高考数学(考点解读命题热点突破)专题12 空间几何体的三视图表面积及体积 文

合集下载

新高考版高考数学专题复习 §8.1 空间几何体的三视图、表面积与体积

新高考版高考数学专题复习  §8.1 空间几何体的三视图、表面积与体积

专题八立体几何【考情探究】课标解读考情分析备考指导主题内容一、空间几何体的三视图、体积与表面积公式1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型;会用斜二测画法画出简单几何体的直观图.3.了解球、棱柱、棱锥、棱台的表面积和体积的计算公式.1.从近几年高考考查内容来看,这一部分主要考查空间几何体与涉及数学文化、空间几何体的三视图、表面积与体积、几何体的外接、内切球的计算,考查空间几何体侧面展开图问题,题型既有选择题,也有填空题,难度适中.2.这一部分突出对空间直线、平面位置关系的判断,会求两异面直线所成的角,在解答题中主要是考查直线与平面平行、垂直的判定与性质,常出现在解答题第一问,难度中等,解题时注意线线、线面、面面平行、垂直位置关系的相互转化.3.利用空间向量证明平行与垂直以及求空间角(特别是二面角)、空间距离均是高考的热点,通过向量的运算来证明直线平行、垂直,求夹角,难度中等,以解答题形式出现,把立体几何问题转化为空间向量问题.1.强化识图能力,还原成自己熟悉的几何体.2.对图形或其某部分进行平移、翻折、旋转、展开或割补.3.重视立体几何最值问题的研究.4.三视图、平面展开图(折线转化成直线).5.完善知识网络,强调通性通法,以下是平行垂直关系的转化关系图.6.加强空间向量对垂直问题的研究:空间直角坐标系的建立是基于三线两两垂直的,因此只有真正掌握了对垂直关系的判断、论证的研究方法,真正理解法向量的自由性,以及求法向量的方法,才能使问题顺利解决.二、空间点、线、面的位置关系1.理解空间直线、平面位置关系的定义.2.能运用公式、定理和已获得的结论证明一些空间图形的位置关系的简单命题.3.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面平行的判定定理与有关性质.4.以立体几何的定义、公理和定理为出发点,认识和理解空间中线、面垂直的判定定理与有关性质.三、空间向量运算及立体几何中的向量方法1.掌握空间向量的线性运算、数量积及其坐标表示、用向量的数量积判断向量的平行与垂直.2.理解直线的方向向量与平面的法向量.3.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的作用.【真题探秘】§8.1空间几何体的三视图、表面积与体积基础篇固本夯基【基础集训】考点一三视图与直观图1.(2018课标Ⅲ,3,5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()答案 A2.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是.答案②③④3.如图,矩形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=6 cm,O'C'=2 cm,则原图形OABC的形状是.答案菱形考点二空间几何体的体积4.(2018河南顶级名校3月联考,10)某四棱锥的三视图如图所示,其中正视图的轮廓是边长为2的正方形,侧视图的轮廓是底边长分别为2和1的直角梯形,则该几何体的体积为()A.83B.43C.8√23D.4√23答案 A5.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为√2,则此球的体积为()A.√6πB.4√3πC.4√6πD.6√3π答案 B6.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2√2,AD=2,则四边形ABCD绕AD所在直线旋转一周所形成几何体的体积为.答案1483π考点三空间几何体的表面积7.(2019安徽黄山二模,6)某空间几何体的三视图如图所示,其中正视图和俯视图均为边长是1的等腰直角三角形,则此空间几何体的表面积是()A.√2+√32B.1+√32C.√2+√3+12D.√2+√3答案 C8.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,且AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积是.答案169π9.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC-A1B1C1中,AA1=AC=5,AB=3,BC=4,则阳马C1-ABB1A1的外接球的表面积是.答案50π综合篇知能转换【综合集训】考法一与表面积和体积有关的问题1.(2017课标Ⅰ,16,5分)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案4√152.(2020届浙江东阳中学10月月考,16)顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥PB,垂足为H,且PA=4,C是PA的中点,则当三棱锥O-HPC的体积最大时,OB的长为.答案2√633.(2020届江西南昌调研,15)已知一个三棱锥的三视图如图所示,其中2a+b=2(a>0,b>0),则此三棱锥体积的最大值为.答案13考法二与球有关的切、接问题4.(2016课标全国Ⅲ,11,5分)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6π D.32π3答案 B5.(2018四川南充模拟,9)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A.32√3πB.48πC.24πD.16π答案 A6.(2017江苏,6,5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是.答案327.(2018湖南师大附中模拟,16)在体积为43的三棱锥S-ABC中,AB=BC=2,∠ABC=90°,SA=SC,且平面SAC⊥平面ABC,若该三棱锥的四个顶点都在同一球面上,则该球的体积是.答案92π8.(2018江西南昌二中1月模拟,16)在三棱锥S-ABC中,△ABC是边长为3的等边三角形,SA=√3,SB=2√3,二面角S-AB-C的大小为120°,则此三棱锥的外接球的表面积为.答案21π应用篇知行合一【应用集训】1.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案 B2.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为()A.500π3cm3 B.866π3 cm3C.1 372π3 cm3 D.2 048π3cm3答案 A3.(2019课标Ⅲ,16,5分)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.答案118.8【五年高考】考点一三视图与直观图1.(2017课标Ⅰ,7,5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16答案 B2.(2019课标Ⅱ,16,5分)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.(本题第一空2分,第二空3分)图1图2答案26;√2-1考点二空间几何体的体积3.(2019课标Ⅰ,12,5分)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.8√6πB.4√6πC.2√6πD.√6π答案 D4.(2017课标Ⅱ,4,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π答案 B5.(2019浙江,4,4分)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324答案 B6.(2019江苏,9,5分)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是.答案107.(2019天津,11,5分)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.答案π48.(2018天津,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.答案1129.(2018江苏,10,5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .答案4310.(2017天津,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 答案92π 11.