高中数学课时跟踪检测(十九)函数的最大(小)值与导数(含解析)新人教A版选修11(144423)

合集下载

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

2019高中数学 第三章 函数的最大(小)值与导数课时作业 新人教A版选修1-1

2019高中数学 第三章 函数的最大(小)值与导数课时作业 新人教A版选修1-1

3.3.3 函数的最大(小)值与导数【基础巩固】1.下列说法正确的是( D )(A)函数在其定义域内若有最值与极值,则其极大值便是最大值,极小值便是最小值(B)闭区间上的连续函数一定有最值,也一定有极值(C)若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值(D)若函数在给定区间上有最大(小)值,则有且仅有一个最大(小)值,但若有极值,则可有多个极值解析:由极值与最值的区别知选D.2.函数f(x)=x3-3x(|x|<1)( D )(A)有最大值,但无最小值(B)有最大值,也有最小值(C)无最大值,但有最小值(D)既无最大值,也无最小值解析:f′(x)=3x2-3=3(x+1)(x-1),因为x∈(-1,1),所以f′(x)<0,即函数在(-1,1)上是单调递减的,所以既无最大值,也无最小值.故选D.3.函数f(x)=3x-x3(-≤x≤3)的最大值为( B )(A)18 (B)2 (C)0 (D)-18解析:f′(x)=3-3x2,令f′(x)=0,得x=±1,-≤x<-1时,f′(x)<0,-1<x<1时,f′(x)>0,1<x≤3时,f′(x)<0,故函数在x=-1处取极小值,在x=1处取极大值. 因为f(1)=2,f(-1)=-2,又f(-)=0,f(3)=-18,所以[f(x)]max=2,[f(x)]min=-18.故选B.4.(2018·大同高二检测)函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是( B )(A)[0,1) (B)(0,1)(C)(-1,1) (D)(0,)解析:因为f′(x)=3x2-3a,令f′(x)=0,可得a=x2有解,又因为x∈(0,1),所以0<a<1.故选B.5.(2017·东莞市高二期末)已知a∈R,若不等式ln x-+x-2>0对于任意x∈(1,+∞)恒成立,则a的取值范围为( C )(A)(-∞,2] (B)(-∞,1](C)(-∞,-1] (D)(-∞,0]解析:由已知得,a<xln x+x2-2x,x∈(1,+∞),令f(x)=xln x+x2-2x(x>1),则f′(x)=ln x+2x-1,f′(x)>0,f(x)在(1,+∞)递增,故f(x)>-1,故a≤-1.故选C.6.函数f(x)=,x∈[-2,2]的最大值是,最小值是.解析:因为y′==,令y′=0可得x=1或-1.又因为f(1)=2,f(-1)=-2,f(2)=,f(-2)=-,所以最大值为2,最小值为-2.答案:2 -27.(2018·包头高二月考)函数f(x)=x2+2ax+1在[0,1]上的最小值为f(1),则a的取值范围为.解析:f′(x)=2x+2a,f(x)在[0,1]上的最小值为f(1),说明f(x)在[0,1]上单调递减,所以x∈[0,1]时,f′(x)≤0恒成立,f′(1)=2+2a≤0,所以a≤-1.答案:(-∞,-1]8.(2018·北海高二检测)已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解:(1)f(x)定义域为R,因为f′(x)=-3x2+6x+9.令f′(x)<0,解得x<-1或x>3,所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(2)由(1)及已知,f(x)在[-2,-1]上是减函数,在[-1,2]上是增函数,因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,所以f(2)>f(-2).于是有22+a=20,所以a=-2.所以f(x)=-x3+3x2+9x-2.所以f(-1)=1+3-9-2=-7,即f(x)最小值为-7.【能力提升】9.已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且 f′(x)<g′(x),则f(x)-g(x)的最大值为( A )(A)f(a)-g(a) (B)f(b)-g(b)(C)f(a)-g(b) (D)f(b)-g(a)解析:[f(x)-g(x)]′=f′(x)-g′(x)<0,所以函数f(x)-g(x)在[a,b]上单调递减,所以f(x)-g(x)的最大值为f(a)-g(a).故选A.10.(2018·桂林高二检测)设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,则当|MN|达到最小值时t的值为( D )(A)1 (B)(C)(D)解析:|MN|的最小值,即函数h(x)=x2-ln x的最小值,h′(x)=2x-=,显然x=是函数h(x)在其定义域内惟一的极小值点,也是最小值点,故t=.11.已知函数f(x)=e x-2x+a有零点,则a的取值范围是.解析:函数f(x)=e x-2x+a有零点,即方程e x-2x+a=0有实根,即函数g(x)=2x-e x,y=a有交点,而g′(x)=2-e x,易知函数g(x)=2x-e x在 (-∞,ln 2)上递增,在(ln 2,+∞)上递减,因而g(x)=2x-e x的值域为 (-∞,2ln 2-2],所以要使函数g(x)=2x-e x,y=a有交点,只需a≤2ln 2-2即可.答案:(-∞,2ln 2-2]12.(2018·郑州高二质检)已知函数f(x)=(a-)x2+ln x(a∈R).(1)当a=1时,求f(x)在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,求a的取值范围.解:(1)当a=1时,f(x)=x2+ln x,x>0,f′(x)=x+=;对于x∈[1,e],有f′(x)>0,所以f(x)在区间[1,e]上为增函数,所以f(x)max=f(e)=1+,f(x)min=f(1)=.(2)令g(x)=f(x)-2ax=(a-)x2-2ax+ln x,在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax下方,等价于g(x)<0在区间(1,+∞)上恒成立,因为g′(x)=(2a-1)x-2a+==.①若a>,令g′(x)=0,得x1=1,x2=,当x2>x1=1,即<a<1时,在(x2,+∞)上有g′(x)>0,此时g(x)在区间(x2,+∞)上是增函数,当x→+∞时,有(a-)x2-2ax→+∞,ln x→+∞,g(x)∈[g(x2),+∞),不合题意;当x2≤x1=1,即a≥1时,同理可知,g(x)在区间(1,+∞)上是增函数,当x→+∞时,有(a-)x2-2ax→+∞,ln x→+∞,g(x)∈(g(1),+∞),也不合题意.②若a≤,则2a-1≤0,此时在区间(1,+∞)上恒有g′(x)<0,从而g(x)在区间(1,+∞)上是减函数.要使g(x)<0在此区间上恒成立,只须满足g(1)=-a-≤0,即a≥-,所以-≤a≤.综上所述,a的取值范围是[-,].【探究创新】13.(2018·张家口高二检测)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值. 解:因为f(x)=x2e-ax(a>0),所以f′(x)=2xe-ax+x2(-a)e-ax=e-ax(-ax2+2x).令f′(x)>0,即e-ax(-ax2+2x)>0,得0<x<.所以f(x)在(-∞,0),(,+∞)上是减函数,在(0,)上是增函数.当0<≤1,即a≥2时,f(x)在[1,2]上是减函数, 所以f(x)max=f(1)=e-a.当1<<2,即1<a<2时,f(x)在(1,)上是增函数,在(,2)上是减函数,所以f(x)max=f()=e-2.当≥2,即0<a≤1时,f(x)在[1,2]上是增函数,所以f(x)max=f(2)=4e-2a.综上所述,当0<a≤1时,f(x)的最大值为4e-2a;当1<a<2时,f(x)的最大值为e-2;当a≥2时,f(x)的最大值为e-a.。

