C.2.5D.210. 如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.8C.6D.1011. 用120根火柴,首尾相接围成一个三条边互不相等的三角形,已知最大边是最小边的3倍,则最小边最少用了________根火柴.12. 三角形按角的不同分类,可分为________三角形,________三角形和________三角形.13. 为了使做好的木门窗在运输、安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条.其原理是________.14. 已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和点C在________的两旁;(2)以点C为圆心,________长为半径作弧,交AB于点D和E;(3)分别以点D和点E为圆心,大于________的长为半径作弧,两弧相交于点F;(4)作直线CF.直线CF就是所求作的垂线.15. 如图所示,AB=29,BC=19,AD=20,CD=16,若AC=x,则x的取值范围为________.16. 如图,△ABC中,点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是4,则面积是1的三角形有________个.17. 如图,在△ABC中,BC边上的高是________;在△BCE中,BE边上的高是________;在△ACD中,AC边上的高是________.18. 在Rt△ABC中,AB=3,AC=4,BC=5,现记A、B、C到某一直线l的距离分别是d A、d B、d C,若d A:d B:d C=1:2:3,则满足此条件的直线l共有________条.19. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是________.20. 要使五边形木架(用5根木条钉成)不变形,至少要再钉________根木条.21. 如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多3,且AB与AC的和为11.(1)求AB,AC的长;(2)求BC边的取值范围.22. 如图,在7×6的方格中,△ABC的顶点均在格点上.试按要求画出线段EF(E,F 均为格点),各画出一条即可.23. 在△ABC中,AB=8,BC=2,并且AC为偶数,求△ABC的周长.24. 如图,在正方形网格上有一个△ABC.(1)若网格上的最小正方形边长为1,△ABC的面积为________.(2)在网格中以BC为一边作格点△BCD(顶点在小正方形的顶点处的三角形称为格点三角形),使它的面积是△ABC的2倍.备注:画出一个即可.25. 如图,已知AD、AE分别是△ABC的高和中线,AB=9cm,AC=12cm,BC= 15cm,∠BAC=90∘.试求:(1)△ABE的面积;(2)AD的长度;(3)△ACE和△ABE的周长的差.26. 在△ABC中,AB=6,BC=2,并且AC为偶数,那么△ABC的周长为多少?27. 如图,在△ABC中,AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2.求BC和DC的长.28. 已知△ABC,BE、CF、AD分别是△ABC的三条中线,证明:三条中线交于一点G.AC的29. 如图,在等腰直角三角形ABC中,∠BAC=90∘,AB=AC,以点C为圆心、13长为半径作圆,点E为⊙C上一点,连接CE,AE,将△CEA绕点E逆时针旋转90∘,得到△GEF,连结BF,AG, CG.(1)如图(1),当点E在BC上时,求证:四边形GABF是矩形;(2)当点E在如图(2)所示的位置上时,判断四边形CABF的形状,并说明理由;(3)当四边形GABF是菱形时,求∠CEA的度数.30. 如图1、2,点E为正方形ABCD边DC的中点,依据正方形的对称性,请仅用一把无刻度的直尺(仅用于过任意两点作直线、连接任意两点、延长任意线段)按要求画图.(不写画法,保留作图痕迹).(1)在图1中,画出∠B的平分线和AD边的中点F;(2)在图2中,画出EF⊥AB,垂足为点F.31. 已知a,b,c分别为△ABC的三边,且满足a+b=2c−3,a−b=2c−6,a>b.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.32. 如图,△ABC中,点D、E分别为AB、AC的中点,连接DE,线段BE、CD相交于点O,若OD=2,求OC的长.33. 