八年级数学下册期末调研考试试题8

合集下载

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

2022-2023学年度第二学期八年级数学期末考试试题附答案

2022-2023学年度第二学期八年级数学期末考试试题附答案

八年级(下)期末试卷数学注意事项:本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.化简4的结果是A.-2 B.2 C.-4 D.42.若分式xx-1有意义,则x的取值范围是A.x>0 B.x≠0 C.x>1 D.x≠1 3.在下列事件中,是必然事件的是A.3天内将下雨B.367人中至少有2人的生日相同C.买一张电影票,座位号是奇数号D.在某妇幼保健医院里,下一个出生的婴儿是女孩4.南京奥林匹克体育中心是亚洲A级体育馆、世界第五代体育建筑的代表.如图是体育馆俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C .这个图形既是中心对称图形,也是轴对称图形D .这个图形既不是中心对称图形,也不是轴对称图形5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y =-1x 的图像上,若y1<y2<0,则x1与x2的大小关系是 A .x1<x2B .x1>x2C .x1=x2D .无法确定6.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,BC =12cm ,点P 从A 出发以1cm/s 的速度向D 运动,点Q 从C 出发以2cm/s 的速度向B 运动.两点同时出发,当点P 运动到点D 时,点Q 也随之停止运动.若设运动的时间为t 秒,以点A 、B 、C 、D 、P 、Q 任意四个点为顶点的四边形中同时存在两个平行四边形,则t 的值是 A .1B .2C .3D .4(第6题)(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.化简:2aa2=▲.8.若式子x -2在实数范围内有意义,则x 的取值范围是▲.9.方程(x -1)-1=2的解是▲.10.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值是▲.(结果精确到0.01) 11.比较大小:4-13▲12.(填“>”、“<”或“=”)12.如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =12cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =▲cm .13.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD//BC ,则∠BAE =(第13题)A BCD E(第14题) ABC D EF(第12题)14.如图,正比例函数y =k1x 与反比例函数y =k2x 的图像交于点A 、B ,若点A 的坐标为(1,2),则关于x 的不等式k1x >k2x 的解集是 ▲ .15.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边点A 与点C 恰好落在同一点处, ▲ .16.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,若P 为边AB 上一动点,旋转后点P 的对应点为点P',则线段PP'长度的取值范围是 ▲ . 三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(第15题)(第16题)A C BB'A'(1)18×3÷2;(2)8+313-2+32.18.(5分)先化简,再求值:a2-1a2-2a +1÷a +1a -1-a -1a +1,其中a =-12.19.(8分)解方程:(1)9x =8x -1; (2)x -1x -2-3=1x -2.20.(6分)疫情期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?21.(6分)为了调查某校八年级360名学生的身高情况,随机抽取了20名男生与20名女生的身高数据,得到下列图表(图表中身高分组153cm~158cm 表示大于或等于153cm 而小于158cm ,其他类同):身高分组(cm ) 频数 153~158 1 158~163 2 163~168 6 168~173 7 173~178 3 178~183 1(1)写出本次调查的总体与样本;(2)根据调查结果,绘制抽取的40名学生的身高频数分布直方图; 身高/cm频数 014 12 10 8 6 4 2 163 183 153 178 158 173 168 153 cm~158 cm158 cm~163 cm168 cm~173 cm173 cm~178 cm 163 cm~168 cm八年级20名女生身高人数分布扇形统计图 八年级20名男生身高频数分布表(3)估计该校八年级学生身高在163cm~183cm范围内的学生人数.22.(5分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q(第22题图①)(第22题图②)23.(7分)在5×5的方格纸中,每个小正方形的边长为1,我们把三个顶点都是格点的三角形称为格点三角形.按要求完成下列问题:(1)在图①中,以AB为边画一个格点三角形,使其为等腰三角形;(2)在图②中,以AB为边画一个格点三角形,使其为钝角三角形且周长为6+32;(3)如图③,若以AB为边的格点三角形的面积为3,则这个三角形的周长为▲.24.(8分)如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=25,直接写出四边形AFCE的面积.EADO25.(8分)如图,点A 、B 是反比例函数y =8x的图像上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =-2x 的图像于点C 、D ,四边形ACBD 是平行四边形.(1)若点A 的横坐标为-4.①直接写出线段AC 的长度; ②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD26.(9分)已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ▲ ;(第26题图①)C D AB (E 、F )(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时; 情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: ▲ .(第26题图②)FAC D EB(第26题图③)C D ABE F八年级(下)期末试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分) 7.2a8.x ≥29.x =1.510.0.9511.< 12.413.38 14.