函数的最大(小)值与导数课后同步检测(基础卷)(解析版)

函数的最大(小)值与导数课后同步检测(基础卷)(解析版)

5.3.2函数的最大(小)值与导数课后同步检测(基础卷) 一、单选题1. 函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A.π-1B.π2-1C.πD.π+1【解析】y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数在区间⎣⎢⎡⎦⎥⎤π2,π上单调递增,所以y 的最大值为y max =π-sin π=π. 2. 函数f (x )=x 3-3x (|x |<1)( ) A.有最值,但无极值 B.有最值,也有极值 C.既无最值,也无极值 D.无最值,但有极值【解析】f ′(x )=3x 2-3=3(x +1)(x -1), 当x ∈(-1,1)时,f ′(x )<0, 所以f (x )在(-1,1)上单调递减, 无最大值和最小值,也无极值.3. 当0<x <1时,f ()x =ln xx ,则下列大小关系正确的是( ) A.f 2()x <f ()x 2<f ()x B.f ()x 2<f 2()x <f ()x C.f ()x <f ()x 2<f 2()x D.f ()x 2<f ()x <f 2()x【解析】根据0<x <1得到0<x 2<x <1,而f ′()x =1-ln xx 2,所以根据对数函数的单调性可知,当0<x <1时,1-ln x >0, 从而可得f ′()x >0,函数f ()x 单调递增, 所以f ()x 2<f ()x <f ()1=0,而f 2()x =⎝ ⎛⎭⎪⎫ln x x 2>0,所以有f ()x 2<f ()x <f 2()x .4. 已知函数f (x ),g (x )均为[a ,b ]上的连续可导函数,且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )【解析】令F (x )=f (x )-g (x ),因为f ′(x )<g ′(x ),所以F ′(x )=f ′(x )-g ′(x )<0,所以F (x )在[a ,b ]上单调递减,所以F (x )max =F (a )=f (a )-g (a ).故选A.5. 已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .-3【解析】因为f ′(x )=6x 2-12x =6x (x -2),所以f (x )在(-2,0)上单调递增,在(0,2)上单调递减,所以当x =0时,f (0)=m 最大,所以m =3.因为f (-2)=-37,f (2)=-5,所以最小值为-37.6. 函数f (x )=13x 3-x 2+a ,函数g (x )=x 2-3x ,它们的定义域均为[1,+∞),并且函数f (x )的图象始终在函数g (x )图象的上方,那么a 的取值范围是( )A .(0,+∞)B .(-∞,0) C. ⎝⎛⎭⎪⎫-43,+∞ D. ⎝⎛⎭⎪⎫-∞,-43【解析】设h (x )=f (x )-g (x )=13x 3-2x 2+3x +a ,则h ′(x )=x 2-4x +3=(x -3)(x -1),所以当x ∈(1,3)时,h (x )单调递减;当x ∈(3,+∞)时,h (x )单调递增.当x =3时,函数h (x )取得最小值。