如图,AD、CE是△ABC的高,且AB=2BC.则AD与CE有怎样的数量关系?为什么?34. 现有一长度为30cm的铁条,张师傅欲把它截开,焊接成各边长度顺次相差相等自然数的三角形铁架,可以有多少种截法?35. 如图,点E是△ABC的内心,AE的延长线与△ABC的外接圆相交于点D.(1)若∠BAC=70∘,求∠CBD的度数;(2)求证:DE=DB.36. 如图,在三角形ABC中,AD是BC边上的中线,三角形ABD的周长比三角形ACD的周长小5,求AC−AB的值.37. 如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且SΔABC=8cm2,则阴影部分的面积为________.38. 已知:如图,∠MON及边ON上一点A.在∠MON内部求作:点P,使得PA⊥ON,且点P到∠MON两边的距离相等.39. 如图是边长为1的小正方形网格,已知点A(0, 1),B(2, 1),C(3, 2).(1)请在网格中画出平面直角坐标系和△ABC;(2)若平面内有一点D,使△ABD与△ABC全等,则点D的坐标是________;(3)若在x轴上存在一点P,且S△PBC=S△ABC,则点P的坐标是________.40. 三角形三边长a,b,c都是正整数,且满足a>b>c,a=8,且满足条件的三角形有多少个?参考答案与试题解析初中数学八年级上册与三角形有关的线段练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】C【考点】三角形【解析】【解答】解:∵由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形,∴选项C符合三角形的概念.故选C.2.【答案】A【考点】作角的平分线平行四边形的性质含30度角的直角三角形角平分线的性质【解析】【知识点】四边形、三角形性质,尺规作图.【解答】解:在平行四边形ABCD中,∵ ∠C=120∘,CD=2,BE为∠ABC的平分线,∴ ∠ABM=30∘,∵ BG=GM=AG=1,∴ ∠AMB=90∘,AB=1,∴ AM=12故选A.3.【答案】D【考点】三角形的重心【解析】根据三角形的中线把三角形分成两个面积相等的三角形,三角形的重心到顶点的距离等于到对边中点的距离的2倍求解即可.【解答】解:P点是△ABC的重心.理由如下:如图,∵AD是△ABC的中线,∴S△ABD=12S△ABC,∵P是△ABC的重心,∴PA=2PD,∴S△ABP=22+1S△ABD=23×12S△ABC=13S△ABC,同理S△ACP=13S△ABC,S△BCP=13S△ABC.故选D.4.【答案】D【考点】三角形三角形的分类【解析】根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).【解答】解:A,如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;B,如等边三角形,既是等腰三角形,也是锐角三角形,故该选项错误;C,如顶角是120∘的等腰三角形,是钝角三角形,也是等腰三角形,故该选项错误;D,一个等边三角形的三个角都是60∘.故该选项正确.故选D.5.【答案】A【考点】三角形的稳定性【解析】根据三角形的稳定性进行判断逐一判断即可.【解答】解:A.若钉在E、H两点处则构成了三角形,能固定窗框,故符合题意;B.若钉在E、G两点处则构成了两个四边形,不能固定窗框,故不符合题意;C.若钉在FH两点处则构成了两个四边形,不能固定窗框,故不符合题意;D.若钉在A、B两点处则未改变形状,不能固定窗框,故不符合题意;故答案为:A.6.【答案】A【考点】三角形的角平分线三角形的面积【解析】此题暂无解析【解答】解:作OE⊥AB于E,OF⊥AC于F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,∴△ABC的面积=12×AB×OE+12×AC×OF+12×BC×OD=12×(AB+AC+BC)×4=60.故选A.7.【答案】D【考点】三角形的重心【解析】在Rt△ABC中,∠C=90∘,点G为重心,CG=2,根据重心的性质即可求出AB.【解答】解:在Rt△ABC中,∠C=90∘,∵CG=2,∴AB边上的中线是6,∵点G为重心,∴CG=AB×13=2.∴AB=6,故选:D.【答案】B【考点】三角形三边关系【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,求得第三边的取值范围,再进一步进行分析.