(2015江苏,9,5分)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 . 答案 √712.(2016江苏,17,14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A 1B 1C 1D 1,下部的形状是正四棱柱ABCD-A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍. (1)若AB=6 m,PO 1=2 m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m,则当PO 1为多少时,仓库的容积最大?解析 (1)由PO 1=2 m 知O 1O=4PO 1=8 m.因为A 1B 1=AB=6 m,所以正四棱锥P-A 1B 1C 1D 1的体积V 锥=13·A 1B 12·PO 1=13×62×2=24(m 3);正四棱柱ABCD-A 1B 1C 1D 1的体积V 柱=AB 2·O 1O=62×8=288(m 3).所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2) 设A 1B 1=a(m),PO 1=h(m),则0<h<6,O 1O=4h(m).连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 12+P O 12=P B 12,所以(√2a 2)2+h 2=36,即a 2=2(36-h 2).于是仓库的容积V=V 柱+V 锥=a 2·4h+13a 2·h=133a 2h=263(36h-h 3),0<h<6,从而V'=263(36-3h 2)=26(12-h 2).令V'=0,得h=2√3或h=-2√3(舍).当0<h<2√3时,V'>0,V 是单调增函数;当2√3<h<6时,V'<0,V 是单调减函数.故h=2√3时,V 取得极大值,也是最大值.因此,当PO 1=2√3 m 时,仓库的容积最大. 方法指导 (1)根据已知条件求出相关数据,进而利用相应体积公式求解.(2)选择中间关联变量PO 1为主变量把相关边长与高用主变量表示出来,再把容积表示成主变量的函数,进而转化成研究函数最值的问题.本题主要考查函数的概念、导数的应用、棱柱和棱锥的体积等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.考点三空间几何体的表面积13.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案 C14.(2016课标Ⅲ,9,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36√5B.54+18√5C.90D.81答案 B15.(2015课标Ⅱ,9,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π答案 C,SA与圆锥底面所成角为45°.若△SAB的面积为16.(2018课标Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为785√15,则该圆锥的侧面积为.答案40√2π【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届山东夏季高考模拟,5)已知三棱锥S-ABC中,∠SAB=∠ABC=π,SB=4,SC=2√13,AB=2,BC=6,则三棱锥S-ABC的体积是()2A.4B.6C.4√3D.6√3答案 C2.(2020届九师联盟9月质量检测,3)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔,令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.141 59,这就是圆周率较为精确的近似值.金字塔底部为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约为230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为()A.128.4米B.132.4米C.136.4米D.140.4米答案 C3.(2018江西南昌二中3月月考,9)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A.8B.4C.4√3D.4√2 答案 D4.(2020届安徽合肥高三调研,6)已知一个机械工件的正(主)视图与侧(左)视图如图所示,俯视图与正(主)视图完全一样.若图中小网格都是边长为1的正方形,则该工件的表面积为( )A.24πB.26πC.28πD.30π 答案 C5.(2019青海西宁二模,8)《九章算术》中描述的“羡除”是一个五面体,其中有三个面是梯形,另两个面是三角形.已知一个羡除的三视图如图中粗线所示,其中小正方形网格的边长为1,则该羡除的体积为( )A.20B.24C.28D.32 答案 B6.(2020届辽宁瓦房店高级中学10月月考,11)一个圆锥的母线长为2,圆锥的母线与底面的夹角为π4,则圆锥的内切球的表面积为( )A.8πB.4(2-√2)2π C.4(2+√2)2π D.32(2−√2)249π 答案 B7.(2018广东惠州二模,10)已知三棱锥S-ABC 的底面是以AB 为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则三棱锥S-ABC 的外接球的球心到平面ABC 的距离是( ) A.√33 B.1 C.√3 D.3√32答案 A8.(2020届辽宁阜新高级中学10月月考,11)在三棱锥S-ABC 中,AB=√10,∠ASC=∠BSC=π4,AC=AS,BC=BS,若该三棱锥的体积为√153,则三棱锥S-ABC 外接球的体积为( )A.πB.4√3πC.√5πD.π3答案 B9.(2020届河北衡水中学模拟,11)在菱形ABCD中,∠DAB=60°,将这个菱形沿对角线BD折起,使得平面DAB⊥平面BDC,若此时三棱锥A-BCD的外接球的表面积为5π,则AB的长为()A.√52B.√3C.√5D.3答案 B10.(2020届湖南长沙一中第一次月考,12)已知三棱锥D-ABC的四个顶点在球O的球面上,若AB=AC=BC=DB=DC=1,当三棱锥D-ABC 的体积取到最大值时,球O的表面积为()A.5π3B.2π C.5π D.20π3答案 A二、多项选择题(每题5分,共15分)11.(改编题)已知三棱锥A-BCD中,BC⊥CD,AB=AD=√2,BC=1,CD=√3,则()A.三棱锥的外接球的体积为4π3B.三棱锥的外接球的体积为8π3C.三棱锥的体积的最大值为√36D.三棱锥的体积的最大值为√3答案AC12.(改编题)如图,矩形ABCD中,M为BC的中点,将△ABM沿直线AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列说法中正确的是()A.存在某个位置,使得CN⊥AB1的长是定值C.若AB=BM,则AM⊥B1DD.若AB=BM=1,当三棱锥B1-AMD的体积最大时,三棱锥B1-AMD的外接球的表面积是4π答案BD13.(2019山东德州上学期期末考试数学试题)一几何体的平面展开图如图所示,其中四边形ABCD为正方形,E、F分别为PB、PC的中点,在此几何体中,给出下面的结论,其中正确的是()A.直线AE与直线BF异面B.直线AE与直线DF异面C.直线EF∥平面PADD.直线DF⊥平面PBC答案AC三、填空题(每题5分,共35分)14.(2020届山东夏季高考模拟,16)半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.答案815.(2020届重庆一中第二次月考,13)已知圆锥的母线长为5,侧面积为15π,则该圆锥的体积为.答案12π16.(2019辽宁丹东质量测试(一),14)一个圆锥的轴截面是面积为1的等腰直角三角形,则这个圆锥的侧面积为.答案√2π17.(2019福建漳州二模,15)已知正四面体ABCD的外接球的体积为8√6π,则这个四面体的表面积为.答案16√318.(2019东北师大附中、重庆一中等校联合模拟,15)若侧面积为4π的圆柱有一外接球O,当球O的体积取得最小值时,圆柱的表面积为.答案6π19.(2020届福建厦门一中10月月考,15)三棱锥P-ABC中,PA=PB=2√2,AB=4,BC=3,AC=5,若平面PAB⊥平面ABC,则三棱锥P-ABC外接球的表面积为.答案25π20.(2020届广东广州十六中质量检测(一),15)已知四棱锥P-ABCD的顶点都在球O的球面上,底面为矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为.答案64π3。