-1<x <0或x >115.6+2316.1225≤PP'≤42三、解答题(本大题共10小题,共68分)17.(6分) 解:(1)原式=54÷2…………………………………………………………………1分=27………………………………………………………………………2分=33.……………………………………………………………………3分 (2)原式=22+3-2+32……………………………………………………………5分=2+332.………………………………………………………………………6分18.(5分)解:原式=(a +1)(a -1)(a -1)2×a -1a +1-a -1a +1……………………………………………………2分 =1-a -1a +1=2a +1.…………………………………………………………………………3分当a=-12时,原式=2-12+1=4.………………………………………………………5分19.(8分)解:(1)方程两边同乘x(x-1),得9(x-1)=8x.………………………………………………………2分解这个整式方程,得x=9.………………………………………………………………3分检验:当x=9时,x(x-1)≠0,x=9是原方程的解.…………………………4分(2)方程两边同乘(x-2),得(x-1)-3(x-2)=1.………………………………………………6分解这个整式方程,得x=2.………………………………………………………………7分检验:当x=2时,x-2=0,x=2是增根,原方程无解.………………………8分20.(6分)解:设甲工厂每小时做x个KN95口罩.根据题意,得1600x=12003500-x,……………………………………………………………2分解这个方程,得x=2000.…………………………………………………………………4分经检验,x=2000是所列方程的解.当x=2000时,3500-x=1500.…………………………………………………………5分答:甲、乙两工厂每小时各做2000个、1500个KN95口罩.………………………6分21.(6分)解:(1)某校八年级360名学生的身高情况的全体是总体;抽取的20名男生与20名女生的身高情况是总体的一个样本;……………………………………………2分(2)如图所示:…………………………………………………………………………4分(3)(14+11+5+1)÷40×360=279(人)答:估计该校八年级学生身高在163cm~183cm范围内的学生人数约为279人.………………………………………………………………………………………6分22.(解四所(所求.………………………………………………………5分(第22题图①)(第22题图②)23.(7分)解:(1)如图①所示;(画出一个符合要求的三角形即可)……………………………2分(2)如图②所示;(画出一个符合要求的三角形即可)………………………………4分(3)32+10+2,42+25或32+34+2.……………………………………7分(第23题图①)AB(第23题图②)AB24.(8分)(1)证明∵四边形ABCD 是菱形, ∴AE//CF , ∴∠AEO =∠CFO , ∵点O 是AC 的中点, ∴OA =OC =12AC ,∵∠AOE =∠COF , ∴△AOE≌△COF .………………………………………………………………………3分∴OE =OF =12EF ,∵OA =OC , ∴四边形AFCE是平行四边形,…………………………………………………………4分∵∠OAE =∠AEO , ∴OA =OE , ∴AC =EF , ∴□AFCE是矩DAOE(第24题)形.………………………………………………………………………6分(2)8.……………………………………………………………………………………8分 25.(8分)解:(1)①AC的长度为2.5;……………………………………………………………2分②设点B 的横坐标为a . ∵BD ⊥x 轴, ∴xB =xD =a ,∵点B 、D 分别在反比例函数y =8x 、y =-2x 的图像上,∴yB =8a ,yD =-2a ,∴BD=10a,………………………………………………………………………………4分 ∵四边形ACBD 是平行四边形, ∴AC=BD=2.5,…………………………………………………………………………5分∴10a=2.5, 解这个方程,得a =4,经检验,a=4是原方程的解,∴点B的坐标为(4,2).…………………………………………………………………6分(2)②⑤.…………………………………………………………………………………8分26.(9分)解:(1)DE=2 CF;……………………………………………………………………3分(2)在情况1与情况2下都相同.……………………………………………………4分选择情况1证明:如图①,设BC与DF的交点为O,连接BE,过C作CG⊥CF 交DF于G.∵四边形ABCD是正方形,∴∠DAB=∠BCD=90°,AB=BC=CD=AD=AE,∵BF⊥DF,∴∠BFD=90°,∴∠CBF+∠BOF=∠CDF+∠COD=90°,∵∠BOF=∠COD,∴∠CBF=∠CDF,∵CG⊥CF,∴∠FCG=90°,FA CDEBG(第26题图①)O∴∠BCF +∠GCO =∠DCG +∠GCO =90°, ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°+12∠DAE ,∴∠BEF =180°-∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°, ∴BF=EF ,……………………………………………….………………………………6分∴EF =DG ,∴DE =DG +EG =EF +EG =FG , ∵∠FCG =90°,CF =CG , ∴FG =2CF ,∴DE=2CF .…………………………………………….………………………………7分选择情况2证明:如图②,设BF 与CD 的交点为O ,连接BE ,过C 作CG ⊥CF交DF 延长线于G .∵四边形ABCD 是正方形,∴∠DAB =∠BCD =90°,AB =BC =CD =AD =AE , ∵BF ⊥DF , ∴∠BFD =90°,∴∠CBF +∠BOC =∠CDF +∠DOF =90°, ∵∠BOC =∠DOF , ∴∠CBF =∠CDF , ∵CG ⊥CF , ∴∠FCG =90°,∴∠BCO +∠DCF =∠FCG +∠DCF , ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°-12∠DAE ,∴∠BEF =∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°,O G(第26题图②)CDABEF∴BF=EF,……………………………………………….………………………………6分∴EF=DG,∴DE=EF-DF=DG-DF=FG,∵∠FCG=90°,CF=CG,∴FG=2CF,∴DE=2 CF.…………………………………………….………………………………7分(3)AF+CF=2DF或|AF-CF|=2 DF.………….…………………………………9分。