【解答】解:根据三角形的三边关系,得第三边大于4,而小于8.又第三边是偶数,则应是6.故选B.9.【答案】B【考点】三角形的面积【解析】根据图形可得△ABC的面积为S四边形AEFD−S△ACE−S△ADB−S△BCF,再分别求出每部分的面积,最后进行计算即可.【解答】解:S△ABC=S四边形AEFD−S△ACE−S△ADB−S△BCF=3×3−12×1×3−12×2×3−12×1×2=9−32−3−1=3.5.故选:B.10.【答案】B【考点】作角的平分线【解析】此题暂无解析【解答】解:设AG与BF交点为O,∵ AB=AF,AG平分2AAD,AO=AO,∴可证△ABO≅△AFO∵ BO=FO=3,∠AOB=∠AOF=90∘AB=5AO=4,AFIBE,∴△AOF≅△EOB,AO=EOAE=2AO=8________,故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】18【考点】三角形边角关系三角形三边关系【解析】根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.【解答】解:设三边为a(最小边),3a(最大边)、b,则a<b<3a①又∵2a<b<4a (三角形三边关系)②由①②,得2a<b<3a;又4a+b=120,则b=120−4a则6a<120<7a,即17.1<a<20,则a取值可为18或者19;最小边最少用18根火柴.故答案为18.12.【答案】锐角,直角,钝角【考点】三角形三角形的分类【解析】根据三角形的分类方法进行填空即可.【解答】解:三角形按角的不同分类,可分为锐角三角形,直角三角形和钝角三角形.故答案为:锐角;直角;钝角.13.【答案】三角形的稳定性【考点】三角形的稳定性【解析】根据安装过程中不变形,木工师傅在木门窗上斜着加钉了一根木条,是利用了三角形的稳定性.【解答】解:其原理是:三角形的稳定性.14.【答案】直线ABCK1DE2【考点】经过一点作已知直线的垂线【解析】由尺规作图的线段垂直平分线的作法得答案.【解答】解:(1)任意取一点K,使点K和点C在直线AB的两旁.故答案为:直线AB.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.故答案为:CK.(3)分别以点D和点E为圆心,大于1DE的长为半径作弧,两弧相交于点F.2DE.故答案为:1215.【答案】10<x<36【考点】三角形三边关系【解析】根据三角形的三边关系在△ABC中可得:29−19<x<29+19,在△ADC中可得:20−16<x<20+16,再求出公共解集即可.【解答】解:在△ABC中:29−19<x<29+19,解得:10<x<48,在△ADC中:20−16<x<20+16,解得:4<x<36,因此:10<x<36,故答案为:10<x<36.16.【答案】6【考点】三角形的面积【解析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点D、E分别为边BC、AD的中点,∴S△ABD=S△ACD=1×4=2,2S△ABE=S△BDE=S△ACE=S△CDE=1×2=1,2∴S△BCE=S△BDE+S△CDE=1+1=2,∵点F是CE的中点,∴S△BEF=S△BCF=1×2=1,2∴面积是1的三角形有6个.故答案为:6.17.【答案】AF,CE,CD【考点】三角形的高【解析】根据三角形的高的定义即可求出答案.【解答】解:根据三角形的高的定义:三角形的一个顶点向它的对边所在的直线作垂线,这点和垂足之间的线段是三角形的这边上的高,得出:在△ABC中,BC边上的高是AF;在△BCE中,BE边上的高是CE;在△ACD中,AC边上的高是CD.故答案为:AF,CE,CD.18.【答案】4【考点】三角形边角关系【解析】由于A、B、C到直线l的距离不等,故l与AB,AC,BC均不平行.在AB上作内分点X1,外分点X2;在BC上作内分点Y1,外分点Y2;在CA上作内分点Z1,外分点Z2;可知满足条件的直线条数.【解答】解:如图,在AB上作内分点X1,外分点X2,使AX1:X1B=1:2;AX2:X2B=1:2;在BC上作内分点Y1,外分点Y2,使BY1:Y1C=2:3;BY2:Y2C=2:3;在CA上作内分点Z1,外分点Z2,使AZ1:Z1C=1:3;AZ2:Z2C=1:3;满足条件的直线l共有四条:Y2Z2X2、Y2X1Z1、Y1X1Z2、Y1Z1X1.故答案为:4.19.