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

2014高考数学理(真题讲练 规律总结 名师押题)热点专题突破:第十二讲 空间几何体

2014高考数学理(真题讲练 规律总结 名师押题)热点专题突破:第十二讲 空间几何体

第十二讲空间几何体空间几何体简单几何体多面体棱柱棱台直观图三视图结构特征表面积体积棱锥旋转体圆锥圆柱圆台球简单组合体1.(三视图)将长方体截去一个四棱锥,得到的几何体如图4-1-1所示,则该几何体的侧(左)视图为()图4-1-1【解析】对角线被遮住应为虚线,再根据对角线的位置可知选D.【答案】 D2.(几何体的体积)已知某三棱锥的三视图(单位:cm)如图4-1-2所示,则该三棱锥的体积等于________cm3.图4-1-2【解析】 由三视图可得该三棱锥的直观图如图所示.三棱锥的底面是两直角边长分别为3,1的直角三角形,且高为2,故V =13×12×3×1×2=1(cm 3).【答案】 13.(几何体的表面积)一个棱锥的三视图如图4-1-3所示(单位:cm),则该棱锥的表面积为________cm 2.图4-1-3【解析】 由三视图知,棱锥的底面是等腰直角三角形,斜边所在的侧面垂直于底面,从而三棱锥的高为4.其表面积S =12×6×6+12×6×5×2+12×62×4=48+12 2.【答案】 48+12 24.(直观图)若△ABC 的直观图的面积为2,则△ABC 的面积S △ABC =________. 【解析】 根据原图形的面积是直观图面积的22倍知S △ABC =4 2. 【答案】 4 25.(球的表面积)球O 与底面边长为3的正三棱柱的各侧面均相切,则球O 的表面积为________.【解析】 设球O 的半径为R ,底面正三角形内切圆半径就是球O 的半径,则R =13×332=32,因此球O 的表面积S =4πR 2=3π. 【答案】 3π【命题要点】①根据几何体确定三视图;②根据三视图中的二个视图确定另一个视图.(1)(2013·四川高考)一个几何体的三视图如图4-1-4所示,则该几何体的直观图可以是()图4-1-4(2)(2013·课标全国卷Ⅱ)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()【思路点拨】(1)从俯视图入手求解.(2)首先在空间直角坐标系中画出该四面体,然后根据投影面得到正视图.【自主解答】(1)根据俯视图是圆环,可排除A、B、C,选D.(2)结合已知条件画出图形,然后按照要求作出正视图.根据已知条件作出图形:四面体C1—A1DB,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.【答案】(1)D(2)A1.解答本例(2)时,可先确定四面体各个顶点在投影面上的射影,再根据射影确定正视图.2.空间几何体的三视图问题的求解关键(1)形状的确定:三视图与空间几何体的相互转化是解决这类问题的常用方法.(2)大小的确定:根据三视图的大小可确定几何体的大小,由几何体的大小也可确定出三视图的大小.变式训练1(2013·齐齐哈尔模拟) 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图4-1-5所示,侧视图是一个矩形,则这个矩形的面积是()A .4B .2 3C .2 D. 3俯视图 图4-1-5【解析】 设正三棱柱的底面边长为a ,则34a 3=23, ∴a =2,从而侧视图的长为2,宽为32×2=3,侧视图的面积为2 3. 【答案】 B(1)(2013·临沂模拟)某几何体的三视图如图4-1-6所示,其中侧视图中的图弧是半圆,则该几何体的表面积为( )图4-1-6A.92+14π B.82+14πC.92+24π D.82+24π(2)(2013·浙江高考)若某几何体的三视图(单位:cm)如图4-1-7所示,则此几何体的体积等于________cm3.图4-1-7【思路点拨】(1)首先判定几何体的形状,然后确定几何体表面积的求法.(2)首先判定几何体的形状,然后确定几何体体积的求法.【自主解答】(1)由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体的中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.(2) 由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示.三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V 1=12×3×4×5=30(cm 3),小三棱锥的底面与三棱柱的上底面相同,高为3,故其体积V 2=13×12×3×4×3=6(cm 3),所以所求几何体的体积为30-6=24(cm 3).【答案】 (1)A (2)241.求解几何体的表面积及体积的技巧:(1)求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.2.根据几何体的三视图求其表面积与体积的步骤: (1)根据给出的三视图判断该几何体的形状. (2)由三视图中的大小标示确定该几何体的各个度量. (3)套用相应的面积公式与体积公式计算求解.