【人教版】数学八年级下册《期末检测试题》附答案

【人教版】数学八年级下册《期末检测试题》附答案
5.如图所示是 个大小相同的正方形相连,共有正方形的项点 个,从中任取 个点为顶点构成正方形,共可以组成正方形的个数为( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据正方形的判定,画出正方形即可解决问题;
【详解】解:如图所示:一共有11个正方形.故选D.
【点睛】本题考查正方形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22.小慧根据学习函数的经验,对函数 的图像与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是;
(2)列表,找出 与 的几组对应值.
-1
0
1
2
3
1
0
1
2
其中, ;
(3)在平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,解决下列问题.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、选择题
1.下列格式中,属于最简二次根式的是()
A. B. C. D.
2.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()
A. B.
C. D.
16.如图,过点A(2,0)的两条直线 , 分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .
(1)求点B 坐标;
(2)若△ABC的面积为4,求 的解析式.
17.如图,矩形ABCD中,点E为边CD上的一点,将矩形ABCD沿BE翻折,点A,D分别落在 处, 与 相交于点P,请用无刻度的直尺分别按下列要求画图(保留画图痕迹)

人教版八年级下册数学期末试题(附答案)

人教版八年级下册数学期末试题(附答案)

2021——2022学年第二学期数学期末检测卷一、选择题(每小题3分,共30分)1.代数式11x -有意义,则x 的取值范围是( ) A . x ≥0 B . x ≠1 C . x >0 D . x ≥0且x ≠12.如果一次函数 y =x +k 的图象经过第一、三、四象限,那么 k 的取值范围是 ( ) k >0 B . k <0 C . k >1 D . k <13.如图,在平行四边形 ABCD 中,∠A =140∘,则 ∠B 的度数是 ( )A. 40∘B . 70∘C . 110∘D . 140∘ 书名 《西游记》 《水浒传》 《三国演义》 《红楼梦》销量量/本 180120 125 85 些《西游记》,你认为最影响该书店决策的统计量是( )A .平均数B .众数C .中位数D .方差5.已知点(-3,y 1)、(2,y 2)都在直线y =-2x +1上,则y 1、y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能比较6.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A .22︒B .68︒C .96︒D .112︒7.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm8.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .79.实数a ,b 在数轴上的位置如图所示,则化简√(a -2)2-√(a +b)2的结果是( )A.-b-2 B.b+2 C.b-2 D.-2a-b-210.如图,在平行四边形ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF;④EA平分∠GEF.其中正确的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共12分)11.在二次根式√7,√14,√21,√28,√35,√42,√49中,属于最简二次根式的有个12.某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分2:3:5的比例计算,已知八(1)班在比赛中三项得分依次是8分,9分,10分,则八(1)班这次比赛的总成绩为__________分.13.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________14.关于自变量x的函数y=(k-3)x+2k,下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(-2,6);③若函数经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3.其中结论正确的序号是__________.三、解答题(本大题共5小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.计算2132)4882-16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.17.如图,在平面直角坐标系中,直线y=-12x -1与直线y =-2x +2相交于点P . (1)求交点P 的坐标; (2)请把图象中直线y =-2x +2在直线y =-12x -1上方的 部分描黑加粗,并写出不等式-2x +2>-12x -1的解集.18.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人19.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题: x yO A BP y =-2x +2 y =-12x -1(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.20.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.答案:一、选择题1.B2.B C3.A4.B5.C6.B7.C8.C9.B 10.B二、填空题11.5 12.9.3 13. 20,99,101 14.②③三、解答题15.716.证明:∵BE ∥AC ,CE ∥DB ,∴四边形OBEC 是平行四边形,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠AOB=90°,∴平行四边形OBEC 是矩形.17. (1)(2,-2) (2)x<218. (1)200 (2)C (3)略(4)36019.解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.20.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元. 依题意得2000120020x x =-,解得50x =, 经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件, 依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a , ∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元; ②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.。

人教版数学八年级下册《期末检测题》附答案

人教版数学八年级下册《期末检测题》附答案
9.如图,一次函数 与一次函数 的图象相交于点 ,则关于 的不等式 的解集是()
A. B. C. D.
【答案】D
【解析】
【分析】结合函数图象,写出一次函数y1=x+b图象在一次函数y2=kx+4的图象上方所对应的自变量的范围即可.
【详解】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,−2),
解得 ,
【答案】B
【解析】
【分析】根据勾股定理 逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】解:A、 ,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、 故不是直角三角形,错误.
故选:B.
【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
故选:B.
【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.
7.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的()
A. 中位数B. 众数C. 平均数D. 不能确定
21.如图,在四边形 中, , ,点 在 上,且 ,将 沿 折叠,点 恰好与点 重合.
(1)求线段 的长;
(2)求线段 的长.
22.甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶,甲同学到达山顶休息1小时后再沿原路下山,他们离山脚的距离 (千米)随时间 (小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:

最新人教版八年级数学下册期末调研试卷(附答案)

最新人教版八年级数学下册期末调研试卷(附答案)