【答案】42或32【考点】三角形的分类勾股定理【解析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD 的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:如图(1),当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=5+9=14,∴△ABC的周长为:15+13+14=42;如图(2),当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32,∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故答案为:42或32.20.【答案】2【考点】三角形的稳定性【解析】根据三角形的稳定性,添加的木条把五边形分成三角形即可.【解答】解:如图,至少需要2根木条.故答案为:2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长−△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=3,即AB−AC=3①.又AB+AC=11②,①+②得:2AB=14,解得AB=7;②−①得,2AC=8,解得AC=4,∴AB和AC的长分别为AB=7,AC=4 .(2)∵AB=7,AC=4,∴ 3<BC<11 .【考点】三角形的中线三角形三边关系【解析】(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长−△ADC的周长= (AB+AD+BD)−(AC+AD+CD)=AB−AC=3,即AB=AC=3①,又AB+ AC=11②,①+②得.2AB=14,解得AB=7.②-①得,2AC=8,解得AC=4 . ∴AB和AC的长分别为AB=7,AC=4 .(2)∵AB=7,AC=4,∴ 3<BC<11 .【解答】解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长−△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=3,即AB−AC=3①.又AB+AC=11②,①+②得:2AB=14,解得AB=7;②−①得,2AC=8,解得AC=4,∴AB和AC的长分别为AB=7,AC=4 .(2)∵AB=7,AC=4,∴ 3<BC<11 .22.【答案】解:如图所示即为所求.【考点】经过一点作已知直线的垂线【解析】图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=√5,EF=√5,FC=√10,借助勾股定理确定F点;图3,根据格点特征,利用垂直平分线的判定画出图形即可.【解答】解:如图所示即为所求.23.【答案】解:在△ABC中,根据三角形三边关系得:AB−BC<AC<AB+BC.即8−2<AC<8+2,解得6<AC<10.又因为AC为偶数,所以AC=8,所以△ABC的周长为:8+2+8=18.【考点】三角形三边关系【解析】暂无【解答】解:在△ABC中,根据三角形三边关系得:AB−BC<AC<AB+BC.即8−2<AC<8+2,解得6<AC<10.又因为AC为偶数,所以AC=8,所以△ABC的周长为:8+2+8=18.24.【答案】2.5.【考点】三角形的面积【解析】(1)△ABC的面积=一个长方形的面积−3个小三角形的面积;(2)作出高是△ABC的BC边的高的2倍的三角形即可.【解答】解:(1)△ABC的面积为:3×2−1×2÷2×2−1×3÷2=2.5;(2)作图如下:25.【答案】解:(1)∵△ABC是直角三角形,∠BAC=90∘,AB=9cm,AC=12cm,∴S△ABC=12AB⋅AC=12×9×12=54(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=27(cm2).∴△ABE的面积是27cm2.(2)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =9×1215=7.2(cm),即AD的长度为7.2cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=12−9=3(cm),即△ACE和△ABE的周长的差是3cm.