变式训练2 (2013·江西高考)一几何体的三视图如图4-1-8所示,则该几何体的体积为( )A .200+9πB .200+18πC .140+9πD .140+18π图4-1-8【解析】 由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体.长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V =10×4×5+9π=200+9π.【答案】 A【命题要点】 ①求球的表面积或体积;②求球心到截面的距离.(1)(2013·大连模拟)已知正三棱锥P —ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________. (2)(2013·开封模拟)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球表面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.【思路点拨】 (1)设△ABC 的中心为M ,球心为O ,在Rt △OAM 中用勾股定理求解. (2)首先确定球的半径与圆锥底面半径的关系,然后确定圆锥的高,求高的比值. 【自主解答】 (1)由于P A ,PB ,PC 两两垂直,则点P 在底面ABC 上的射影就是正三角形ABC 的中心M ,设正三角形ABC 的边长为a ,则三棱锥的侧棱长为22a ,AM =33a ,三棱锥的高为h ,在Rt △P AM 中,由勾股定理得P A 2=PM 2+AM 2⇒⎝⎛⎭⎫22a 2=h 2+⎝⎛⎭⎫33a 2⇒h =66a . 再设球心为O ,则OM ⊥底面ABC ,且OM =3-h ,在Rt △OAM 中,由勾股定理得OA 2=OM 2+AM 2⇒(3)2=(3-h )2+⎝⎛⎭⎫33a 2,又h =66a ,则解得a =22,故球心到截面ABC 的距离为3-h =3-66a =3-66×22=33. (2)设球心为O 1,球半径为r 1,圆锥底面圆圆心为O 2,半径为r 2,则有316×4πr 21=πr 22,即r 2=32r 1,所以O 1O 2=r 21-r 22=r 12,设两个圆锥中,体积较小者的高与体积较大者的高分别为h 1,h 2,则h 1h 2=r 1-r 12r 1+r 12=13.【答案】 (1)33 (2)131.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.2.若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,由4R 2=a 2+b 2+c 2求解.变式训练3 (2013·辽宁高考)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上.若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132D .310【解析】 因为直三棱柱中AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =122+52=13,即R =132.【答案】 C空间几何体的三视图能让学生经历由三视图到实物图,再到直观图的过程,能较好地考查学生的空间想象能力,命题涉及几何体的结构特征、表面积和体积问题是课标区高考的热点之一.将三视图还原为直观图求几何体的体积已知一个空间几何体的三视图如图4-1-9所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________ cm 3.图4-1-9【解析】 由三视图知,该空间几何体为一底面是直角梯形的四棱锥,且四棱锥顶点与底面直角顶点的连线垂直于底面.由三视图的数据可知,底面梯形的两底长分别为4和2,梯形的高和四棱锥的高都是2,因此底面梯形面积为S =12(2+4)×2=6,四棱锥的体积为V=13×6×2=4. 【答案】 4 【阅卷心语】易错提示 (1)搞不清正(主)视图中虚线是怎么来的,想象不出空间几何体的形状,或不能根据三视图确定四棱锥的哪一条侧棱垂直于底面.(2)不能根据三视图的有关数据正确得到空间几何体的相关数据,从而得不到正确答案. 防范措施 (1)根据三视图判断空间几何体的形状,应特别注意三个视图中的实线与虚线,知道为什么是实线或虚线,为什么有这些线或没有某些线,对于正(主)视图、侧(左)视图中的直角,更要弄清楚它们是直角的原因.(2)要弄清三视图的有关数据与空间几何体的哪些数据相当,只需搞清由空间几何体如何得到三视图即可,平时应多加练习,总结规律.1.一个几何体的三视图如图4-1-10所示,则它的体积为( )图4-1-10A.203 B.403C .20D .40【解析】 由三视图可知,该几何体是一个放倒的四棱锥,如图所示,其中四棱锥的底面是正(主)视图,为直角梯形,直角梯形的上底为1,下底为4,高为4.棱锥的高为4,所以四棱锥的体积为13×1+42×4×4=403,选B.【答案】 B2.有一平行六面体的三视图如图4-1-11所示,其中俯视图和侧(左)视图均为矩形,则这个平行六面体的表面积为( )图4-1-11A .21 3B .6+15 3C .30+6 3D.42【解析】由三视图可知该平行六面体的底面是个矩形,两个侧面和底面垂直.其中侧棱AA1=2,底面边长AD=3,平行六面体的高为3,BE=2,又AE=AA21-A1E2=22-(3)2=1,所以AB=1+2=3.所以平行六面体的表面积为2(3×3+3×3+3×2)=30+63,选C.【答案】 C。