2018-2019学年高中数学 课时跟踪检测(十九)函数的最大(小)值与导数(含解析)新人教A版选修1-1

2018-2019学年高中数学 课时跟踪检测(十九)函数的最大(小)值与导数(含解析)新人教A版选修1-1

课时跟踪检测(十九) 函数的最大(小)值与导数层级一 学业水平达标1.设函数f (x )=2x +1x-1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数解析:选A f ′(x )=2-1x 2=2x 2-1x2, 令f ′(x )=0,得x =-22. 当x <-22时,f ′(x )>0;当-22<x <0时,f ′(x )<0,∴x =-22是函数f (x )的极大值点,也是最大值点.故f (x )有最大值,无最小值.2.函数y =2x 3-3x 2-12x +5在[-2,1]上的最大值、最小值分别是( ) A .12,-8 B .1,-8 C .12,-15D .5,-16解析:选A y ′=6x 2-6x -12, 由y ′=0⇒x =-1或x =2(舍去).x =-2时,y =1;x =-1时,y =12;x =1时,y =-8.∴y max =12,y min =-8.故选A.3.函数f (x )=2x +1x,x ∈(0,5]的最小值为( )A .2B .3 C.174D .22+12解析:选B 由f ′(x )=1x -1x2=x 32-1x2=0,得x =1, 且x ∈(0,1)时,f ′(x )<0,x ∈(1,5]时,f ′(x )>0, ∴x =1时,f (x )最小,最小值为f (1)=3. 4.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值 D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1). 令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 5.函数y =x +2cos x 在⎣⎢⎡⎦⎥⎤0, π2上取最大值时,x 的值为( ) A .0 B.π6C.π3D.π2解析:选B y ′=1-2sin x ,令y ′=0,得sin x =12,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴x =π6.由y ′>0得sin x <12,∴0≤x <π6;由y ′<0得sin x >12,∴π6<x ≤π2,∴原函数在⎣⎢⎡⎭⎪⎫0,π6上单调递增,在⎝ ⎛⎦⎥⎤π6,π2上单调递减. 当x =0时,y =2,当x =π2时,y =π2,当x =π6时,y =π6+3,∵π6+3>2>π2,∴当x =π6时取最大值,故应选B.6.函数f (x )=x 2-54x(x <0)的最小值是________.解析:f ′(x )=2x +54x2.令f ′(x )=0,得x =-3.当x <-3时,f ′(x )<0;当-3<x <0时,f ′(x )>0. 所以当x =-3时,f (x )取得极小值,也是最小值, 所以f (x )min =27. 答案:277.函数f (x )=x e -x,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x-x e -x=e -x(1-x ). 令f ′(x )=0,得x =1(e -x>0), ∴f (1)=1e >0,f (0)=0,f (4)=4e4>0,所以f (x )的最小值为0. 答案:08.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为m ,n ,则m -n =________.解析:∵f ′(x )=3x 2-3,∴当x >1或x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.∴f (x )在[0,1]上单调递减,在[1,3]上单调递增. ∴f (x )min =f (1)=1-3-a =-2-a =n . 又∵f (0)=-a ,f (3)=18-a ,∴f (0)<f (3). ∴f (x )max =f (3)=18-a =m , ∴m -n =18-a -(-2-a )=20. 答案:209.已知k 为实数,f (x )=(x 2-4)(x +k ). (1)求导函数f ′(x );(2)若x =-1是函数f (x )的极值点,求f (x )在区间[-2,2]上的最大值和最小值. 解:(1)∵f (x )=x 3+kx 2-4x -4k , ∴f ′(x )=3x 2+2kx -4. (2)由f ′(-1)=0,得k =-12.∴f (x )=x 3-12x 2-4x +2,f ′(x )=3x 2-x -4.由f ′(x )=0,得x =-1或x =43.又f (-2)=0,f (-1)=92,f ⎝ ⎛⎭⎪⎫43=-5027,f (2)=0, ∴f (x )在区间[-2,2]上的最大值为92,最小值为-5027.10.已知函数f (x )=x 3+ax 2+bx +5,曲线y =f (x )在点P (1,f (1))处的切线方程为y = 3x +1.(1)求a ,b 的值;(2)求y =f (x )在[-3,1]上的最大值.解:(1)依题意可知点P (1,f (1))为切点,代入切线方程y =3x +1可得,f (1)=3×1+1=4,∴f (1)=1+a +b +5=4,即a +b =-2, 又由f (x )=x 3+ax 2+bx +5得, 又f ′(x )=3x 2+2ax +b ,而由切线y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0,由⎩⎪⎨⎪⎧a +b =-2,2a +b =0.