【考点】三角形的高三角形的中线三角形的面积【解析】(1)利用“面积法”来求线段AD的长度;(2)△AEC与△ABE是等底同高的两个三角形,它们的面积相等;(3)由于AE是中线,那么BE=CE,于是△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE),化简可得△ACE的周长−△ABE的周长=AC−AB,易求其值.【解答】解:(1)∵△ABC是直角三角形,∠BAC=90∘,AB=9cm,AC=12cm,∴S△ABC=12AB⋅AC=12×9×12=54(cm2).又∵AE是边BC的中线,∴BE=EC,∴12BE⋅AD=12EC⋅AD,即S△ABE=S△AEC,∴S△ABE=12S△ABC=27(cm2).∴△ABE的面积是27cm2.(2)∵∠BAC=90∘,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =9×1215=7.2(cm),即AD的长度为7.2cm.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=AC+AE+CE−(AB+BE+AE)=AC−AB=12−9=3(cm),即△ACE和△ABE的周长的差是3cm.26.【答案】解:设AC为x,由三角形三边关系得,6−2<x<6+2,解得,4<x<8,又AC为偶数,∴AC=6,∴C△ABC=AB+BC+AC=6+2+6=14.【考点】三角形三边关系【解析】解:根据三角形的三边关系,得:第三边的取值范围是>4而<8,又第三边是偶数,则第三边是6,故周长是14.【解答】解:设AC为x,由三角形三边关系得,6−2<x<6+2,解得,4<x<8,又AC为偶数,∴AC=6,∴C△ABC=AB+BC+AC=6+2+6=14. 27.【答案】解:∵AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,∴S△ADC=6cm2,∴1×AE×CD=6,2∴1×3×CD=6,2解得:CD=4(cm),∴BC=2×4=8(cm).【考点】三角形的面积【解析】利用三角形的中线平分三角形面积得出S△ADC=6cm2,进而利用三角形面积得出CD的长,即可得出BC的长.【解答】解:∵AD,AE分别是边BC上的中线和高,AE=3cm,S△ABC=12cm2,∴S△ADC=6cm2,∴1×AE×CD=6,2∴1×3×CD=6,2解得:CD=4(cm),∴BC=2×4=8(cm).28.【答案】证明:如图,延长AG与BC相交于点D′,过点B作BH // CF交AG的延长线于H,∵CF是△ABC的中线,∴G是AH的中点,∵BE是△ABC的中线,∴GE是△ACH的中位线,∴GE // CH,∴四边形BHCG是平行四边形,∴BD′=CD′,∵AD是△ABC的中线,∴点D′与点D互相重合,∴AD经过BE、CF的交点G,即三条中线交于一点G.【考点】三角形的重心【解析】延长AG与BC相交于点D′,过点B作BH // CF交AG的延长线于H,根据三角形的中位线平行于第三边并且等于第三边的一半可得G是AH的中点,再根据三角形的中位线平行于第三边并且等于第三边的一半可得GE // CH,从而得到四边形BHCG是平行四边形,根据平行四边形对角线互相平分可得BD′=CD′,从而得到点D′与点D重合.【解答】证明:如图,延长AG与BC相交于点D′,过点B作BH // CF交AG的延长线于H,∵CF是△ABC的中线,∴G是AH的中点,∵BE是△ABC的中线,∴GE是△ACH的中位线,∴GE // CH,∴四边形BHCG是平行四边形,∴BD′=CD′,∵AD是△ABC的中线,∴点D′与点D互相重合,∴AD经过BE、CF的交点G,即三条中线交于一点G.29.【答案】(1)证明:由旋转的性质可得AC=GF,EC=EG,∠CEG=90∘.∵AC=AB,∴GF=AB.∵△ABC为等腰直角三角形,∠C=45∘,∴∠EGF=∠C=45∘.又EC=EG,且∠CEG=90∘,∴点G在AG上,且∠EGC=∠C=45∘,∴∠CGF=90∘=∠CAB,∴GF//AB,∴四边形GABF是平行四边形.又∠GAB=90∘,∴四边形GABF是矩形.(2)解:四边形GABF是平行四边形.理由:由旋转的性质可得AC=GF,∠EGF=∠ACE,∠CEG=90∘.∵AC=AB,∴GF=AB.∵∠EGF+∠AGF+∠EGA=360∘,∠ACE+∠CEG+∠EGA+∠CAG=360∘,∠EGF=∠ACE,∴∠AGF=∠CEG+∠CAG,∴GF//AB,∴四边形GABF是平行四边形.(3)解:∵四边形GABF是菱形,∴AG=AB=AC.又EC=EG,AE=AE,∴△ACE≅△ABE,∴∠CEA=∠GEA.