CAE成型 dynaform有限元分析

合集下载

Dynaform在实验教学中的应用

Dynaform在实验教学中的应用

Dynaform在实验教学中的应用Dynaform是一种广泛应用于实验教学中的有限元分析软件,它在工程实验和实验教学中具有很高的应用价值。

有限元分析是一种通过数值计算方法来求解工程结构和材料力学问题的工程分析技术,它能够模拟真实的物理环境,帮助学生更好地理解工程原理和知识。

本文将探讨Dynaform在实验教学中的应用,以及它对学生学习的促进作用。

Dynaform在实验教学中的应用主要体现在以下几个方面:1. 模拟真实工程环境Dynaform可以模拟真实的工程环境,帮助学生更好地理解工程原理和知识。

通过Dynaform软件,学生可以模拟各种力学实验,如拉伸、弯曲、压缩等,从而对工程材料的性能有更深入的了解。

Dynaform还可以模拟复杂的工程结构,帮助学生分析结构的受力和变形情况,为他们打下牢固的工程基础。

2. 提供直观的实验结果Dynaform可以通过有限元分析方法,计算出实验情况下的受力和变形情况,并将计算结果以图形化的方式呈现出来。

这些直观的实验结果可以帮助学生更直观地理解工程材料的受力和变形规律,从而加深他们对工程原理的理解。

3. 培养学生的动手能力通过Dynaform软件,学生可以自行设计实验方案,模拟不同的实验情况,并分析实验结果。

这样一来,学生能够培养自己的动手能力和实验能力,提高他们的工程实践能力。

除了以上几个方面,Dynaform在实验教学中还可以帮助教师更好地开展实验教学。

可以通过Dynaform软件进行实验方案设计、实验数据分析和实验报告撰写等工作,提高实验教学的效率和质量。

Dynaform在实验教学中的应用价值非常高。

它能够帮助学生更好地理解工程原理和知识,提高他们的实验能力和创新能力。

它还可以帮助教师更好地开展实验教学工作,提高教学的效率和质量。

要充分发挥Dynaform在实验教学中的应用价值,还需要解决一些问题。

需要提高学生对Dynaform软件的应用能力,让他们能够熟练地使用软件进行各种实验模拟和分析。

Dynaform在实验教学中的应用

Dynaform在实验教学中的应用

Dynaform在实验教学中的应用Dynaform是一款专业的有限元分析软件,其在工程领域中广泛应用,而在实验教学中的应用也日益受到重视。

本文将就Dynaform在实验教学中的应用进行探讨。

1. 有限元分析基础在工程专业的教学中,有限元分析是一个非常重要的内容,而Dynaform正是一个强大的有限元分析软件。

在学习有限元分析的过程中,学生可以通过Dynaform软件进行实际操作,深入理解有限元分析的原理和方法,掌握软件的使用技能。

2. 材料成形的仿真实验Dynaform软件可以模拟各种材料的成形过程,例如冲压成形、液压成形等。

通过对这些成形过程的仿真实验,学生可以更加直观地理解材料成形的原理和过程,同时也可以掌握Dynaform软件在材料成形仿真方面的应用技能。

3. 零件设计与优化在实验教学中,通过Dynaform软件进行零件设计与优化的实验可以帮助学生更好地了解零件设计的原理和方法,同时也可以通过软件的优化功能,直观地看到不同参数对零件设计的影响,提高学生的设计能力和实际操作能力。

4. 实验报告的撰写在进行实验教学的过程中,学生通常需要进行实验报告的撰写。

Dynaform软件可以生成各种实验数据和分析结果,学生可以通过软件直接导出这些数据和结果,并进行相应的分析和整理,从而更加方便地完成实验报告的撰写。

1. 直观性Dynaform软件可以直观地显示材料成形的过程、零件设计的优化结果等,学生可以通过软件直观地感受到实验过程和结果,有助于加深对于工程原理的理解。

2. 实用性Dynaform软件是工程领域中常用的有限元分析软件,学生通过实验教学中的使用,可以更好地掌握该软件的使用技能,提高实际操作能力,从而更好地适应未来的工作需求。