最新人教版八年级数学下册期末调研试卷(总分100分 答卷时间120分钟)一、选择题(本题共8小题,每小题2分,共16分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.请把正确选项的代号填入题号前的括号内. 【 】1.下列式子是分式的是A .B .C .D . 【 】2.某种生物细胞的直径约为0.00056m ,将0.00056用科学记数法表示为A .0.56310-⨯B .5.6410-⨯C .5.6510-⨯D .56510-⨯ 【 】3.一组数据3,4,5,5,6,8的极差是A .2B .3C .4D .5【 】4.下列性质中,平行四边形不一定具备的是A .对边相等B .对角相等C .是轴对称图形D .对角线互相平分 【 】5.如果把分式10xy x y+中的x 、y 都扩大10倍,则分式的值 A .扩大10倍 B .扩大100倍 C .缩小到原来的110D .不变 【 】6.等腰梯形的高是4,对角线与下底的夹角是45°,则该梯形的中位线是A .4B .6C .8D .10【 】7.下列函数图象中,经过第四象限,并且在第四象限中y 随x 的增大而增大的是A .1y x =+B .1y x =-+C .1y x =D .1y x=- 【 】8.已知四边形ABCD 的四个顶点的坐标分别为A (2-,0)、B (4,0)、C (5,2)、2x 1+x x y x +23xD (1-,2),直线2y kx =+将四边形分成面积相等的两部分,则k 的值为A . 23-B .29-C . 47-D . 27-二、填空题(本题共10小题,每小题2分,共20分,请把最后结果填在题中横线上) 9.化简111a a a+--= __________. 10.一组数据:0、1、2、2、3、1、3、3的众数是________.11. 一次数学测验中,某班30名男生的平均分为82分,20名女生的平均分为87分,这50名学生的平均分是____________.12.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,不添加任何辅助线,添加一个条件,让四边形变成矩形,这样的条件可以是_______________ (只填一个).13.在平面直角坐标系中,第二象限内有一点A 在反比例函数3m y x-=的图象上,过点A 作坐标轴的垂线,与坐标轴围成的矩形面积为2,则m =________.14.已知△ABC 的三边长分别为5,13,12,则△ABC 的最大角是__________°.15.若一个平行四边形一个内角的平分线把一条边分为2cm 和3cm 的两条线段,则该平行四边形的周长是______.16.在直角梯形ABCD 中,∠A ∶∠B ∶∠C =2∶3∶3,∠D =_______°.17.当三角形的面积为12cm 2时,它的底边a (cm )与底边上的高h (cm )之间的函数关 系式为_______________.18.在平面直角坐标系中,点P 1、P 2 、P 3、…P n 在第一象限内,点A n (n ,0)、B n (0,n )第12题图 A B DO。

福建省泉州市惠安县2023-2024学年八年级下册期末质量检测数学试题(含答案)

福建省泉州市惠安县2023-2024学年八年级下册期末质量检测数学试题(含答案)