∠CEG=45∘;如图(1),当点E在⊙C的右半边时,∠CEA=12(360∘−∠CEG)=135∘.如图(2),当点E在⊙C的左半边时,∠CEA=12【考点】三角形的高【解析】此题暂无解析【解答】(1)证明:由旋转的性质可得AC=GF,EC=EG,∠CEG=90∘.∵AC=AB,∴GF=AB.∵△ABC为等腰直角三角形,∠C=45∘,∴∠EGF=∠C=45∘.又EC=EG,且∠CEG=90∘,∴点G在AG上,且∠EGC=∠C=45∘,∴∠CGF=90∘=∠CAB,∴GF//AB,∴四边形GABF是平行四边形.又∠GAB=90∘,∴四边形GABF是矩形.(2)解:四边形GABF是平行四边形.理由:由旋转的性质可得AC=GF,∠EGF=∠ACE,∠CEG=90∘.∵AC=AB,∴GF=AB.∵∠EGF+∠AGF+∠EGA=360∘,∠ACE+∠CEG+∠EGA+∠CAG=360∘,∠EGF=∠ACE,∴∠AGF=∠CEG+∠CAG,∴GF//AB,∴四边形GABF是平行四边形.(3)解:∵四边形GABF'是菱形,∴AG=AB=AC,又EC=EG,AE=AE,∴△ACE≅△ABE,∴∠CEA=∠GEA,∠CEG=45∘;如图(1),当点E在⊙C的右半边时,∠CEA=12(360∘−∠CEG)=135∘.如图(2),当点E在⊙C的左半边时,∠CEA=1230.【答案】解:(1)如图①所示;(2)如图②所示:①②【考点】三角形的中线作角的平分线经过一点作已知直线的垂线【解析】此题暂无解析【解答】解:(1)如图①所示;(2)如图②所示:①②31.【答案】解:(1)∵a,b,c分别为△ABC的三边,a+b=2c−3,a−b=2c−6,∴{2c−3>c2c−6<c,解得:3<c<6.(2)∵△ABC的周长为12,a+b=2c−3,∴a+b+c=3c−3=12,解得c=5.【考点】三角形三边关系【解析】此题暂无解析【解答】解:(1)∵a,b,c分别为△ABC的三边,a+b=2c−3,a−b=2c−6,∴{2c−3>c2c−6<c,解得:3<c<6.(2)∵△ABC的周长为12,a+b=2c−3,∴a+b+c=3c−3=12,解得c=5.32.【答案】解:解法一:∵点D、E分别为AB、AC的中点,线段BE、CD相交于点O,∴O点为△ABC的重心,∴OC=2OD=4;解法二:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE // BC,DE=1BC,2∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴OD:OC=DE:BC=1:2,∴OC=2OD=4.故OC的长为4.【考点】三角形的重心【解析】解法一:由题意,知O点为△ABC的重心,根据重心的性质可得出OC=2OD;解法二:由题意,知DE为△ABC的中位线,则DE // BC,DE=12BC,再证明△ODE∽△OCB,由相似三角形对应边成比例即可得出OC=2OD.【解答】解:解法一:∵点D、E分别为AB、AC的中点,线段BE、CD相交于点O,∴O点为△ABC的重心,∴OC=2OD=4;解法二:∵点D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE // BC,DE=12BC,∴∠ODE=∠OCB,∠OED=∠OBC,∴△ODE∽△OCB,∴OD:OC=DE:BC=1:2,∴OC=2OD=4.故OC的长为4.33.【答案】解:AD=2CE.理由如下:S△ABC=12AB⋅CE=12BC⋅AD,∵AB=2BC,∴12⋅2BC⋅CE=12BC⋅AD,整理得,AD=2CE.【考点】三角形的面积【解析】根据三角形的面积公式列式整理即可得解.【解答】解:AD=2CE.理由如下:S△ABC=12AB⋅CE=12BC⋅AD,∵AB=2BC,∴12⋅2BC⋅CE=12BC⋅AD,整理得,AD=2CE.34.【答案】解:∵一长度为30cm的铁条,焊接成各边长度顺次相差相等自然数的三角形铁架,∴中间的一条边是10cm,由三角形三边关系可知,最小边的长度是6cm,∴可以截成6cm,10cm,14cm;7cm,10cm,13cm;8cm,10cm,12cm;9cm,10cm,11cm,共4种情况的三角形铁架.【考点】三角形三边关系【解析】根据题意可以确定中间的一条边是10cm,根据各边长度顺次相差相等自然数,由三角形三边关系可知,最小边的长度是6cm,依此即可求解.