数列通项公式求法总结 生

合集下载

数列求通项公式归纳总结

数列求通项公式归纳总结

数列求通项公式归纳总结数列是数学中常见的概念,在各个领域都有着广泛的应用。

通过观察数列的规律并找出通项公式,可以使我们更好地理解数列的性质,进而解决更复杂的问题。

本文将对数列求通项公式的方法进行归纳总结。

一、等差数列求通项公式等差数列是指数列中相邻两项之间的差值都相等的数列。

设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式可以表示为:an = a1 + (n - 1)d其中,n为正整数。

二、等比数列求通项公式等比数列是指数列中相邻两项之间的比值都相等的数列。

设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式可以表示为:an = a1 * r^(n-1)其中,n为正整数。

三、斐波那契数列求通项公式斐波那契数列是指数列中第一项为1,第二项为1,之后每一项都等于前两项之和的数列。

设斐波那契数列的第n项为Fn,则斐波那契数列的通项公式可以表示为:Fn = ( (1 + sqrt(5))^n - (1 - sqrt(5))^n ) / (2^n * sqrt(5))其中,sqrt(5)表示5的开平方。

四、完全平方数列求通项公式完全平方数列是指数列中每一项都是一个完全平方数的数列。

设完全平方数列的第n项为an,则完全平方数列的通项公式可以表示为:an = n^2其中,n为正整数。

五、特殊数列求通项公式除了常见的等差数列、等比数列、斐波那契数列和完全平方数列,还有许多特殊的数列。

对于这些特殊的数列,求通项公式的方法也不尽相同,需要根据具体的规律进行归纳总结。

总结:数列求通项公式是数学中的一个重要内容,有着广泛的应用价值。

通过观察数列的规律并应用相应的方法,可以找到数列的通项公式,从而解决更加复杂的问题。

本文对等差数列、等比数列、斐波那契数列、完全平方数列以及特殊数列的求通项公式进行了归纳总结。

希望读者能够通过本文的介绍,掌握数列求通项公式的方法,并能够运用于实际问题的解决中。

数列通项公式的求解方法总结

数列通项公式的求解方法总结

数列通项公式的求解方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学。

一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。

累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=·an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

数列求通项的方法总结

数列求通项的方法总结

数列求通项的方法总结按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。

为大家总结数列求通项的方法,一起来看看吧!一、累差法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an解:令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2)…f(n-1)∵f(n)可求积∴an=a1f(1)f(2)…f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an解:令n=1,2,…,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n三,构造法1、递推关系式为an+1=pan+q(p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(nN)有an=2an-1+3,求an 解:设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3 故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an解:在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy=-q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an解:设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy=-1/3 可取x=1,y=-1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](nN*)例题1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2时,an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.解:当n=1时,an=sn=2当n≥2时,an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2时,an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an解:即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1=-3×2n-12、用不完全归纳法猜想,用数学归纳法证明.思路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(xx全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an解:由已知可得a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立假设当n=k时,命题成立,即ak=k+1则ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1。

已知数列的递推公式求通项公式的方法总结归纳

已知数列的递推公式求通项公式的方法总结归纳

已知数列的递推公式求通项公式的方法
1.累加法:递推关系式为1()n n a a f n +-=采用累加法。

“累加法”实为等差数列通项公式的推导方法。

2.累乘法:递推关系式为
1()n n
a f n a +=采用累乘法。

“累乘法”实为等比数列通项公式的推导方法 3.构造法:递推关系式为(1)1n n a pa q +=+,(2)1n
n n a pa q +=+,
都可以通过恒等变形,构造出等差或等
比数列,利用等差或等比数列的定义进行解题,其中的构造方法可通过待定系数法来进行。

4. 和化项法:递推关系式为()n S f n =或()n n S f a =一般利用11,
1
,2
n n n S n a S S n -=⎧
=⎨-≥⎩进行转化。

例1.已知12a = , 1n a +=2132n n a -+⋅
求数列{}n a 的通项公式.
例2.已知11,a = 11
n n n a a n +=⋅
+,
求数列{}n a 的通项公式
例3.已知11,a =123n n a a +=+,
求数列{}n a 的通项公式
例5.已知43n n S a =+,
求数列{}n a 的通项公式.
例4.已知11,a =123n n n a a +=+,
求数列{}n a 的通项公式
例6.已知113
n n a S +=
,11a =,
求数列{}n a 的通项公式。