惠安县2023-2024学年度八年级下学期期末质量检测数 学 试 题(考试满分:150分;考试时间:120分钟)学校_________________姓名__________________考生号_____________________一、选择题:本题共10小题,每题4分,共40分. 每题给出的四个选项中,只有一项是符合要求的.1.若分式有意义,则x 应满足A .x <0 B .x >0 C .x ≠0 D .x ≠12.古代数学家祖冲之推算出π的近视值为,它与π的误差小于0.000 000 3,将数字0.000 000 3用科学记数法表示为A .B .C .D .3.平面直角坐标系中,点关于x 轴对称,得到的点的坐标为A .B .C .D .4.为选拔一位同学参加数学竞赛,班级进行了多次的初选测试,现将四位候选同学的初选成绩平均分,以及方差汇总如表格所示.若要选拔一位成绩较好且状态稳定的同学参赛,则应选甲乙丙丁平均分85909085方差1 1.11 1.6A .甲同学B .乙同学C .丙同学D .丁同学5.对分式约分的结果是A .B .C .D .6.下列各点中,不在直线上的是A .B .C .D .7.如图是某城市一天的气温随时间变化的函数图象,请观察图象,判断下列说法正确的是A .这一天中有5个小时气温不低于7℃B .这一天8时至18时,最高温和最低温相差9℃C .这一天中气温最低的时间是22时D .这一天中气温最高的时间段是16时至17时8.甲、乙两个工程队共同修一条道路,其中甲工程队需要修9千米,乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米,最终用的时间比甲工程队少半个月.若设甲工程队每个月修千米,则可列出方程为12x35511360.310-´7310-´60.310´7310´(2,3)P -(2,3)(2,3)--(2,3)-(3,2)-x 2S x2S 2211x x x -+-21x -1x -1x +21x -+(0)y kx k k =-¹(1,0)(1,2)k --(,)k k -(,1)1k k-xA .B .C .D .9.在平面直角坐标系中,已知,,,若函数的图象与△ABC 的边有公共点,则k 的取值范围是A .B .C .D .10.如图,矩形ABCD 中,AB =6,BC =8,连结AC ,若点P ,Q 分别是BC ,AC 上的两个动点,则PA +PQ 之和的最小值为A .10 B .13 C . D .二、填空题:本题共6小题,每小题4分,共24分.11.计算:=_________.12.平行四边形ABCD 中,若∠A =∠B ,则四边形ABCD 的形状一定是_____________.13.已知,则的值是_________.14.在平面直角坐标系中,若a ≠b ,则把点(a ,b )与(b ,a )称为一对互换点.已知点M ,N 是互换点,问M ,N 两点能否都在一个反比例函数的图象上?答:___________.(填“一定”或“不一定”)15.如图,菱形ABCD 中,点E ,F 分别在AD ,CD 上,将△DEF 沿EF 折叠后,点D 的对应点G 恰好在BC 上,且EG ⊥BC ,若DE =3,BG =2,则此菱形的边长为_________.16.在同一坐标系中,反比例函数和在第一、二、三、四象限的图象上分别存在点A ,B ,C ,D ,对于四边形ABCD ,下列四个结论中,正确的有_____________.①存在无数个四边形ABCD 是平行四边形②存在无数个四边形ABCD 是菱形③存在无数个四边形ABCD 是矩形④存在一个四边形ABCD 是正方形三、解答题:本题共9小题,共86分. 解答应写出文字说明、证明过程或演算步骤.17.(8分)计算:.18.(8分)先化简,再求值:,其中.19.