高考数学突破点:立 体 几 何

高考数学突破点:立 体 几 何

第八章⎪⎪⎪立 体 几 何 第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16. (2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C.2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3π B.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图②,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆。

2021高考数学 命题区间精讲 精讲10 空间几何体的三视图、表面积、体积

2021高考数学 命题区间精讲 精讲10 空间几何体的三视图、表面积、体积

空间几何体的三视图、表面积、体积命题点1 空间几何体的三视图、展开图、截面图三视图、展开图、截面图中的几何度量(1)空间几何体的三视图:①在长方体或正方体中根据三视图还原几何体的直观图,能快速确定几何体中线面位置关系;②根据“长对正,宽相等、高平齐”的原则由三视图确定对应几何体中的量.(2)空间几何体表面距离最短问题:其解题思路常常是将几何体展开.一般地,多面体以棱所在的直线为剪开线展开,旋转体以母线为剪开线展开.(3)空间几何体的三类截面:轴截面、横截面与斜截面.利用截面图可将空间问题转化为平面问题解决.[高考题型全通关]1.[教材改编]已知圆锥的侧面展开图为四分之三个圆面,设圆锥的底面半径为r,母线长为l,有以下结论:①l∶r=4∶3;②圆锥的侧面积与底面面积之比为4∶3;③圆锥的轴截面是锐角三角形.其中所有正确结论的序号是( )A.①② B.②③ C.①③ D.①②③A[对于①,由题意得错误!=错误!π,∴错误!=错误!,∴l∶r=4∶3,∴该结论正确;对于②,由题意得错误!=错误!=错误!=错误!,∴圆锥的侧面积与底面面积之比为4∶3,∴该结论正确;对于③,由题意得轴截面的三角形的三边长分别为错误!r,错误!r,2r,顶角α最大,其余弦值为cos α=错误!=-错误!〈0,∴顶角为钝角,∴轴截面三角形是钝角三角形,∴该结论错误.]2.在正方体ABCD。

A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的侧(左)视图为()C[过点A,E,C1的平面截去该正方体的上半部分后,剩余部分的直观图如图,则该几何体的侧(左)视图为C.故选C.]3。

(2020·芜湖仿真模拟一)如图,在正方体ABCD。

A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的射影可能是( )A.①④ B.②③ C.②④ D.①②A[从上下方向上看,△PAC的投影为①图所示的情况;从左右方向上看,△PAC的投影为④图所示的情况;从前后方向上看,△PAC 的投影为④图所示的情况,故选A.]4.(2020·全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.FC.G D.HA[该几何体是两个长方体拼接而成,如图所示,显然选A.]5.[高考改编]某四面体的三视图如图所示,则该四面体最长的棱长与最短的棱长的比值是( )A.错误!B.错误!C.错误!D.错误!D[在棱长为2的正方体中还原该四面体P­ABC.如图所示,其中最短的棱为AB和BC,最长的棱为PC.因为正方体的棱长为2,所以AB=BC=2,PC=3,所以该四面体最长的棱长与最短的棱长的比值为错误!,故选D.]6.圆锥的母线长为l ,过顶点的最大截面的面积为12l 2,则圆锥底面半径与母线长的比r l的取值范围是( ) A .错误!B .错误!C .错误!D .错误!D [设圆锥的高为h ,过顶点的截面的顶角为θ,则过顶点的截面的面积S =12l 2sin θ,而0<sin θ≤1,所以当sin θ=1,即截面为等腰直角三角形时取得最大值,故圆锥的轴截面的顶角必须大于或等于90°,得l >r ≥l cos 45°=错误!l ,所以错误!≤错误!<1.]7.如图,已知正三棱柱ABC ­A 1B 1C 1中,AB =错误!,AA 1=4,若点P 从点A 出发,沿着正三棱柱的表面,经过棱A 1B 1运动到点C 1,则点P 运动的最短路程为( )A .5B .错误!C.4错误!D.6B[将三棱柱展开成如图的图形,让点C1与ABB1A1在同一平面内,C1D⊥AB交A1B1于Q,则C1Q⊥A1B1,∴A1Q=AD=错误!,两点之间线段最短,故AC1即为所求的最短距离,因为C1Q=A1C1×sin 60°=错误!×错误!=错误!,所以C1D=错误!+4=错误!,AD=错误!,所以AC1=错误!=错误!=错误!.]命题点2 空间几何体的表面积、体积求解几何体的表面积或体积的策略(1)直接法:对于规则几何体可直接利用公式计算;(2)割补法:对于不规则几何体,可采用“分割、补体"的思想,采用化整为零或化零为整求解.(3)轴截面法:对于旋转体的表面积问题,常常借助轴截面求解.(4)等体积转化法:对于某些动态三棱锥的体积问题,直接求解1.(2020·潍坊模拟)若圆锥的高等于底面直径,侧面积为5π,则该圆锥的体积为()A.错误!π B.错误!π C.2π D.错误!πB[圆锥的高等于底面直径,侧面积为错误!π,设底面半径为r,则高h=2r,∴母线长l=错误!=错误!r,∴s=π×r×错误!r=错误!π,解得r=1,该圆锥的体积为V=错误!π×12×2=错误!π.故选B.]2.[高考改编]榫卯(sǔn mǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿、山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为( )A.8+16π,2+8π B.9+16π,2+8πC.8+16π,4+8π D.9+16π,4+8πA[由三视图知该榫头是由上下两部分构成:上方为长方体(底面为边长是1的正方形,高为2),下方为圆柱(底面圆半径为2,高为2).其表面积为圆柱的表面积加上长方体的侧面积,2π×2+2×错误!+4×错误!=8+16π.所以S=2×(⎭⎫其体积为圆柱与长方体体积之和,所以V=错误!×2+1×1×2=8π+2。