解得⎩⎪⎨⎪⎧a =2,b =-4,∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4=(3x -2)(x +2),令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x ),f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f ⎝ ⎛⎭⎪⎫3=27,又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.层级二 应试能力达标1.函数f (x )=xe x 在区间[2,4]上的最小值为( )A .0 B.1eC.4e4 D.2e2解析:选C f ′(x )=e x-x e xx 2=1-xex ,当x ∈[2,4]时,f ′(x )<0,即函数f (x )在[2,4]上是单调递减函数,故当x =4时,函数f (x )有最小值4e 4.2.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .[0,1)B .(0,1)C .(-1,1)D.⎝ ⎛⎭⎪⎫0,12 解析:选B ∵f ′(x )=3x 2-3a , 令f ′(x )=0,可得a =x 2,又∵x ∈(0,1),∴0<a <1,故选B.3.若函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( ) A .-10 B .-71 C .-15D .-22解析:选B f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0,得x =3或x =-1. 又f (-4)=k -76,f (3)=k -27,f (-1)=k +5,f (4)=k -20.由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.4.已知当x ∈⎝⎛⎭⎪⎫0,π2时,函数f (x )=tx -sin x (t ∈R)的值恒小于零,则t 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,2πB.⎝ ⎛⎦⎥⎤-∞,π2C.⎣⎢⎡⎦⎥⎤2π,+∞D.⎣⎢⎡⎭⎪⎫π2,+∞解析:选A f (x )=tx -sin x <0在x ∈⎝ ⎛⎭⎪⎫0,π2内恒成立,即t <sin x x 在⎝ ⎛⎭⎪⎫0,π2内恒成立.令g (x )=sin x x ,则g ′(x )=x cos x -sin xx2. 令φ(x )=x cos x -sin x ,则φ′(x )=-x sin x ,当x ∈⎝ ⎛⎭⎪⎫0,π2时,φ′(x )<0,∴φ(x )在⎝⎛⎭⎪⎫0,π2上单调递减,∴φ(x )<φ(0)=0,∴sin x >x cos x ,∴g ′(x )<0, ∴g (x )在⎝ ⎛⎭⎪⎫0,π2内单调递减,∴t ≤sinπ2π2=2π.5.设函数f (x )=12x 2e x,若当x ∈[-2,2]时,不等式f (x )>m 恒成立,则实数m 的取值范围是________.解析:f ′(x )=x e x+12x 2e x =ex2·x (x +2),由f ′(x )=0得x =0或x =-2.当x ∈[-2,2]时,f ′(x ),f (x )随x 的变化情况如下表:∴当x =0时,f (x )min =f (0)=0,要使f (x )>m 对x ∈[-2,2]恒成立, 只需m <f (x )min ,∴m <0. 答案:(-∞,0)6.已知函数y =-x 2-2x +3在区间[a,2]上的最大值为154,则a =________.解析:y ′=-2x -2,令y ′=0,得x =-1,∴函数在(-∞,-1)上单调递增,在(-1,+∞)上单调递减. 若a >-1,则最大值为f (a )=-a 2-2a +3=154,解得a =-12⎝ ⎛⎭⎪⎫a =-32舍去; 若a ≤-1,则最大值为f (-1)=-1+2+3=4≠154.综上知,a =-12.答案:-127.已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R),g (x )=f (x )+f ′(x )是奇函数. (1)求f (x )的表达式;(2)求g (x )在区间[1,2]上的最大值与最小值.解:(1)∵f ′(x )=3ax 2+2x +b ,∴g (x )=f (x )+f ′(x ) =ax 3+(3a +1)x 2+(b +2)x +b . ∵g (x )是奇函数,∴g (-x )=-g (x ), 从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2,令g ′(x )=0. 解得x 1=-2(舍去),x 2=2, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.8.已知函数f (x )=ln x +ax.(1)当a <0时,求函数f (x )的单调区间;(2)若函数f (x )在[1,e]上的最小值是32,求a 的值.解:函数f (x )=ln x +a x的定义域为(0,+∞), f ′(x )=1x -a x 2=x -ax 2,(1)∵a <0,∴f ′(x )>0,故函数在其定义域(0,+∞)上单调递增. (2)x ∈[1,e]时,分如下情况讨论: ①当a <1时,f ′(x )>0,函数f (x )单调递增,其最小值为f (1)=a <1, 这与函数在[1,e]上的最小值是32相矛盾;②当a =1时,函数f (x )在[1,e]上单调递增,其最小值为f (1)=1,同样与最小值是32相矛盾;③当1<a <e 时,函数f (x )在[1,a )上有f ′(x )<0,f (x )单调递减,在(a ,e]上有f ′(x )>0,f (x )单调递增,所以,函数f (x )的最小值为f (a )=ln a +1,由ln a +1=32,得a = e.④当a =e 时,函数f (x )在[1,e]上有f ′(x )<0,f (x )单调递减,其最小值为f (e)=2,这与最小值是32相矛盾;⑤当a >e 时,显然函数f (x )在[1,e]上单调递减,其最小值为f (e)=1+ae >2,仍与最小值是32相矛盾;综上所述,a 的值为 e.。