(8分)某公司20名员工的工资情况统计表如下:工资/千元4 4.5 5.5 6.578员工人数235433请根据以上信息,解答下列问题:912112x x -=+129112x x -=+912112x x -=+129112x x -=+(2,1)A (4,1)B (4,5)C (0)k y k x =¹2k <<4k 4<<202k <<20k 0<<20245285ba a bb a +--13a a +=221a a +3y x =6y x =-021(2024)()3p ----214(1)33x x x --¸++3x =B C DPQA B C DF E G(1)这20名员工的工资的中位数是 千元;(2)这20名员工的月平均工资.20.(8分)如图,平行四边形ABCD 中,EF 过对角线的交点O ,且与边AB 、CD 分别相交于E 、F .(1)判断图形的面积关系:=_______;(2)若AB =5,AD =3,OF =1.3,求四边形BCFE 的周长.21.(8分)为了加强体育锻炼,班级准备购进一批排球和篮球.已知排球的单价比篮球的单价少20元,用1200元购买篮球的数量和用900元购买排球的数量相等.(1)求篮球和排球的单价;(2)若班级准备购买篮球和排球共12个,且排球不超过篮球数量的两倍,设购买篮球和排球所需总费用为y 元,购买排球a 个,求y 与a 之间的函数关系式,并设计一种费用最少的购买方案.22.(10分)矩形ABCD 中,AB =4,BC =8.(1)尺规作图:求作一点E ,使得△AEC 和△ABC 关于对角线AC 对称;(不写作法,保留作图痕迹)(2)在(1)的条件下,设CE 与AD 相交于点F ,求△ACF 的面积.23.(10分)某数学兴趣小组以“脚长与标准鞋码(欧码)的对应关系”为主题,开展综合实践活动.已知鞋子尺码,又叫鞋号,常见的有以下标法:国际、欧洲、美国和英国.国际标准鞋号表示的是脚长的毫米数.中国标准采用毫米数或厘米数为单位来衡量鞋的尺码大小.而欧洲码数(欧码)则以0~100之间的整数作为码数大小.小组同学通过收集数据、建立函数模型来研究该问题,研究过程如下:(ⅰ)收集数据脚长(单位:mm )…235238245253255…对应鞋子的码数(欧码)…3738394041…(ⅱ)建立模型,在平面直角坐标系中,描出这些数据对应的点,发现这些点大致位于同一个函数图象上,则这个函数最有可能是_____________;(填“正比例函数”、“一次函数”或“反比例函数”)(ⅲ)求解模型:为使得所描的点尽可能多地落在函数图象上,根据(ⅱ)所选择的函数类型,求出该函数的表达式;(ⅳ)解决问题:根据个人脚长,选择购买合适码数的鞋子.(1)完成小组同学的研究过程(ⅱ);(要求在坐标系中描点,画出最恰当的函数图象,并指出其函数类型)AEFD S 四边形ABCD S 四边形37 3839 41 40 y (欧码) x脚长(单位:mm )255 250 245 240 235 O(2)求出对应函数的表达式;(3)若某同学的脚长为268mm ,请为他挑选合脚且尽量宽松的鞋子码数.24.(13分)已知正方形ABCD 中,E 是对角线CA 延长线上的一点,将线段BE 绕点B 顺时针旋转90º至BG ,连结CG .(1)如图1,①求证:AE =CG ;②若图中正方形的边长为4,点F 为CD 中点,求FG 的最小值;(2)如图2,若AE =AB ,试证明:E 、D 、G 三点共线.25.(13分)已知直线与x 轴,y 轴分别交于A ,B 两点.(1)求出点A ,B 的坐标;(用含k 的代数式表示)(2)如图1,当k <0时,将线段AB 绕点B 逆时针旋转90º得到线段BC ,连结OC ,求△OBC 的面积;(3)如图2,已知点A (2,0),直线l :,若点P 是直线l 上的一个动点,连结AP ,当直线AP与直线AB 的夹角为45º时,求点P 的坐标.4(0)y kx k =+¹3y =-A B CD FEG 图1 AB C DEG图2 yxO BA ly x O B A 图1 y x O B A l图2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市工业园区2010~2011学年第二学期期末教学调研
初二数学
注意事项:
1.本试卷分选择题和非选择题两部分,共130分,考试用时120分钟.答题全部做在答