高考数学(命题热点提分)专题12 空间几何体的三视图﹑表面积及体积 文(2021年最新整理)

高考数学(命题热点提分)专题12 空间几何体的三视图﹑表面积及体积 文(2021年最新整理)

2017年高考数学(深化复习+命题热点提分)专题12 空间几何体的三视图﹑表面积及体积文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学(深化复习+命题热点提分)专题12 空间几何体的三视图﹑表面积及体积文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学(深化复习+命题热点提分)专题12 空间几何体的三视图﹑表面积及体积文的全部内容。

专题12 空间几何体的三视图﹑表面积及体积文1.一个侧面积为4π的圆柱,其正视图、俯视图是如图所示的两个边长相等的正方形,则与这个圆柱具有相同的正视图、俯视图的三棱柱的相应的侧视图可以为( )【答案】:C【解析】:三棱柱一定有两个侧面垂直,故只能是选项C中的图形.2.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )【答案】C3。

一个正方体截去两个角后所得几何体的正(主)视图、侧(左)视图如图所示,则其俯视图为()【答案】C【解析】由题意得正方体截去的两个角如图所示,故其俯视图应选C。

4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )【答案】C5.如图,用斜二测画法得到四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为错误!,则原四边形的面积是________.【答案】8错误!【解析】:作DE⊥AB于E,CF⊥AB于F,则AE=BF=AD cos 45°=1,∴CD=EF=3.将原图复原(如图),则原四边形应为直角梯形,∠A′=90°,A′B′=5,C′D′=3,A′D′=22,∴S四边形A′B′C′D′=错误!×(5+3)×2错误!=8错误!。