高中数学1.3.3函数的最大(小)值与导数课时作业(含解析)新人教A版选修22

高中数学1.3.3函数的最大(小)值与导数课时作业(含解析)新人教A版选修22

高中数学1.3.3函数的最大(小)值与导数课时作业(含解析)新人教A 版选修22知识点一 函数最值的概念1.设f (x )是[a ,b ]上的连续函数,且在(a ,b )内可导,则下列结论中正确的是( ) A .f (x )的极值点一定是最值点 B .f (x )的最值点一定是极值点 C .f (x )在此区间上可能没有极值点 D .f (x )在此区间上可能没有最值点 答案 C解析 根据函数的极值与最值的概念判断知选项A ,B ,D 都不正确,只有选项C 正确. 2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能答案 A解析 由题意,知在区间[a ,b ]上,有m ≤f (x )≤M ,当M =m 时,今M =m =C ,则必有f (x )=C ,∴f ′(x )=C ′=0.故选A.知识点二 求函数的最值3.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值答案 D解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.4.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A .π-1 B.π2-1 C .π D .π+1答案 C解析 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数y =x -sin x 在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sinπ=π,故选C.知识点三 含参数的函数的最值问题5.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( )A .0B .1C .2 D.52答案 C解析 y ′=3x 2+3x =3x (x +1), 令y ′=0,得x =0或x =-1. 因为f (0)=m ,f (-1)=m +12,又f (1)=m +52,f (-2)=m -2,所以f (1)=m +52最大,所以m +52=92,所以m =2.故选C.6.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为m ,n ,则m -n =________.答案 20解析 ∵f ′(x )=3x 2-3, ∴当x >1或x <-1时f ′(x )>0, 当-1<x <1时,f ′(x )<0.∴f (x )在[0,1]上单调递减,在[1,3]上单调递增. ∴f (x )min =f (1)=1-3-a =-2-a =n . 又∵f (0)=-a ,f (3)=18-a , ∴f (0)<f (3).∴f (x )max =f (3)=18-a =m . ∴m -n =18-a -(-2-a )=20.7.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围. 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,因为f ′(1)=3+2a +b =0,f ′⎝ ⎛⎭⎪⎫-23=43-43a +b =0,解得a =-12,b =-2,所以f ′(x )=3x 2-x -2=(3x +2)(x -1), 当x 变化时,f ′(x ),f (x )的变化情况如表:单调递增单调递减单调递增所以函数f (x )的递增区间为⎝ ⎭⎪⎫-∞,-3和(1,+∞);递减区间为⎝ ⎭⎪-3,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝ ⎛⎭⎪⎫-23=2227+c 为极大值,因为f (2)=2+c ,所以f (2)=2+c 为最大值.要使f (x )<c 2(x ∈[-1,2])恒成立,只需c 2>f (2)=2+c ,解得c <-1或c >2. 故c 的取值范围为(-∞,-1)∪(2,+∞).一、选择题1.使函数f (x )=x +2cos x 在⎣⎢⎡⎦⎥⎤0,π2上取最大值的x 为( )A .0 B.π6 C.π3D.π2答案 B解析 ∵f ′(x )=1-2sin x =0,x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x =12,x =π6,∴当x ∈⎣⎢⎡⎭⎪⎫0,π6时,f ′(x )>0,f (x )是增函数.当x ∈⎝ ⎛⎦⎥⎤π6,π2时,f ′(x )<0,f (x )是减函数,即x =π6,f (x )取最大值.故选B.2.函数y =x e -x,x ∈[0,4]的最大值是( ) A .0 B.1e C.4e 4 D.2e2 答案 B解析 y ′=e -x-x ·e -x=e -x(1-x ),令y ′=0, ∴x =1.∵f (0)=0,f (4)=4e 4,f (1)=e -1=1e ,∴f (1)为最大值.故选B.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( )A .-37B .-29C .-5D .-11答案 A解析 ∵f ′(x )=6x 2-12x =6x (x -2),由f ′(x )=0得x =0或2.∵f (0)=m ,f (2)=-8+m ,f (-2)=-40+m ,显然f (0)>f (2)>f (-2),∴m =3,最小值为f (-2)=-37.4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1 B .0<a <1 C .-1<a <1 D .0<a <12答案 B解析 ∵f ′(x )=3x 2-3a ,令f ′(x )=0,可得a =x 2. 又∵x ∈(0,1),∴0<a <1,故选B.5.已知(a +1)x -1-ln x ≤0对任意x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则实数a 的最大值为( ) A .0 B .1 C .1-2ln 2 D.-1+ln 22答案 C解析 原问题等价于a +1≤ln x +1x 对任意x ∈⎣⎢⎡⎦⎥⎤12,1恒成立,令h (x )=ln x +1x ,则h ′(x )=-ln x x 2,令h ′(x )=0,得x =1,且当x ∈⎣⎢⎡⎭⎪⎫12,1时,h ′(x )>0,当x ∈(1,2]时,h ′(x )<0,所以函数h (x )在⎣⎢⎡⎭⎪⎫12,1上单调递增,在(1,2]上单调递减,所以最小值为min ⎩⎨⎧⎭⎬⎫h ⎝ ⎛⎭⎪⎫12,h 2=h ⎝ ⎛⎭⎪⎫12=2-2ln 2,所以a ≤2-2ln 2-1=1-2ln 2,选C.二、填空题 6.函数f (x )=4xx 2+1,x ∈[-2,2]的最大值是________,最小值是________. 答案 2 -2 解析 ∵y ′=4x 2+1-2x ·4x x 2+12=-4x 2+4x 2+12,令y ′=0,可得x =1或-1.又∵f (1)=2,f (-1)=-2,f (2)=85,f (-2)=-85,∴最大值为2,最小值为-2.7.若F (x )=x -2ln x +2a ,则F (x )在(0,+∞)上的最小值是________. 答案 2-2ln 2+2a解析 令F ′(x )=1-2x =x -2x=0得x =2.当x ∈(0,2)时F ′(x )<0,当x ∈(2,+∞)时,F ′(x )>0, ∴当x =2时F (x )min =F (2)=2-2ln 2+2a .8.已知函数f (x )=2ln x +ax2(a >0).若当x ∈(0,+∞)时,f (x )≥2恒成立,则实数a 的取值范围是________.答案 [e ,+∞)解析 f (x )≥2即a ≥2x 2-2x 2ln x .令g (x )=2x 2-2x 2ln x ,x >0,则g ′(x )=2x (1-2ln x ).由g ′(x )=0得x =e 12, 且0<x <e 12 时,g ′(x )>0;当x >e 12时g ′(x )<0, ∴x =e 12 时g (x )取最大值g (e 12)=e ,∴a ≥e. 三、解答题9.已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数. (1)求f (x )的表达式;(2)求g (x )在区间[1,2]上的最大值与最小值. 解 (1)∵f ′(x )=3ax 2+2x +b , ∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .∵g (x )是奇函数,∴g (-x )=-g (x ),从而3a +1=0,b =0, 解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2,令g ′(x )=0,解得x 1=-2(舍去),x 2=2, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.10.已知函数f (x )=ln x +ax.(1)当a <0时,求函数f (x )的单调区间;(2)若函数f (x )在[1,e]上的最小值是32,求a 的值.解 函数f (x )=ln x +a x的定义域为(0,+∞), f ′(x )=1x -a x 2=x -ax 2,(1)∵a <0,∴f ′(x )>0,故函数在其定义域(0,+∞)上单调递增. (2)x ∈[1,e]时,分如下情况讨论:①当a <1时,f ′(x )>0,函数f (x )单调递增,其最小值为f (1)=a <1,这与函数在[1,e]上的最小值是32相矛盾;②当a =1时,函数f (x )在[1,e]上单调递增,其最小值为f (1)=1,同样与最小值是32相矛盾;③当1<a <e 时,函数f (x )在[1,a )上有f ′(x )<0,f (x )单调递减,在(a ,e]上有f ′(x )>0,f (x )单调递增,所以,函数f (x )的最小值为f (a )=ln a +1,由ln a +1=32,得a = e.④当a =e 时,函数f (x )在[1,e]上有f ′(x )<0,f (x )单调递减,其最小值为f (e)=2,这与最小值是32相矛盾;⑤当a >e 时,显然函数f (x )在[1,e]上单调递减,其最小值为f (e)=1+ae >2,仍与最小值是32相矛盾;综上所述,a 的值为 e.。