题卡上,做在试卷上无效.
2.答题前,请务必将自己的姓名、考试号(调研号)用0.5毫米黑色签字笔填写在答题
卡上,并用2B 铅笔将对应的数字标号涂黑.
3.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦
干净后,再选涂其它答案,答非选择题必须用0.5毫米黑色签字笔写在答题卡的指定位置,在其它位置答题一律无效,作图题,可用2B 铅笔作答,并请加黑加粗画出. 一、选择题:本大题共10小题:每小题3分,共30分,在每小题给出的四个选项中,只有
一项是符合题目要求的,请将正确的答案填涂在答题卡相应的位置上. 1.已知
23x y =,则x y y
+的值为 A .
32 B .43 C .53 D .35 2.计算241
42x x
--
--的结果是 A .12x - B .-12x - C .1
2
x + D .264x x ---
3.下列判断中,正确的是
A .相似图形一定是位似图形
B .位似图形一定是相似图形
C .全等的图形一定是位似图形
D .位似图形一定是全等图形
4.如图,在□ABCD 中,对角线AC ,BD 相交于点D ,E ,F 是对角线AC 上的两点, 当E ,F 满足下列哪个条件时,四边形DEBF 不一定是是平行四边形 A .OE =OF B .DE =BF C .∠ADE=∠CBF D .∠ABE =∠CDF 5.如图,若A 、B 、C 、D 、E 、F 、G 、H 、O 都是5×7方格纸中
的格点,为使△DME ∽△ABC ,则点M 应是F 、G 、H 、O 四点中的. A .F B .G
C .H
D .D
6.在四边形ABCD 中,D 是对角线的交点,能判定这个四边形是正方形的条件是 A .AC =BD ,AB CD B .AD ∥BC ,∠A =∠C C .AO =BO =CO =DO ,AC⊥BD D.AO =CO ,BO =DO ,AB =BC 7.在等腰△ABC 和等腰△DEF 中,∠A 与∠D 是顶角,下列判断正确的是 ①∠A =∠D 时,两三角形相似 ②∠A =∠E 时,两三角形相似 ③
AB DE
BC BF
=
时,两三角形相似 ④∠B =∠E 时,两三角形相似 A .1个 B .2个 C .3个 D .4个 8.在反比例函数1
k y x
-=
的图象的每一条曲线上,y 随x 的增大而增大,则k 值可以是 A .-1 B .1 C .2 D .3
9.如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A 处,沿OA
所在的直线行走14米到点B 时,人影长度 A .变短3.5米 B .变长1.5米 C .变长3.5米 D .变短1.5米
10.如图,直线l 过正方形ABCD 的顶点A 和BC 边的中点E ,点B 到直线l 的距离1,则D
到l 的距离是_______. A .1.5 B .2 C .2.5 D .3
二、填空题:本大题共8小题,每小题3分,共24分,把答案填在答题卷相应题中横线上.
11.若反比例函数m
y x
=-
的图象经过点(-3,-4),则m = ▲ . 12.当m = ▲ 时,分式2
2
m m --的值为零.
13.地图上某地的面积为100cm 2
,比例尺是l :500,则某地的实际面积是 ▲ m 2
. 14.“对顶角相等”的逆命题是 ▲ .
15.有5根细木棒,它们的长度分别是1cm 、3cm 、5cm 、7cm 、9cm ,从中任取3根恰好能搭
成一个三角形的概率是 ▲ .
16.如图,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,AB =10,BD =m ,那么m
的取值范围是 ▲ .
17.下面算式中(见第2页17题图)字母A 、B 、C 分别表示各不相同的一个数字,则B = ▲ . 18.如图(见第2页18题图),等腰梯形ABCD 中,上底AD =2cm ,下底BC =8cm ,以CD 为
边向外作正方形CDEF ,则△EAD 的面积等于 ▲ cm 2