2020新课标高考数学讲义:空间几何体的三视图、表面积与体积含解析

2020新课标高考数学讲义:空间几何体的三视图、表面积与体积含解析

求几何体的表面积的方法(1)求表面积问题的基本思路是将立体几何问题转化为平面几何问题,即空间图形平面化,这是解决立体几何的主要出发点.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差得不规则几何体的表面积.命题角度二 空间几何体的体积(1)(20xx·河北衡水中学四调)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为( )A .2 000π9B .4 000π27C .81πD .128π(2)(一题多解)如图,在直角梯形ABCD 中,AD =AB =4,BC =2,沿中位线EF 折起,使得∠AEB 为直角,连接AB ,CD ,则所得的几何体的表面积为________,体积为________.【解析】 (1)小圆柱的高分为上下两部分,上部分的高同大圆柱的高相等,为5,下部分深入底部半球内.设小圆柱下部分的高为h (0<h <5),底面半径为r (0<r <5).由于r ,h 和球的半径构成直角三角形,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导得V ′=-π(3h -5)(h +5).当0<h <53时,V ′>0,体积V 单调递增;当53<h<5时,V ′<0,体积V 单调递减.所以当h =53时,小圆柱的体积取得最大值,即V max =π⎝⎛⎭⎫25-259×⎝⎛⎭⎫53+5=4 000π27,故选B. (2)如图,过点C 作CM 平行于AB ,交AD 于点M ,作CN 平行于BE ,交EF 于点N ,连接MN .由题意可知ABCM ,BENC 都是矩形,AM =DM =2,CN =2,FN =1,AB =CM =22,所以S △AEB =12×2×2=2,S 梯形ABCD =12×(2+4)×22=62,S 梯形BEFC =12×(2+3)×2=5,S 梯形AEFD =12×(3+4)×2=7,在直角三角形CMD 中,CM =22,MD =2, 所以CD =23.又因为DF =FC =5,所以S △DFC =12×23×2=6,所以这个几何体的表面积为2+62+5+7+6=14+62+6.所以AS 为三棱锥S -ABC 的高,所以V S ­ABC =13×6×2×12×23=43,故选C.2.(20xx·江苏南通联考)已知正三棱柱ABC -A 1B 1C 1的各棱长均为2,点D 在棱AA 1上,则三棱锥D -BB 1C 1的体积为________.解析:如图,取BC 中点O ,连接AO .因为正三棱柱ABC -A 1B 1C 1的各棱长均为2,所以AC =2,OC =1,则AO =3.因为AA 1∥平面BCC 1B 1,所以点D 到平面BCC 1B 1的距离为3. 又S △BB 1C 1=12×2×2=2,所以VD ­BB 1C 1=13×2×3=233.答案:233与球有关的切、接问题[典型例题]A.12B.14C.16D.112解析:选C.V A ­BC 1M =V C 1­ABM =13S △ABM ·C 1C =13×12AB ×AD ×C 1C =16.故选C.3.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为( ) A .10 B .103 C .102D .53解析:选B.设圆锥的底面半径为r ,高为h .因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr =20π,所以r =10,所以h =202-102=103.4.已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163π C.323π D .16π解析:选D.如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA2+AB2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.故选D.5.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1,则点B 到平面D 1AC 的距离等于( )A.33B.63C .1 D.2解析:选B.如图,连接BD 1,易知D 1D 就是三棱锥D 1­ABC 的高,AD 1=CD 1=5,取AC 的中点O ,连接D 1O ,则D 1O ⊥AC ,所以D 1O =AD21-AO 2=3.设点B 到平面D 1AC 的距离为h ,则由V B ­D 1AC =V D 1­ABC ,即13S △D 1AC ·h =13S △ABC ·D 1D ,又S △D 1AC =12D 1O ·AC =12×3×22=6,S △ABC =12AB ·BC =12×2×2=2,所以h =63.故选B. 6.在三棱锥S -ABC 中,SB ⊥BC ,SA ⊥AC ,SB =BC ,SA =AC ,AB =12SC ,且三棱锥S -ABC 的体积为932,则该三棱锥的外接球半径是( ) A .1B .2C .3D .4解析:选C.取SC 的中点O ,连接OA ,OB ,则OA =OB =OC =OS ,即O 为三棱锥的外接球球心,设半径为r ,则13×2r ×34r 2=932,所以r =3. 7.(20xx·安徽省江南十校3月检测)我国南北朝时期的科学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体在等高处的水平截面的面积恒等,那么这两个几何体的体积相等.利用此原理求以下几何体的体积:如图,曲线y =x 2(0≤y ≤L )和直线y =L 围成的封闭图形绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1(三棱柱ABC -A 1B 1C 1),其中AC ⊥平面α,BB 1C 1C ∥α,EFPQ ∥α,AC =L ,AA 1⊂α,AA 1=π,Z 1与Z 在等高处的截面面积都相等,图中EFPQ 和BB 1C 1C 为矩形,且PQ =π,FP =l ,则几何体Z 1的体积为( )A .πL 2B .πL 3C.12πL 2D.12πL 3 解析:选C.由题意可知,在高为L 处,几何体Z 和Z 1的水平截面面积相等,为πL ,所以S 矩形BB 1C 1C =πL ,所以BC =L ,所以V 三棱柱ABC -A 1B 1C 1=S △ABC ·π=12πL 2,故选C. 8.(20xx·××市七校联合考试)已知正三棱锥的高为6,内切球(与四个面都相切)的表面积为16π,则其底面边长为( )A .18B .12C .63D .43解析:选B.由题意知,球心在三棱锥的高PE 上,设内切球的半径为R ,则S 球=4πR 2=16π,所以R =2,所以OE =OF =2,OP =4.在Rt △OPF 中,PF =OP2-OF2=23.因为△OPF ∽△DPE ,所以OF DE =PF PE,得DE =23,AD =3DE =63,AB =23AD =12.故选B. 9.(多选)下列说法正确的是( )A .用一个平面截一个球,得到的截面是一个圆面B .圆台的任意两条母线延长后一定交于一点C .有一个面为多边形,其余各面都是三角形的几何体叫作棱锥D .若棱锥的侧棱长与底面多边形的边长相等,则该棱锥不可能是正六棱锥解析:选ABD.在A 中,用一个平面截一个球,得到的截面是一个圆面,故A 正确;在B 中,由圆台的概念知圆台的任意两条母线延长后一定交于一点,故B 正确;在C 中,依照棱锥的定义,其余各面的三角形必须有公共的顶点,故C 错误;在D 中,若六棱锥的底面边长都相等,则底面为正六边形,由过底面中心和顶点的截面知,若以正六边形为底面,侧棱长一定大于底面边长,故D 正确.10.(多选)在正方体上任意选择4个顶点,它们可能是如下几种几何图形的4个顶点,这些几何图形可以是( )A .矩形B .有三个面为等腰直角三角形,有一个面为等边三角形的四面体C .每个面都是直角三角形的四面体D .每个面都是等边三角形的四面体解析:选ABCD.4个顶点连成矩形的情形显然成立;图(1)中四面体A 1­D 1B 1A 是B 中描述的情形;图(2)中四面体D -A 1C 1B 是D 中描述的情形;图(3)中四面体A 1­D 1B 1D 是C 中描述的情形.正三棱锥的高为18-12=6.答案:614.(20xx·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.解析:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以圆柱的体积为π×⎝⎛⎭⎫122×1=π4. 答案:π415.(20xx·高考全国卷Ⅰ)已知∠ACB =90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距离均为3,那么P 到平面ABC 的距离为____________.解析:如图,过点P 分别作PE ⊥BC 交BC 于点E ,作PF ⊥AC 交AC于点F .由题意知PE =PF =3.过P 作PH ⊥平面ABC 于点H ,连接HE ,HF ,HC ,易知HE =HF ,则点H 在∠ACB 的平分线上,又∠ACB =90°,故△CEH 为等腰直角三角形.在Rt △PCE 中,PC =2,PE =3,则CE =1,故CH =2,在Rt △PCH 中,可得PH =2,即点P 到平面ABC 的距离为2.答案:216.(20xx·河南八市重点高中联盟测评改编)已知一个高为1的三棱锥,各侧棱长都相等,底面是边长为2的等边三角形,则三棱锥的表面积为________,若三棱锥内有一个体积为V 的球,则V 的最大值为________.解析:该三棱锥侧面的斜高为⎝⎛⎭⎫13×32+12=233,则S 侧=3×12×2×233=23,S 底=12×3×2=3,所以三棱锥的表面积S 表=23+3=33.由题意知,当球与三棱锥的四个面都相切时,其体积最大.设三棱锥的内切球的半径为r ,则三棱锥的体积V 锥=13S 表·r =13S 底·1,所以33r =3,所以r =13,所以三棱锥的内切球的体积最大为V max =43πr 3=4π81. 答案:334π81。