求数列通项公式方法总结

求数列通项公式方法总结

求数列通项公式的方法总结:1)观察法。

例如1、3、5、7、9……2)公式法。

对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。

3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。

4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。

5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。

6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。

7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。

8)利用s n-s n-1=a n的关系求出通项公式。

利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。

对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。

2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。

主要用于等差数列或组合数列。

通项及前N项和的求法的方法总结(全)

通项及前N项和的求法的方法总结(全)

常见数列通项公式的求法1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可. 2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法.例1、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n +==++求求{}n a 的通项公式.3、 累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.例2、已知数列{}n a 满足11,2,31n n n n a a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式.3、待定系数法(构造法)例3、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则 例4、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a ________.练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例5、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a ________.练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .4、利用n a 与n S 的关系如果给出条件是n a 与n S 的关系式,可利用111,2n n n an a S S n -=⎧=⎨-≥⎩求解.例6、已知数列{}n a 的前n 项和为322+-=n n S n ,求{}n a 的通项公式.练习1:已知数列{}n a 的前n 项和为2134n S n n =-+,求{}n a 的通项公式.练习2:若数列{}n a 的前n 项和为33,2n n S a =-求{}n a 的通项公式.5、倒数法例7、已知数列{}n a 满足1=1a ,1232nn n a a a +=+,求{}n a 的通项公式.练习:已知数列{}n a 中,113,,12nn na a a a +==+则n a ________.=例8、已知数列{}n a 满足1=1a ,11234n n n a a a --=+,求{}n a 的通项公式.练习:已知数列{}n a 中,1122,,31n n na a a a +==+则n a ________.=数列前n项和的求法总结一、公式法(1)等差数列前n项和: S n=n(a1+a n)2=na1+n(n+1)2d(2)等比数列前n项和: q=1时, S n=na1;q≠1时, S n=a1(1−q n)1−q(3)其他公式: S n=1+2+3+⋯+n=12n(n+1)S n=12+22+32+⋯+n2=16n(n+1)(2n+1)S n=13+23+33+⋯+n3=[12n(n+1)]2二、倒序相加法3、设等差数列{an },公差为d,求证:{an}的前n项和Sn=n(a1+an)/2三、裂项相消法4、求数列(n∈N*)的和四、错位相减法错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。

数列通项公式求法归纳已打印

数列通项公式求法归纳已打印

递推式求数列通项公式常见类型
一、型(迭加法)
}中,已知,求通项公式。

例1、在数列{a
n
解:已知递推式化为,即,
所以。

二、型(跌乘法)
例2. 求数列的通项公式。

解:当,

当,所以
三、型(配凑法:凑成等、比差数列)
例3. 在数列中,,求。

设,对比,得。

于是,得,以3为公比的等比数列。

所以有。

四、型(配凑法的一种:配所求数列与等差数列的和或差) 例4. 设数列,求通项公式。

解:因为 五、型(配凑法的一种:配所求数列与等比数列的和或差) 设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=-
证明:当2b =时,{}
12n n a n --⋅是等比数列;
当2b =时,可化简为:122n n n a a +=+
于是()()1122212n n n n n a n a n +-+⋅=+-+⋅ ()122n n a n -=-⋅
又111210n a --⋅=≠,所以{}
12n n a n --⋅是首项为1,公比为2的等比数列。

(或直接除以凑等差数列) 六、型(配凑法:配凑成本数列相邻两项的和或差)
例6. 已知数列,求 解:在两边减去。

所以为首项,以。

所以
令上式,再把这个等式累加,得。

所以。

数列通项公式的求法简单总结

数列通项公式的求法简单总结

数列通项公式的求法类型1 递推公式为)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

解:由条件知:111)1(1121+-=+=+=-+n nn n nn a a n n分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a )111()4131()3121()211(n n --+⋅⋅⋅⋅⋅⋅+-+-+-=所以na a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 (1)递推公式为n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。

例2. 已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

解:由条件知11+=+n n a a nn ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-∙⋅⋅⋅⋅⋅⋅∙∙∙n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=na a n 11=⇒又321=a ,na n 32=∴(2).由n n a n f a )(1=+和1a 确定的递推数列{}n a 的通项可如下求得:由已知递推式有1)1(--=n n a n f a , 21)2(---=n n a n f a ,∙∙∙,12)1(a f a =依次向前代入,得1)1()2()1(a f n f n f a n ⋅⋅⋅--=,简记为111))((a k f a n k n -=∏= )1)(,1(01=∏≥=k f n k ,这就是叠(迭)代法的基本模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档