三、解答题:本大题共9小题,共76分,把解答过程写在答题卷相对应的位置上,解答时
应写出必要的计算过程、推演步骤或文字说明. 19.(本题满分5分)计算:265222x x x x -⎛⎫
÷-- ⎪--⎝⎭
20.(本题满分5分)解分式方程:2
234
111
x x x -=+--
21.(本题满分5分)如图,四边形ABCD 中,AB =DC ,AC =DB ,过点A 作AE//DC 交CB 延长
线于E .
求证:(1)△ABC ≌△DCB ;
(2)四边形AECD 为平行四边形.
22.(本题满分6分)一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相
同,搅匀后从中任意摸出1个球,记录下颜色后放回袋中并搅匀,再从中任意摸出1个球,用树状图或列表的方法计算两次都摸出红球的概率是多少?
23.(本题满分6分)如图,已知A(-4,2)、B(n ,-4)是一次函 数y =k x +b 的图象与反比例函数m
y x
的图象的两个交点. (1)求此反比例函数的解析式及n 的值;
(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.
24.(本题满分6分)如图,在Rt △ABC 中,∠BAC =90°,E ,F 分别是BC ,AC 的中点,延
长BA 到点D ,使AD =
1
2
AB ,连结DE , DF . (1)求证:AF 与DE 互相平分;
(2)若BC =4,求DF 的长.
25.(本题满分8分)已知△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,底边BC 、CE 、
EG 在同一直线上,且AB BC =1.连结BF ,分别交AC 、DC 、DE 于点P 、Q 、R .
(1)求证:△BFG ∽△FEG ; (2)求出BF 的长;
(3)求
BP
QR
▲ (直接写出结果).
26.(本题满分8分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程
中出色完成了任务.这是记者与驻军工程指挥官的一段对话:
通过这段对话,请你求出该地驻军原来每天加固的米数.
27.(本题满分9分)
(1)在图1中,画出已知△ABC内接等腰直角△A'B'C',使直角顶点A'在BC上、B'在
AB上,C'在AC上(不写画法,保留作图痕迹);
(2)如图2,如果∠A是直角,AB=4,AC=3,B'C'∥BC,求等腰直角△A'B'C'的底边
B'C'的长.
28.(本题满分9分)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1证明:BF=CG;
(2)当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,
另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .证明:DE +DF =CG ; (3)当三角尺在(2)的基础上沿AC 方向继续平移到图3所示的位置(点F 在线段AC 上,
且点F 与点C 不重合)时,DE +DF =CG ;否仍然成立?若成立说明理由.
29.(本题满分9分)已知反比例函数k y x =
与直线y =1
4
x 相交于A 、B 两点.第一象限上的点M(m ,n)(在A 点左侧)是k
y x
=上的动点,过点B 作BD ∥y 轴交x 轴于点D .过N(0,-n)作NC ∥x 轴交k
y x
=
于点E ,交BD 于点C . (1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.
(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.
(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.(直
接写出结果).。

相关文档
最新文档