3. 可视化Dynaform软件可以将复杂的工程问题通过可视化的方式呈现出来,有助于学生更加直观地理解工程原理和方法,提高学习的效率。

三、Dynaform在实验教学中存在的问题及解决方案1. 软件学习难度较大Dynaform软件的操作相对较为复杂,学生可能会在操作过程中遇到一些困难。

常用CAE分析简介

常用CAE分析简介

常用CAE分析简介1. 有限元分析(FEA):有限元分析是一种将复杂结构分解为简单单元的方法,通过求解这些单元的力学行为,从而得到整个结构的力学性能。

有限元分析广泛应用于结构分析、热分析、流体分析等领域,可以帮助工程师评估设计的强度、刚度、稳定性等性能指标。

2. 计算流体动力学(CFD):计算流体动力学是一种利用数值方法模拟流体流动问题的方法。

通过CFD分析,工程师可以了解流体在特定条件下的速度、压力、温度等参数,从而优化设计,提高设备的性能。

CFD分析广泛应用于航空航天、汽车、化工、建筑等领域。

3. 多体动力学(MBD):多体动力学是一种模拟多个刚体之间相互作用的力学分析方法。

通过MBD分析,工程师可以研究机械系统的运动特性、动力学性能和振动特性,从而优化设计,提高设备的可靠性。

MBD分析广泛应用于汽车、、航天器等领域。

4. 优化设计:优化设计是一种在满足一定约束条件下,寻找最优设计方案的方法。

通过优化设计,工程师可以在保证产品质量的前提下,降低成本、提高性能。

优化设计方法包括线性规划、非线性规划、遗传算法等。

5. 可靠性分析:可靠性分析是一种评估产品在使用过程中发生故障的概率的方法。

通过可靠性分析,工程师可以了解产品的故障模式和故障原因,从而优化设计,提高产品的可靠性。

可靠性分析方法包括故障树分析、故障模式与影响分析等。

CAE分析在工程领域具有广泛的应用,可以帮助工程师在设计阶段发现潜在问题,优化设计,提高产品质量和降低成本。

随着计算机技术的不断发展,CAE分析将在未来发挥越来越重要的作用。

6. 热分析:热分析是一种评估产品在温度变化下的热传导、热对流和热辐射性能的方法。

通过热分析,工程师可以了解产品在不同温度条件下的热性能,从而优化设计,提高产品的热效率和热稳定性。

热分析广泛应用于电子设备、汽车、航空航天等领域。

7. 声学分析:声学分析是一种评估产品在声波作用下的声学性能的方法。

通过声学分析,工程师可以了解产品在不同频率下的声压级、声强级和声功率级等参数,从而优化设计,提高产品的声学性能。

cae的主要方法

cae的主要方法

cae的主要方法
CAE(Computer-Aided Engineering,计算机辅助工程)是一种结合计算机技术和工程学知识的工程模拟方法。

它利用计算机模拟和分析工具来预测和评估产品在实际使用情况下的性能和行为,以优化设计和提高产品质量。

CAE的主要方法包括以下几个方面:
1. 有限元分析(Finite Element Analysis,FEA):将复杂的工程结构分割成有限数量的小元素,通过建立数学模型,利用计算机运行复杂的方程求解器,预测产品在应力、应变、振动等方面的性能和行为。

2. 计算流体动力学(Computational Fluid Dynamics,CFD):通过数值模拟和数学解法,分析和预测液体或气体在工程系统中的流动、传热、压力等性能。

3. 多体动力学分析(Multibody Dynamics Analysis,MDA):模拟和分析多体系统中物体的运动和相互作用,如汽车悬挂系统、机器人运动学和动力学。

4. 优化设计:通过数学建模和计算方法,自动搜索和优化设计参数,以满足给定的性能指标和约束条件。

5. 可靠性分析:通过建立可靠性模型,分析和评估产品在使用寿命和环境变化下的可靠性。

6. 结构优化:通过改变材料和结构的拓扑形状、尺寸和布局等设计参数,实现结构体积和重量的降低、刚度和强度的提高。

这些方法都依赖于数学建模、数值分析和计算机仿真技术,用于预测和评估产品的性能、耐久性、可靠性和安全性。

通过CAE方法,工程师可以在产品开发早期就发现和解决问题,减少试验和制造成本,提高产品的质量和竞争力。

几乎所有的有限元分析的软件介绍——让你对CAE软件更了解

几乎所有的有限元分析的软件介绍——让你对CAE软件更了解

几乎所有的有限元分析的软件介绍——让你对CAE软件更了解有限元分析(Finite Element Analysis,FEA)是一种数值计算方法,用于求解结构、固体力学、热传导和流体力学等领域中的工程问题。