2019_2020学年高中数学1.3.3函数的最大(小)值与导数课时作业(含解析)新人教A版选修2_2

2019_2020学年高中数学1.3.3函数的最大(小)值与导数课时作业(含解析)新人教A版选修2_2

课时作业9 函数的最大(小)值与导数知识点一 函数最值的概念1.设f (x )是[a ,b ]上的连续函数,且在(a ,b )内可导,则下列结论中正确的是( ) A .f (x )的极值点一定是最值点 B .f (x )的最值点一定是极值点 C .f (x )在此区间上可能没有极值点 D .f (x )在此区间上可能没有最值点 答案 C解析 根据函数的极值与最值的概念判断知选项A ,B ,D 都不正确,只有选项C 正确. 2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能答案 A解析 由题意,知在区间[a ,b ]上,有m ≤f (x )≤M ,当M =m 时,今M =m =C ,则必有f (x )=C ,∴f ′(x )=C ′=0.故选A.知识点二 求函数的最值3.函数f (x )=x 3-3x (|x |<1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,但有最小值 D .既无最大值,也无最小值答案 D解析 f ′(x )=3x 2-3=3(x +1)(x -1),当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上是单调递减函数,无最大值和最小值,故选D.4.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是( )A .π-1 B.π2-1 C .π D .π+1答案 C解析 因为y ′=1-cos x ,当x ∈⎣⎢⎡⎦⎥⎤π2,π时,y ′>0,则函数y =x -sin x 在区间⎣⎢⎡⎦⎥⎤π2,π上为增函数,所以y 的最大值为y max =π-sinπ=π,故选C.知识点三 含参数的函数的最值问题5.若函数y =x 3+32x 2+m 在[-2,1]上的最大值为92,则m 等于( )A .0B .1C .2D.52答案 C解析 y ′=3x 2+3x =3x (x +1), 令y ′=0,得x =0或x =-1. 因为f (0)=m ,f (-1)=m +12,又f (1)=m +52,f (-2)=m -2,所以f (1)=m +52最大,所以m +52=92,所以m =2.故选C.6.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为m ,n ,则m -n =________.答案 20解析 ∵f ′(x )=3x 2-3, ∴当x >1或x <-1时f ′(x )>0, 当-1<x <1时,f ′(x )<0.∴f (x )在[0,1]上单调递减,在[1,3]上单调递增. ∴f (x )min =f (1)=1-3-a =-2-a =n . 又∵f (0)=-a ,f (3)=18-a , ∴f (0)<f (3).∴f (x )max =f (3)=18-a =m . ∴m -n =18-a -(-2-a )=20.7.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1处都取得极值.(1)求a ,b 的值及函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围. 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,因为f ′(1)=3+2a +b =0,f ′⎝ ⎛⎭⎪⎫-23=43-43a +b =0,解得a =-12,b =-2,所以f ′(x )=3x 2-x -2=(3x +2)(x -1), 当x 变化时,f ′(x ),f (x )的变化情况如表:单调递增单调递减单调递增所以函数f (x )的递增区间为⎝ ⎛⎭⎪⎫-∞,-3和(1,+∞);递减区间为⎝ ⎛⎭⎪⎫-3,1. (2)由(1)知,f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],当x =-23时,f ⎝ ⎛⎭⎪⎫-23=2227+c 为极大值,因为f (2)=2+c ,所以f (2)=2+c 为最大值.要使f (x )<c 2(x ∈[-1,2])恒成立,只需c 2>f (2)=2+c ,解得c <-1或c >2. 故c 的取值范围为(-∞,-1)∪(2,+∞).一、选择题1.使函数f (x )=x +2cos x 在⎣⎢⎡⎦⎥⎤0,π2上取最大值的x 为( )A .0 B.π6 C.π3D.π2答案 B解析 ∵f ′(x )=1-2sin x =0,x ∈⎣⎢⎡⎦⎥⎤0,π2时,sin x =12,x =π6,∴当x ∈⎣⎢⎡⎭⎪⎫0,π6时,f ′(x )>0,f (x )是增函数.当x ∈⎝ ⎛⎦⎥⎤π6,π2时,f ′(x )<0,f (x )是减函数,即x =π6,f (x )取最大值.故选B.2.函数y =x e -x,x ∈[0,4]的最大值是( ) A .0 B.1e C.4e 4 D.2e2 答案 B解析 y ′=e -x-x ·e -x=e -x(1-x ),令y ′=0, ∴x =1.∵f (0)=0,f (4)=4e 4,f (1)=e -1=1e ,∴f (1)为最大值.故选B.3.