高考数学复习:空间几何体的三视图、表面积及体积

高考数学复习:空间几何体的三视图、表面积及体积

V=13×3×6×3=18.
返回导航
专题五 立体几何
空间几何体的三视图与直观图的对应关系
典题例析 例 1 (1)下列三视图所对应的直观图是
二 轮 复 习
(C )
数 学
[解析] 由题意可知,几何体的直观图下部是长方体,上部是圆柱,并且高 相等,所以C选项符合题意.
返回导航
专题五 立体几何
(2)如图是一个空间几何体的正视图和俯视图,则它的侧视图为


(r,r′为底面半径,h 为高)
球 V 球=__43_π_R_3_____(R 为球的半径) S 球=___4_π_R_2___(R 为球的半径)
返回导航
专题五 立体几何
2.空间几何体的三视图和直观图
(1)空间几何体的三视图
三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上
方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对
=π4.
返回导航
专题五 立体几何
7.(2019·北京卷,11)某几何体是由一个正方体去 掉一个四棱柱所得,其三视图如图所示.如果网格纸上 小正方形的边长为1,那么该几何体的体积为__4_0___.
数 学
二 轮 复 习
[解析 ] 由题意知去掉的四棱柱的底面为直角梯形,底面积S=(2+4) ×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方 体的体积为43=64,所以该几何体的体积为64-24=40.
(1)加强对空间几何体结构特征的理解,掌握各种几何体的体积、表面积公式.
(2)掌握空间几何三视图的画法规则,掌握几何直观图中各个元素之间的关系以
及三视图中长宽之间的关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题12 空间几何体的三视图﹑表面积及体积【命题热点突破一】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1、【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【变式探究】(1)一个几何体的三视图如图所示,则该几何体的直观图可以是( )(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )【答案】 (1)D (2)D【命题热点突破二】几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是()(A)17π(B)18π(C)20π(D)28π【答案】A【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.【变式探究】在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥PA 1MN 的体积是________.【答案】 124【解析】 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵11P A MN A PMN V V --=,又∵AA 1∥平面PMN ,∴1A PMN V -=V A-PMN ,∴V A-PMN =13×12×1×12×12=124, 故1P A MN V -=124. 【命题热点突破三】 多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例3、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【方法技巧】三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形:(1)P 可作为长方体上底面的一个顶点,A 、B 、C 可作为下底面的三个顶点;(2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.【变式探究】在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ABD的面积分别为22,32,62,则三棱锥A-BCD的外接球体积为________.【答案】6π【解析】【高考真题解读】1、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是()(A)17π(B)18π(C)20π(D)28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R,则37428V R833ππ=⨯=,解得R2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784Sπππ⨯⨯⨯⨯故选A.2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C【解析】3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90 (D)81【答案】B5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)133+π(C)136+π(D)16+π【答案】C6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【答案】C【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图338.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 1.(2015·广东,8)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5 B.等于5C.至多等于4 D.至多等于3【答案】 C【解析】当n=3时显然成立,故排除A,B;由正四面体的四个顶点,两两距离相等,得n=4时成立,故选C.2.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm3B.12 cm3 C.323cm3 D.403cm3【答案】 C3.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( )A .1B .2C .4D .8【答案】 B【解析】 由题意知,2r ·2r +12·2πr ·2r +12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,解得r =2.4.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.【答案】 83π5.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4【答案】 D6.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2【答案】 B【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.7.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C 【解析】 如图,要使三棱锥O -ABC 即C -OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥C -OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O -ABC 最大=V C -OAB 最大=13×12S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π,选C.8.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D . 2π 【答案】 C【解析】 如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.9.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+πB.23+πC.13+2πD.23+2π 【答案】 A10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】 D11.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.4(2-1)3πD.12(2-1)3π【答案】 A【解析】 易知原工件为一圆锥,V 1=13πr 2h =23π,设内接长方体长、宽、高为a 、b 、c ,欲令体积最大,则a =b .由截面图的相似关系知,c +a 2+b 2=2,即c +2a =2,∴V 长方体=abc =a 2c =a 2(2-2a ),设g (a )=2a 2-2a 3,则g ′(a )=4a -32a =0,令g ′(a )=0,解得a =432,所以令a =432时,V 长方体最大为1627, ∴V 长方体V 1=16272π3=89π.故选A.。

相关文档
最新文档