它通过离散化技术将复杂的连续体问题转化为一个有限数量的单元问题,再通过求解这些单元的代数方程组得到整个问题的近似解。

在工程领域,有限元分析常常被用来进行结构强度、振动、疲劳和优化分析等。

下面将介绍几个常见的有限元分析软件,包括ANSYS、ABAQUS、LS-DYNA和SolidWorks Simulation。

1.ANSYSANSYS是一款全面的有限元分析软件,包含了结构分析、流体动力学、电磁场分析和耦合多场分析等功能。

它具有强大的前后处理功能和丰富的材料模型库,可以模拟各种复杂的物理现象。

ANSYS还提供了多种优化算法,用于进行结构和材料参数的优化设计。

它广泛应用于航空航天、汽车、能源和电子等领域。

2.ABAQUSABAQUS是一款广泛应用于工程和科学领域的有限元分析软件,主要用于求解复杂的结构、流体和热力学问题。

它具有强大的建模和求解能力,支持线性和非线性分析。

ABAQUS还提供了各种完整的元件库和材料模型,同时支持多学科的耦合分析。

它适用于多种工程和科学领域,如航空航天、汽车、生物医学和材料科学等。

3.LS-DYNALS-DYNA是一款专注于动力学和非线性问题的有限元分析软件,用于模拟高速碰撞、爆炸和弹道问题等。

它具有优秀的显式求解器和平行计算能力,能够处理大型和复杂的模型。

LS-DYNA还提供了丰富的材料模型和接触算法,支持多物理场耦合。

它适用于汽车、航空航天、国防和地震等领域。

4. SolidWorks SimulationSolidWorks Simulation是一款基于SolidWorks CAD软件的有限元分析工具,用于进行结构和流体力学分析。

它提供了友好的用户界面和强大的建模和分析功能,能够快速进行设计验证和性能优化。

基于Dynaform的钣金件CAE回弹分析

基于Dynaform的钣金件CAE回弹分析

关于车身钣金件CAE回弹分析学生姓名学生学号专业班级任课老师2015 年 4 月 26 日基于Dynaform的车身钣金件CAE回弹分析汽车工业作为国民经济的支柱产业,其发展带动了钢铁、机械、电子、轻工等行业的发展,综合地反映了国家的物质文明和精神文明水平。

汽车由发动机、底盘、车身、电气系统四大部分组成。

汽车车身是汽车的“上层建筑”,不仅是驾驶员、乘客、货物的承载体,而且是一种工业艺术产品,给人们以艺术的造诣、工业的水平、工艺的精良等方面综合的概念,是汽车工业中最有活力和最积极的因素。

在各种世界汽车博览会上,各大汽车公司推出的新产品无不以车身造型的新颖、车体制作的精良、车辆性能的优越来表现其市场的竞争能力。

因此,车身的研究、开发、制作是汽车工业中关键的一环。

汽车车身设计要求则有以下几点:1.足够的强度和刚度。

2.保证安全。

3.满足乘坐舒适及人机工程要求。

4.自身质量轻,面积利用率高。

5.空气动力性好。

6.美观新颖的造型。

7.结构合理、维修方便。

8.车身各构件应该有足够的寿命、保证正常使用过程中的可靠性。

轿车车身本体又称白车身,它是由车身结构件和车身覆盖件组合而成。

车身结构件是主要承载构件,其选材、截面形状、受力方向等都是设计是应该重点考虑的问题。

车身覆盖件大多数是由薄板冲压而成的钣金件,且具有不同的曲面形状及大小尺寸。

车身覆盖件焊接在车上框架结构上,包覆各种梁和支柱,从而形成一个完整的封闭体,为乘员以及各总成提供一个良好的空间环境。

与其他类型的车相比,轿车车身覆盖件既可以体现轿车的造型特点,又可以在一定程度上增加轿车车身的强度和刚度。

人们除了对汽车质量、性能的要求越来越高以外,对汽车的外观造型以及细节特征也有了不同的需求。

汽车覆盖件作为汽车外观装饰性的零件与发动机、底盘一起构造汽车的主要部件,其设计水平、制作质量已经成为决定汽车产品市场竞争力的主要因素之一。

汽车钣金件的比重比较大,同时模具的发展迅速,关于材料成形方面的研究得到了广泛的关注。

模具CAE分析软件Dynaform5.6

模具CAE分析软件Dynaform5.6

模具CAE分析软件Dynaform5.6eta/DYNAFORM采用LIVERMORE软件技术公司(LSTC)开发提供的LS-DYNA作为核心求解器。

LS-DYNA作为世界上最著名的通用显式动力分析程序,能够模拟出真实世界的各种复杂问题,特别适合求解各种非线性的高速碰撞、爆炸和金属成形等非线性动力冲击问题。

目前,LS-DYNA已经被应用到诸如汽车碰撞、驾驶安全、水下爆炸及钣金成形等许多领域。

在板料成形过程中,一般来说模具开发周期的瓶颈往往是对模具设计的周期很难把握。

然而,eta/DYNAFORM恰恰解决了这个问题,它能够对整个模具开发过程进行模拟,因此也就大大减少了模具的调试时间,降低了生产高质量覆盖件和其它冲压件的成本,并且能够有效地模拟模具成形过程中四个主要工艺过程,包括:压边、拉延、回弹和多工步成形。