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( )A .-37B .-29C .-5D .-11答案 A解析 ∵f ′(x )=6x 2-12x =6x (x -2),由f ′(x )=0得x =0或2.∵f (0)=m ,f (2)=-8+m ,f (-2)=-40+m ,显然f (0)>f (2)>f (-2),∴m =3,最小值为f (-2)=-37.4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ) A .0≤a <1B .0<a <1C .-1<a <1D .0<a <12答案 B解析 ∵f ′(x )=3x 2-3a ,令f ′(x )=0,可得a =x 2. 又∵x ∈(0,1),∴0<a <1,故选B.5.已知(a +1)x -1-ln x ≤0对任意x ∈⎣⎢⎡⎦⎥⎤12,2恒成立,则实数a 的最大值为( ) A .0 B .1 C .1-2ln 2 D.-1+ln 22答案 C解析 原问题等价于a +1≤ln x +1x 对任意x ∈⎣⎢⎡⎦⎥⎤12,1恒成立,令h (x )=ln x +1x ,则h ′(x )=-ln x x 2,令h ′(x )=0,得x =1,且当x ∈⎣⎢⎡⎭⎪⎫12,1时,h ′(x )>0,当x ∈(1,2]时,h ′(x )<0,所以函数h (x )在⎣⎢⎡⎭⎪⎫12,1上单调递增,在(1,2]上单调递减,所以最小值为min ⎩⎨⎧⎭⎬⎫h ⎝ ⎛⎭⎪⎫12,h 2=h ⎝ ⎛⎭⎪⎫12=2-2ln 2,所以a ≤2-2ln 2-1=1-2ln 2,选C.二、填空题 6.函数f (x )=4xx 2+1,x ∈[-2,2]的最大值是________,最小值是________. 答案 2 -2 解析 ∵y ′=4x 2+1-2x ·4x x 2+12=-4x 2+4x 2+12,令y ′=0,可得x =1或-1.又∵f (1)=2,f (-1)=-2,f (2)=85,f (-2)=-85,∴最大值为2,最小值为-2.7.若F (x )=x -2ln x +2a ,则F (x )在(0,+∞)上的最小值是________. 答案 2-2ln 2+2a解析 令F ′(x )=1-2x =x -2x=0得x =2.当x ∈(0,2)时F ′(x )<0,当x ∈(2,+∞)时,F ′(x )>0, ∴当x =2时F (x )min =F (2)=2-2ln 2+2a .8.已知函数f (x )=2ln x +ax2(a >0).若当x ∈(0,+∞)时,f (x )≥2恒成立,则实数a 的取值范围是________.答案 [e ,+∞)解析 f (x )≥2即a ≥2x 2-2x 2ln x . 令g (x )=2x 2-2x 2ln x ,x >0,则g ′(x )=2x (1-2ln x ).由g ′(x )=0得x =e 12, 且0<x <e 12 时,g ′(x )>0;当x >e 12时g ′(x )<0, ∴x =e 12 时g (x )取最大值g (e 12)=e ,∴a ≥e. 三、解答题9.已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数. (1)求f (x )的表达式;(2)求g (x )在区间[1,2]上的最大值与最小值. 解 (1)∵f ′(x )=3ax 2+2x +b , ∴g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .∵g (x )是奇函数,∴g (-x )=-g (x ),从而3a +1=0,b =0, 解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,∴g ′(x )=-x 2+2,令g ′(x )=0,解得x 1=-2(舍去),x 2=2, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.10.已知函数f (x )=ln x +ax.(1)当a <0时,求函数f (x )的单调区间;(2)若函数f (x )在[1,e]上的最小值是32,求a 的值.解 函数f (x )=ln x +a x的定义域为(0,+∞), f ′(x )=1x -a x 2=x -ax 2,(1)∵a <0,∴f ′(x )>0,故函数在其定义域(0,+∞)上单调递增. (2)x ∈[1,e]时,分如下情况讨论:①当a <1时,f ′(x )>0,函数f (x )单调递增,其最小值为f (1)=a <1,这与函数在[1,e]上的最小值是32相矛盾;②当a =1时,函数f (x )在[1,e]上单调递增,其最小值为f (1)=1,同样与最小值是32相矛盾;③当1<a <e 时,函数f (x )在[1,a )上有f ′(x )<0,f (x )单调递减,在(a ,e]上有f ′(x )>0,f (x )单调递增,所以,函数f (x )的最小值为f (a )=ln a +1,由ln a +1=32,得a = e.④当a =e 时,函数f (x )在[1,e]上有f ′(x )<0,f (x )单调递减,其最小值为f (e)=2,这与最小值是32相矛盾;⑤当a >e 时,显然函数f (x )在[1,e]上单调递减,其最小值为f (e)=1+ae >2,仍与最小值是32相矛盾;综上所述,a 的值为 e.。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