【解答】解:∵一长度为30cm的铁条,焊接成各边长度顺次相差相等自然数的三角形铁架,∴中间的一条边是10cm,由三角形三边关系可知,最小边的长度是6cm,∴可以截成6cm,10cm,14cm;7cm,10cm,13cm;8cm,10cm,12cm;9cm,10cm,11cm,共4种情况的三角形铁架.35.【答案】(1)35∘(2)证明见解析.【考点】三角形的角平分线【解析】(1)由点E是△ABC的内心,∠BAC=70∘,易得∠CAD=35∘,进而得出∠CBD=2CAD=35∘(2)由点E是△ABC的内心,可得E点为△ABC角平分线的交点,可得∠ABE=∠CBE ∠BAD=∠CAD,可推导出∠DBE=∠BED,可得DE=DB.【解答】(1)点E是△ABC的内心,∠BAC=70∘2CBD=∠CAD=35∘(2):E是内心,△ABE=∠CBE,∠BAD=∠CAD∠CBD=∠CAD∠CBD=∠BAD2AD+∠ABE=∠BED,,CBE++∠BD==DBB∠DBE=∠BEDDE=DB.36.【答案】解:由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD−(AB+BD+AD)=AC−AB=5.【考点】三角形的中线【解析】AD是BC边上的中线,可得BD=CD,分别求出△ABD的周长和△ACD的周长,根据三角形ABD的周长比△ACD的周长小5列方程求出.【解答】解:由题意知:△ABD的周长=AB+BD+AD,△ACD的周长=AC+CD+AD,又因为AD是BC边上的中线,所以BD=CD.∵△ABD的周长比△ACD的周长小5,∴AC+CD+AD−(AB+BD+AD)=AC−AB=5.37.【答案】2cm2【考点】三角形的中线【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:如图,作∠MON的平分线,过点A作ON的垂线,两线交于点P,点P即为所求.【考点】作角的平分线经过一点作已知直线的垂线【解析】本题考查了基本作图,作一个角的平分线和过直线上一点作已知直线的垂线,解题关键是掌握基本作图并能正确作出来,根据这两个基本作图来解答即可.【解答】解:如图,作∠MON的平分线,过点A作ON的垂线,两线交于点P,点P即为所求.39.【答案】直角坐标系如图所示,△ABC即为所求作:(−1, 2)或(−1, 0)或(3, 0)(3, 0)或(−1, 0)【考点】三角形的面积【解析】(1)根据所给的已知点的坐标画直角坐标系;(2)根据题意画出符合条件的图形,根据图形结合A、B、C的坐标即可得出答案(3)分两种情形,利用4PBC所在的正方形面积减去周围的直角三角形的面积分别构建方程解决问题即可.【解答】(2)如图所示,共有3个符合条件的点,________x当AB=AB,BC=AD1AC=BD1时,△ABD1=△BAC 此时D1的坐标是(−1,2)当AB=AB,BC=AD2AC=BD2时△ABD2=ΔBC此时D2的坐标是(−1,0)当AB=AB,BC=BD3AC=AD3时,△ABD3≅△ABC 此时D3的坐标是(3,0)故答案为:(−1,2)或(−1,0)或(3,0)(3)设P(m,0)S△ABC=12×2×1=1当点P在直线BC的右侧时,2(m−2)−12×1×1−12(m−2)×1−12(m−3)×2=1解得:m=3当点P在直线BC的左侧时,2(3−m)−12(2−m)×1−1×1−12×1×1−12(3−m)×2=1解得:m=−1:满足条件的点P的坐标为(3,0)或(−1,0)故答案为:(3,0)或(−1,0)40.【答案】解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).【考点】三角形三边关系【解析】首先根据三角形的三边关系可得b+c>a,再根据条件b>c可确定b>4,再由a>b 可得4<b<8,进而可确定b的值,然后再确定c的值即可.【解答】解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形总复习典型例题
1.在△ABC中,若AB=AC,其周长为12,则AB的取值范围是()
A.AB>6 B.AB<3 C.4<AB<7 D.3<AB<6
2.△ABC中,AB=AC,且BC=8,BD是AC边上的中线,分△ABC的周长为两部分,已知它们的差为2,则
AB边的长为______________;
3.一个三角形的两条边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()
A.14
B.15
C.16
D.17
4.如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.