这些模拟让工程师能够在设计周期的早期阶段对产品设计的可行性进行分析。

eta/DYNAFORM具有良好的工具表面数据特征,因此可以较好地预测覆盖件冲压成形过程中板料的破裂、起皱、减薄、划痕、回弹,评估板料的成形性能,从而为板成形工艺及模具设计提供帮助。

跨平台:eta/DYNAFORM几乎可以运行于所有的UNIX工作站平台上,包括:DEC(Alpha)、HP、IBM、SUN和SGI,同时在微机上对Windows NT及以上版本也有很好的支持。

此外,eta/DYNAFORM 还支持LINUX红帽子7.2及以上版本。

eta/DYNAFORM5.5版的新增功能主要包括:面向实际工艺过程的自动设置模块自动设置(AUTOSETUP)是eta/DYNAFORM5.5中增加的一个方便用户设置的全新模块。

友好的用户界面、简洁的设计风格、功能全面的各个模块等都会令用户耳目一新。

此模块从实际工艺过程出发,帮助用户快速、简单地设置各种类型的成形计算。

可以说,自动设置模块(AUTOSETUP)是eta/DYNAFORM5.5一个突破性的改进,一方面,它既具有传统设置功能强大的优点,又具有快速设置简单易用的优点;另一方面,它克服了传统设置复杂难用、快速设置功能单一的缺点,使功能和操作达到了完美的结合。

CAE课有限元分析理论基础

CAE课有限元分析理论基础

类型。
精度要求
03
根据问题对精度的要求,选择足够高阶的有限元以保证求解精
度。
常用有限元的介绍
四面体有限元
适用于解决三维问题,具有较高的计算效率 和适应性。
壳体有限元
适用于解决薄壁结构问题,能够模拟结构的 弯曲和变形。
六面体有限元
适用于解决二维和三维问题,精度较高但计 算效率较低。
梁有限元
适用于解决细长结构问题,能够模拟结构的 轴向拉伸和弯曲。
CAE课有限元分析理论基础
目 录
• 引言 • 有限元分析的基本原理 • 有限元的分类和选择 • 有限元分析的实现过程 • 有限元分析的应用实例 • 结论与展望
01 引言
目的和背景
目的
有限元分析(FEA)是一种数值分析方法,用于解决复杂的工程问题,如结构 分析、热传导、流体动力学等。本课程旨在使学生掌握有限元分析的基本原理 和应用。
弯曲有限元
适用于解决大变形问题,如结 构动力学、流体动力学等。
非线性有限元
适用于解决非线性问题,如塑 性力学、断裂力学等。
耦合有限元
适用于解决多物理场耦合问题 ,如流体-结构耦合、电磁-热
耦合等。
有限元的选择
问题特性
01
根据问题的物理特性、边界条件和求解精度要求选择合适的有
限元类型。
计算资源
02
考虑计算资源的限制,选择计算效率高、内存占用小的有限元
04 有限元分析的实现过程
建立模型
确定分析对象和边界条件
首先需要明确分析的对象和所受的边界条件, 这是建立有限元模型的基础。
几何建模
根据分析对象的特点,利用CAD软件建立几何 模型。
模型简化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dynaform成型有限元分析——餐盘
学号:_____10921910102___________
姓名:______刘燕波_______________
日期:_______2012.6_______________
一、产品描述
产品图:
长:400mm
宽:250mm
厚度:2mm
凸台高度:20
四周圆角:40mm
各倒角:8mm
功能和作用:此餐盘内盛装筷子、饮料杯、米饭、馒头、菜等食物,作为学校、医院等各机关的公众食堂所用餐具,给食客带来了方便,采用不锈钢材料,容易清洗,可长久使用。

二、工艺分析
产品三维图
凸模三维图
凹模三维图
1、有限元网格模型
2、工艺参数
Tools motion curve
Binder force load curve
3、有限元参数
名称参数
材料DQSK 37
分析步数8
步长0.0007
凸模运动速度2000
网格数目坯料:14327 凸模:7339 压边力50000
三、结果及讨论
1、成型结果展示
2、分析结果
从成型结果可以看出,制件未被拉深成功,分析其原因,本人认为,由于制件比较形状复杂,拉深超过了坯料的变形极限,从而未被拉深出来,可以选用塑性比较好的材料,或者进行多次拉深,且在坯料外缘不起皱的情况下尽量选用比较小的压边力,拉深力在保证制件合格的情况下尽量大,如此改善拉深的一些参数,制件方可成型。

相关文档
最新文档