高中数学 课时跟踪检测(十)函数的最大(小)值 新人教A

高中数学 课时跟踪检测(十)函数的最大(小)值 新人教A

课时跟踪检测(十)函数的最大(小)值层级一 学业水平达标1.函数y =f (x )(-2≤x ≤2)的图象如下图所示,则函数的最大值、最小值分别为( )A .f (2),f (-2)B .f ⎝ ⎛⎭⎪⎫12,f (-1)C .f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫-32D .f ⎝ ⎛⎭⎪⎫12,f (0) 解析:选C 根据函数最值定义,结合函数图象可知,当x =-32时,有最小值f ⎝ ⎛⎭⎪⎫-32;当x =12时,有最大值f ⎝ ⎛⎭⎪⎫12.2.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1D .以上都不对解析:选B 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B.3.函数y =3x +2(x ≠-2)在区间[0,5]上的最大值、最小值分别是( ) A.37,0 B.32,0 C.32,37D .最小值为-14,无最大值解析:选C 因为函数y =3x +2在区间[0,5]上单调递减,所以当x =0时,y max =32,当x =5时,y min =37.故选C.4.若函数y =ax +1在[1,2]上的最大值与最小值的差为2,则实数a 的值是( ) A .2 B .-2 C .2或-2D .0解析:选C 由题意知a ≠0,当a >0时,有(2a +1)-(a +1)=2,解得a =2;当a <0时,有(a +1)-(2a +1)=2,解得a =-2.综上知a =±2.5.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( ) A .(-∞,1] B .(-∞,0] C .(-∞,0)D .(0,+∞)解析:选C 令f (x )=-x 2+2x , 则f (x )=-x 2+2x =-(x -1)2+1. 又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0.6.函数y =-1x,x ∈[-3,-1]的最大值与最小值的差是________.解析:易证函数y =-1x 在[-3,-1]上为增函数,所以y min =13,y max =1,所以y max -y min =1-13=23.答案:237.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为________.解析:函数f (x )=-x 2+4x +a =-(x -2)2+4+a ,x ∈[0,1],且函数有最小值-2. 故当x =0时,函数有最小值, 当x =1时,函数有最大值.∵当x =0时,f (0)=a =-2,∴f (x )=-x 2+4x -2, ∴当x =1时,f (x )max =f (1)=-12+4×1-2=1. 答案:18.函数y =f (x )的定义域为[-4,6],若函数f (x )在区间[-4,-2]上单调递减,在区间(-2,6]上单调递增,且f (-4)<f (6),则函数f (x )的最小值是________,最大值是________.解析:作出符合条件的函数的简图(图略),可知f (x )min =f (-2),f (x )max =f (6). 答案:f (-2) f (6) 9.求函数f (x )=xx -1在区间[2,5]上的最大值与最小值.解:任取2≤x 1<x 2≤5, 则f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2x 2-1x 1-1.因为2≤x 1<x 2≤5,所以x 1-x 2<0,x 2-1>0,x 1-1>0. 所以f (x 2)-f (x 1)<0. 所以f (x 2)<f (x 1). 所以f (x )=xx -1在区间[2,5]上是单调减函数.所以f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54.10.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,f (x )max =f (1)=a ; 当0<a <1时,f (x )max =f (a )=a 2-a +1; 当a ≤0时,f (x )max =f (0)=1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1,a =2或⎩⎪⎨⎪⎧0<a <1,a 2-a +1=2或⎩⎪⎨⎪⎧a ≤0,1-a =2,解得a =2或a =-1.层级二 应试能力达标1.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x解析:选A B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1],则f (x )的最大值与最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对解析:选A ∵x ∈[1,2]时,f (x )max =2×2+6=10,f (x )min =2×1+6=8;x ∈[-1,1]时,f (x )max =1+7=8,f (x )min =-1+7=6,∴f (x )max =10,f (x )min =6.3.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)B .[0,2]C .(-∞,2]D .[1,2]解析:选 D f (x )=(x -1)2+2,∵f (x )min =2,f (x )max =3,且f (1)=2,f (0)=f (2)=3,∴1≤m ≤2,故选D.4.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析:选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+30+1924,∴当x =9或10时,L 最大为120万元.5.已知-x 2+4x +a ≥0在x ∈[0,1]上恒成立,则实数a 的取值范围是________. 解析:法一:-x 2+4x +a ≥0,即a ≥x 2-4x ,x ∈[0,1],也就是a 应大于或等于f (x )=x 2-4x 在[0,1]上的最大值,函数f (x )=x 2-4x 在x ∈[0,1]的最大值为0,∴a ≥0.法二:设f (x )=-x 2+4x +a ,由题意知⎩⎪⎨⎪⎧f0=a ≥0,f 1=-1+4+a ≥0,解得a ≥0.答案:[0,+∞)6.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.解析:如图可知f (x )在[1,a ]内是单调递减的, 又∵f (x )的单调递减区间为(-∞,3], ∴1<a ≤3.答案:(1,3]7.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:x 45 50 y2712(1)确定x 与y(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b ,由表格得方程组⎩⎪⎨⎪⎧45a +b =27,50a +b =12,解得⎩⎪⎨⎪⎧a =-3,b =162,所以y =f (x )=-3x +162.又y≥0,所以30≤x≤54,故所求函数关系式为y=-3x+162,x∈[30,54].(2)由题意得,P=(x-30)y=(x-30)(162-3x)=-3x2+252x-4 860=-3(x-42)2+432,x∈[30,54].当x=42时,最大的日销售利润P=432,即当销售单价为42元时,获得最大的日销售利润.8.已知f(x)=3x2-12x+5,当f(x)的定义域为[0,a]时,求函数f(x)的最大值和最小值.解:由于f(x)的对称轴是x=2,因此要确定f(x)在[0,a]上的单调性,就需要确定对称轴是否落在该区间上,这就需要对a进行讨论:(1)当0<a≤2时,f(x)在[0,a]上单调递减,∴f(x)min=f(a)=3a2-12a+5,f(x)max=f(0)=5.(2)当a>2时,f(x)在[0,2]上单调递减,在[2,a]上单调递增,因此其最大值为f(0)和f(a)中的较大者,而f(a)-f(0)=3a2-12a.∴①当2<a≤4时,f(x)max=f(0)=5,f(x)min=f(2)=-7.②当a>4时,f(x)max=f(a)=3a2-12a+5,f(x)min=f(2)=-7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档