5.(探究题)(1)如图7-1-2-9,AD是△ABC的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△DEF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将结论与AD是△ABC的角平分线、DE∥AB、DF∥AC中的任一条件交换,•所得命题正确吗?
6. 如图7-1-6,△ABC的周长为18 cm,BE、CF分别为AC、AB边上的中线,BE、CF相
交于点O,AO的延长线交BC于D,且AF=3 cm,AE=2 cm,求BD的长.
7.如图7-1-7所示,已知在△ABC中,AB=AC=8,P是BC上任意一点,PD⊥AB于点D,PE⊥AC于点E.若△ABC的面积为14,问:PD+PE的值是否确定?若能确定,是多少?若不能确定,请说明理由.
三、解答题:
1.已知:钝角△ABC,分别画出AC边上的高BD,BC边上的中线AE及△ABC中∠ACB的平分线CF。
2.如图,(1)过点A画BC的垂线,再过点B、C分别画AD的垂线,垂足分别为E、F、G,AE与FB交于点M,AE与CG交于点N(保留痕迹,写出结果)(2)写出FM与CN的位置关系。
3.已知:AD、AE分别是△ABC的高和中线,AB=6cm,BC=10 cm,AC=8 cm,∠CAB =90°。
求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE周长的差。
4.在△ABC中,∠C=90°,BC=6cm,CA=8 cm,AB=10 cm,动点P从C出发,以每秒 2 cm 的速度沿C—A—B运动到点B,问P从C点出发多少秒时,可使
?
B C
D F E
5、(本小题7分)如图,点A 、E 、B 、D 在同一条直线上,AE=DB ,AC=DF ,AC ∥DF. 请探索BC 与EF 有怎样的位置关系?并说明理由。
6.如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF .
(1) 请你判断AD 是△ABC 的中线还是角平分线?请证明 你的结论.
7.如图,C 是线段AB 的中点,CD 平分∠ACE
,CE 平分∠BCD ,CD=CE .
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B 的度数.
8.(本题6分)
如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明. (1)你添加的条件是: ▲ ;
(2)证明:
.
A C
B
D F
E
(第11题)
B C D
E F A
9.如图10,已知ABC ADE Rt △≌Rt △,90ABC ADE ∠=∠=°,BC 与DE 相交于
点F ,连接CD ,EB .
(1)图中还有几对全等三角形,请你一一列举. (2)求证:.CF EF =
10.(6分)如图,在△ABC 中,BC >AC ,点D 在BC 上,且DC =AC ,∠ACB 的平分线
CF 交AD 于点F .点E 是AB 的中点,连接EF .
(1)求证:EF ∥BC ;
(2)若△ABD 的面积是6,求四边形BDFE 的面积.
11.(本题满分8分)如图,在
ABCD 中,点E 、F 是对角线AC 上两点,且CF AE =.求
证:FDE EBF =∠.
A
C
B
D
F
图10
F
E
D
A (第21题)
.(本题满分6分)如图。
点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,AC ∥DF ,BF=CE .求证:AC=DF .
12.(2010 江苏镇江)推理证明(本小题满分6分)
如图,在△ABC 和△ADE 中,点E 在BC 边上,∠BAC=∠DAE ,∠B=∠D ,AB=AD. (1)求证:△ABC ≌△ADE ;
(2)如果∠AEC=75°,将△ADE 绕着点A 旋转一个锐角后与△ABC 重合,求这个旋
转角的大小.
13.如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BF
A E
B M
C F
14.如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
求证:(1)AM=AN ;(2)AM ⊥AN 。
15、(10分) 如图,已知: AD
是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
16、(10分)已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF . 求证:AB CD ∥.
77、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD
A D E C
B F .3421D C
B A
18、 (10分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.
19在△ABC 中,,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE=AD+BE (2)当直线MN 绕点C 旋转到图②的位置时,求证:DE=AD-BE
(3)当直线MN 绕点C 旋转到图③的位置时,试问:DE 、AD 、BE 有怎样的等量关系?请写出这个等量关系,并加以证明
A C E D
B。